xref: /dflybsd-src/sys/kern/kern_synch.c (revision dae741e33c840b92a8a53bf9f01157ede145e256)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/uio.h>
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
61 
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/smp.h>
69 
70 TAILQ_HEAD(tslpque, thread);
71 
72 static void sched_setup (void *dummy);
73 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74 
75 int	hogticks;
76 int	lbolt;
77 int	lbolt_syncer;
78 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
79 int	ncpus;
80 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
81 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
82 int	safepri;
83 int	tsleep_now_works;
84 int	tsleep_crypto_dump = 0;
85 
86 static struct callout loadav_callout;
87 static struct callout schedcpu_callout;
88 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
89 
90 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
91 
92 #if !defined(KTR_TSLEEP)
93 #define KTR_TSLEEP	KTR_ALL
94 #endif
95 KTR_INFO_MASTER(tsleep);
96 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
98 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
100 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
101 
102 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
103 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
104 
105 struct loadavg averunnable =
106 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
107 /*
108  * Constants for averages over 1, 5, and 15 minutes
109  * when sampling at 5 second intervals.
110  */
111 static fixpt_t cexp[3] = {
112 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
113 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
114 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
115 };
116 
117 static void	endtsleep (void *);
118 static void	loadav (void *arg);
119 static void	schedcpu (void *arg);
120 #ifdef SMP
121 static void	tsleep_wakeup_remote(struct thread *td);
122 #endif
123 
124 /*
125  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
126  * Note that 'tick' is in microseconds per tick.
127  */
128 static int
129 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
130 {
131 	int error, new_val;
132 
133 	new_val = sched_quantum * ustick;
134 	error = sysctl_handle_int(oidp, &new_val, 0, req);
135         if (error != 0 || req->newptr == NULL)
136 		return (error);
137 	if (new_val < ustick)
138 		return (EINVAL);
139 	sched_quantum = new_val / ustick;
140 	hogticks = 2 * sched_quantum;
141 	return (0);
142 }
143 
144 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
145 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
146 
147 /*
148  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
149  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
150  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
151  *
152  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
153  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
154  *
155  * If you don't want to bother with the faster/more-accurate formula, you
156  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
157  * (more general) method of calculating the %age of CPU used by a process.
158  *
159  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
160  */
161 #define CCPU_SHIFT	11
162 
163 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
164 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
165 
166 /*
167  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
168  */
169 int     fscale __unused = FSCALE;	/* exported to systat */
170 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
171 
172 /*
173  * Recompute process priorities, once a second.
174  *
175  * Since the userland schedulers are typically event oriented, if the
176  * estcpu calculation at wakeup() time is not sufficient to make a
177  * process runnable relative to other processes in the system we have
178  * a 1-second recalc to help out.
179  *
180  * This code also allows us to store sysclock_t data in the process structure
181  * without fear of an overrun, since sysclock_t are guarenteed to hold
182  * several seconds worth of count.
183  *
184  * WARNING!  callouts can preempt normal threads.  However, they will not
185  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
186  */
187 static int schedcpu_stats(struct proc *p, void *data __unused);
188 static int schedcpu_resource(struct proc *p, void *data __unused);
189 
190 static void
191 schedcpu(void *arg)
192 {
193 	allproc_scan(schedcpu_stats, NULL);
194 	allproc_scan(schedcpu_resource, NULL);
195 	wakeup((caddr_t)&lbolt);
196 	wakeup((caddr_t)&lbolt_syncer);
197 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
198 }
199 
200 /*
201  * General process statistics once a second
202  */
203 static int
204 schedcpu_stats(struct proc *p, void *data __unused)
205 {
206 	struct lwp *lp;
207 
208 	/*
209 	 * Threads may not be completely set up if process in SIDL state.
210 	 */
211 	if (p->p_stat == SIDL)
212 		return(0);
213 
214 	PHOLD(p);
215 	if (lwkt_trytoken(&p->p_token) == FALSE) {
216 		PRELE(p);
217 		return(0);
218 	}
219 
220 	p->p_swtime++;
221 	FOREACH_LWP_IN_PROC(lp, p) {
222 		if (lp->lwp_stat == LSSLEEP)
223 			lp->lwp_slptime++;
224 
225 		/*
226 		 * Only recalculate processes that are active or have slept
227 		 * less then 2 seconds.  The schedulers understand this.
228 		 */
229 		if (lp->lwp_slptime <= 1) {
230 			p->p_usched->recalculate(lp);
231 		} else {
232 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
233 		}
234 	}
235 	lwkt_reltoken(&p->p_token);
236 	lwkt_yield();
237 	PRELE(p);
238 	return(0);
239 }
240 
241 /*
242  * Resource checks.  XXX break out since ksignal/killproc can block,
243  * limiting us to one process killed per second.  There is probably
244  * a better way.
245  */
246 static int
247 schedcpu_resource(struct proc *p, void *data __unused)
248 {
249 	u_int64_t ttime;
250 	struct lwp *lp;
251 
252 	if (p->p_stat == SIDL)
253 		return(0);
254 
255 	PHOLD(p);
256 	if (lwkt_trytoken(&p->p_token) == FALSE) {
257 		PRELE(p);
258 		return(0);
259 	}
260 
261 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
262 		lwkt_reltoken(&p->p_token);
263 		PRELE(p);
264 		return(0);
265 	}
266 
267 	ttime = 0;
268 	FOREACH_LWP_IN_PROC(lp, p) {
269 		/*
270 		 * We may have caught an lp in the middle of being
271 		 * created, lwp_thread can be NULL.
272 		 */
273 		if (lp->lwp_thread) {
274 			ttime += lp->lwp_thread->td_sticks;
275 			ttime += lp->lwp_thread->td_uticks;
276 		}
277 	}
278 
279 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
280 	case PLIMIT_TESTCPU_KILL:
281 		killproc(p, "exceeded maximum CPU limit");
282 		break;
283 	case PLIMIT_TESTCPU_XCPU:
284 		if ((p->p_flag & P_XCPU) == 0) {
285 			p->p_flag |= P_XCPU;
286 			ksignal(p, SIGXCPU);
287 		}
288 		break;
289 	default:
290 		break;
291 	}
292 	lwkt_reltoken(&p->p_token);
293 	lwkt_yield();
294 	PRELE(p);
295 	return(0);
296 }
297 
298 /*
299  * This is only used by ps.  Generate a cpu percentage use over
300  * a period of one second.
301  *
302  * MPSAFE
303  */
304 void
305 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
306 {
307 	fixpt_t acc;
308 	int remticks;
309 
310 	acc = (cpticks << FSHIFT) / ttlticks;
311 	if (ttlticks >= ESTCPUFREQ) {
312 		lp->lwp_pctcpu = acc;
313 	} else {
314 		remticks = ESTCPUFREQ - ttlticks;
315 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
316 				ESTCPUFREQ;
317 	}
318 }
319 
320 /*
321  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
322  * like addresses being slept on.
323  */
324 #define TABLESIZE	4001
325 #define LOOKUP(x)	(((u_int)(uintptr_t)(x)) % TABLESIZE)
326 
327 static cpumask_t slpque_cpumasks[TABLESIZE];
328 
329 /*
330  * General scheduler initialization.  We force a reschedule 25 times
331  * a second by default.  Note that cpu0 is initialized in early boot and
332  * cannot make any high level calls.
333  *
334  * Each cpu has its own sleep queue.
335  */
336 void
337 sleep_gdinit(globaldata_t gd)
338 {
339 	static struct tslpque slpque_cpu0[TABLESIZE];
340 	int i;
341 
342 	if (gd->gd_cpuid == 0) {
343 		sched_quantum = (hz + 24) / 25;
344 		hogticks = 2 * sched_quantum;
345 
346 		gd->gd_tsleep_hash = slpque_cpu0;
347 	} else {
348 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
349 					    M_TSLEEP, M_WAITOK | M_ZERO);
350 	}
351 	for (i = 0; i < TABLESIZE; ++i)
352 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
353 }
354 
355 /*
356  * This is a dandy function that allows us to interlock tsleep/wakeup
357  * operations with unspecified upper level locks, such as lockmgr locks,
358  * simply by holding a critical section.  The sequence is:
359  *
360  *	(acquire upper level lock)
361  *	tsleep_interlock(blah)
362  *	(release upper level lock)
363  *	tsleep(blah, ...)
364  *
365  * Basically this functions queues us on the tsleep queue without actually
366  * descheduling us.  When tsleep() is later called with PINTERLOCK it
367  * assumes the thread was already queued, otherwise it queues it there.
368  *
369  * Thus it is possible to receive the wakeup prior to going to sleep and
370  * the race conditions are covered.
371  */
372 static __inline void
373 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
374 {
375 	thread_t td = gd->gd_curthread;
376 	int id;
377 
378 	crit_enter_quick(td);
379 	if (td->td_flags & TDF_TSLEEPQ) {
380 		id = LOOKUP(td->td_wchan);
381 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
382 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
383 			atomic_clear_cpumask(&slpque_cpumasks[id],
384 					     gd->gd_cpumask);
385 		}
386 	} else {
387 		td->td_flags |= TDF_TSLEEPQ;
388 	}
389 	id = LOOKUP(ident);
390 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
391 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
392 	td->td_wchan = ident;
393 	td->td_wdomain = flags & PDOMAIN_MASK;
394 	crit_exit_quick(td);
395 }
396 
397 void
398 tsleep_interlock(const volatile void *ident, int flags)
399 {
400 	_tsleep_interlock(mycpu, ident, flags);
401 }
402 
403 /*
404  * Remove thread from sleepq.  Must be called with a critical section held.
405  */
406 static __inline void
407 _tsleep_remove(thread_t td)
408 {
409 	globaldata_t gd = mycpu;
410 	int id;
411 
412 	KKASSERT(td->td_gd == gd);
413 	if (td->td_flags & TDF_TSLEEPQ) {
414 		td->td_flags &= ~TDF_TSLEEPQ;
415 		id = LOOKUP(td->td_wchan);
416 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
417 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
418 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
419 		td->td_wchan = NULL;
420 		td->td_wdomain = 0;
421 	}
422 }
423 
424 void
425 tsleep_remove(thread_t td)
426 {
427 	_tsleep_remove(td);
428 }
429 
430 /*
431  * This function removes a thread from the tsleep queue and schedules
432  * it.  This function may act asynchronously.  The target thread may be
433  * sleeping on a different cpu.
434  *
435  * This function mus be called while in a critical section but if the
436  * target thread is sleeping on a different cpu we cannot safely probe
437  * td_flags.
438  *
439  * This function is only called from a different cpu via setrunnable()
440  * when the thread is in a known sleep.  However, multiple wakeups are
441  * possible and we must hold the td to prevent a race against the thread
442  * exiting.
443  */
444 static __inline
445 void
446 _tsleep_wakeup(struct thread *td)
447 {
448 #ifdef SMP
449 	globaldata_t gd = mycpu;
450 
451 	if (td->td_gd != gd) {
452 		lwkt_hold(td);
453 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup_remote, td);
454 		return;
455 	}
456 #endif
457 	_tsleep_remove(td);
458 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
459 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
460 		lwkt_schedule(td);
461 	}
462 }
463 
464 #ifdef SMP
465 static
466 void
467 tsleep_wakeup_remote(struct thread *td)
468 {
469 	_tsleep_wakeup(td);
470 	lwkt_rele(td);
471 }
472 #endif
473 
474 
475 /*
476  * General sleep call.  Suspends the current process until a wakeup is
477  * performed on the specified identifier.  The process will then be made
478  * runnable with the specified priority.  Sleeps at most timo/hz seconds
479  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
480  * before and after sleeping, else signals are not checked.  Returns 0 if
481  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
482  * signal needs to be delivered, ERESTART is returned if the current system
483  * call should be restarted if possible, and EINTR is returned if the system
484  * call should be interrupted by the signal (return EINTR).
485  *
486  * Note that if we are a process, we release_curproc() before messing with
487  * the LWKT scheduler.
488  *
489  * During autoconfiguration or after a panic, a sleep will simply
490  * lower the priority briefly to allow interrupts, then return.
491  */
492 int
493 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
494 {
495 	struct thread *td = curthread;
496 	struct lwp *lp = td->td_lwp;
497 	struct proc *p = td->td_proc;		/* may be NULL */
498 	globaldata_t gd;
499 	int sig;
500 	int catch;
501 	int id;
502 	int error;
503 	int oldpri;
504 	struct callout thandle;
505 
506 	/*
507 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
508 	 * even in stable.  Just scrap it for now.
509 	 */
510 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
511 		/*
512 		 * After a panic, or before we actually have an operational
513 		 * softclock, just give interrupts a chance, then just return;
514 		 *
515 		 * don't run any other procs or panic below,
516 		 * in case this is the idle process and already asleep.
517 		 */
518 		splz();
519 		oldpri = td->td_pri;
520 		lwkt_setpri_self(safepri);
521 		lwkt_switch();
522 		lwkt_setpri_self(oldpri);
523 		return (0);
524 	}
525 	logtsleep2(tsleep_beg, ident);
526 	gd = td->td_gd;
527 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
528 
529 	/*
530 	 * NOTE: all of this occurs on the current cpu, including any
531 	 * callout-based wakeups, so a critical section is a sufficient
532 	 * interlock.
533 	 *
534 	 * The entire sequence through to where we actually sleep must
535 	 * run without breaking the critical section.
536 	 */
537 	catch = flags & PCATCH;
538 	error = 0;
539 	sig = 0;
540 
541 	crit_enter_quick(td);
542 
543 	KASSERT(ident != NULL, ("tsleep: no ident"));
544 	KASSERT(lp == NULL ||
545 		lp->lwp_stat == LSRUN ||	/* Obvious */
546 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
547 		("tsleep %p %s %d",
548 			ident, wmesg, lp->lwp_stat));
549 
550 	/*
551 	 * We interlock the sleep queue if the caller has not already done
552 	 * it for us.  This must be done before we potentially acquire any
553 	 * tokens or we can loose the wakeup.
554 	 */
555 	if ((flags & PINTERLOCKED) == 0) {
556 		id = LOOKUP(ident);
557 		_tsleep_interlock(gd, ident, flags);
558 	}
559 
560 	/*
561 	 * Setup for the current process (if this is a process).
562 	 *
563 	 * We hold the process token if lp && catch.  The resume
564 	 * code will release it.
565 	 */
566 	if (lp) {
567 		if (catch) {
568 			/*
569 			 * Early termination if PCATCH was set and a
570 			 * signal is pending, interlocked with the
571 			 * critical section.
572 			 *
573 			 * Early termination only occurs when tsleep() is
574 			 * entered while in a normal LSRUN state.
575 			 */
576 			lwkt_gettoken(&lp->lwp_token);
577 			if ((sig = CURSIG(lp)) != 0)
578 				goto resume;
579 
580 			/*
581 			 * Early termination if PCATCH was set and a
582 			 * mailbox signal was possibly delivered prior to
583 			 * the system call even being made, in order to
584 			 * allow the user to interlock without having to
585 			 * make additional system calls.
586 			 */
587 			if (p->p_flag & P_MAILBOX)
588 				goto resume;
589 
590 			/*
591 			 * Causes ksignal to wake us up if a signal is
592 			 * received (interlocked with p->p_token).
593 			 */
594 			lp->lwp_flag |= LWP_SINTR;
595 		}
596 	} else {
597 		KKASSERT(p == NULL);
598 	}
599 
600 	/*
601 	 * Make sure the current process has been untangled from
602 	 * the userland scheduler and initialize slptime to start
603 	 * counting.
604 	 */
605 	if (lp) {
606 		p->p_usched->release_curproc(lp);
607 		lp->lwp_slptime = 0;
608 	}
609 
610 	/*
611 	 * If the interlocked flag is set but our cpu bit in the slpqueue
612 	 * is no longer set, then a wakeup was processed inbetween the
613 	 * tsleep_interlock() (ours or the callers), and here.  This can
614 	 * occur under numerous circumstances including when we release the
615 	 * current process.
616 	 *
617 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
618 	 * to process incoming IPIs, thus draining incoming wakeups.
619 	 */
620 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
621 		logtsleep2(ilockfail, ident);
622 		goto resume;
623 	}
624 
625 	/*
626 	 * scheduling is blocked while in a critical section.  Coincide
627 	 * the descheduled-by-tsleep flag with the descheduling of the
628 	 * lwkt.
629 	 *
630 	 * The timer callout is localized on our cpu and interlocked by
631 	 * our critical section.
632 	 */
633 	lwkt_deschedule_self(td);
634 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
635 	td->td_wmesg = wmesg;
636 
637 	/*
638 	 * Setup the timeout, if any.  The timeout is only operable while
639 	 * the thread is flagged descheduled.
640 	 */
641 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
642 	if (timo) {
643 		callout_init_mp(&thandle);
644 		callout_reset(&thandle, timo, endtsleep, td);
645 	}
646 
647 	/*
648 	 * Beddy bye bye.
649 	 */
650 	if (lp) {
651 		/*
652 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
653 		 */
654 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
655 		/*
656 		 * tstop() sets LSSTOP, so don't fiddle with that.
657 		 */
658 		if (lp->lwp_stat != LSSTOP)
659 			lp->lwp_stat = LSSLEEP;
660 		lp->lwp_ru.ru_nvcsw++;
661 		lwkt_switch();
662 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
663 
664 		/*
665 		 * And when we are woken up, put us back in LSRUN.  If we
666 		 * slept for over a second, recalculate our estcpu.
667 		 */
668 		lp->lwp_stat = LSRUN;
669 		if (lp->lwp_slptime)
670 			p->p_usched->recalculate(lp);
671 		lp->lwp_slptime = 0;
672 	} else {
673 		lwkt_switch();
674 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
675 	}
676 
677 	/*
678 	 * Make sure we haven't switched cpus while we were asleep.  It's
679 	 * not supposed to happen.  Cleanup our temporary flags.
680 	 */
681 	KKASSERT(gd == td->td_gd);
682 
683 	/*
684 	 * Cleanup the timeout.  If the timeout has already occured thandle
685 	 * has already been stopped, otherwise stop thandle.
686 	 */
687 	if (timo) {
688 		if (td->td_flags & TDF_TIMEOUT) {
689 			td->td_flags &= ~TDF_TIMEOUT;
690 			error = EWOULDBLOCK;
691 		} else {
692 			/* does not block when on same cpu */
693 			callout_stop(&thandle);
694 		}
695 	}
696 
697 	/*
698 	 * Make sure we have been removed from the sleepq.  In most
699 	 * cases this will have been done for us already but it is
700 	 * possible for a scheduling IPI to be in-flight from a
701 	 * previous tsleep/tsleep_interlock() or due to a straight-out
702 	 * call to lwkt_schedule() (in the case of an interrupt thread),
703 	 * causing a spurious wakeup.
704 	 */
705 	_tsleep_remove(td);
706 	td->td_wmesg = NULL;
707 
708 	/*
709 	 * Figure out the correct error return.  If interrupted by a
710 	 * signal we want to return EINTR or ERESTART.
711 	 *
712 	 * If P_MAILBOX is set no automatic system call restart occurs
713 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
714 	 * interlock, the user must poll it prior to any system call
715 	 * that it wishes to interlock a mailbox signal against since
716 	 * the flag is cleared on *any* system call that sleeps.
717 	 *
718 	 * lp->lwp_token is held in the lwp && catch case.
719 	 */
720 resume:
721 	if (p) {
722 		if (catch && error == 0) {
723 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
724 				error = EINTR;
725 			} else if (sig != 0 || (sig = CURSIG(lp))) {
726 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
727 					error = EINTR;
728 				else
729 					error = ERESTART;
730 			}
731 		}
732 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
733 		if (catch)
734 			lwkt_reltoken(&lp->lwp_token);
735 		if (p->p_flag & P_MAILBOX) {
736 			lwkt_gettoken(&p->p_token);
737 			p->p_flag &= ~P_MAILBOX;
738 			lwkt_reltoken(&p->p_token);
739 		}
740 
741 	}
742 	logtsleep1(tsleep_end);
743 	crit_exit_quick(td);
744 	return (error);
745 }
746 
747 /*
748  * Interlocked spinlock sleep.  An exclusively held spinlock must
749  * be passed to ssleep().  The function will atomically release the
750  * spinlock and tsleep on the ident, then reacquire the spinlock and
751  * return.
752  *
753  * This routine is fairly important along the critical path, so optimize it
754  * heavily.
755  */
756 int
757 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
758        const char *wmesg, int timo)
759 {
760 	globaldata_t gd = mycpu;
761 	int error;
762 
763 	_tsleep_interlock(gd, ident, flags);
764 	spin_unlock_quick(gd, spin);
765 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
766 	spin_lock_quick(gd, spin);
767 
768 	return (error);
769 }
770 
771 int
772 lksleep(const volatile void *ident, struct lock *lock, int flags,
773 	const char *wmesg, int timo)
774 {
775 	globaldata_t gd = mycpu;
776 	int error;
777 
778 	_tsleep_interlock(gd, ident, flags);
779 	lockmgr(lock, LK_RELEASE);
780 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
781 	lockmgr(lock, LK_EXCLUSIVE);
782 
783 	return (error);
784 }
785 
786 /*
787  * Interlocked mutex sleep.  An exclusively held mutex must be passed
788  * to mtxsleep().  The function will atomically release the mutex
789  * and tsleep on the ident, then reacquire the mutex and return.
790  */
791 int
792 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
793 	 const char *wmesg, int timo)
794 {
795 	globaldata_t gd = mycpu;
796 	int error;
797 
798 	_tsleep_interlock(gd, ident, flags);
799 	mtx_unlock(mtx);
800 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
801 	mtx_lock_ex_quick(mtx, wmesg);
802 
803 	return (error);
804 }
805 
806 /*
807  * Interlocked serializer sleep.  An exclusively held serializer must
808  * be passed to zsleep().  The function will atomically release
809  * the serializer and tsleep on the ident, then reacquire the serializer
810  * and return.
811  */
812 int
813 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
814        const char *wmesg, int timo)
815 {
816 	globaldata_t gd = mycpu;
817 	int ret;
818 
819 	ASSERT_SERIALIZED(slz);
820 
821 	_tsleep_interlock(gd, ident, flags);
822 	lwkt_serialize_exit(slz);
823 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
824 	lwkt_serialize_enter(slz);
825 
826 	return ret;
827 }
828 
829 /*
830  * Directly block on the LWKT thread by descheduling it.  This
831  * is much faster then tsleep(), but the only legal way to wake
832  * us up is to directly schedule the thread.
833  *
834  * Setting TDF_SINTR will cause new signals to directly schedule us.
835  *
836  * This routine must be called while in a critical section.
837  */
838 int
839 lwkt_sleep(const char *wmesg, int flags)
840 {
841 	thread_t td = curthread;
842 	int sig;
843 
844 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
845 		td->td_flags |= TDF_BLOCKED;
846 		td->td_wmesg = wmesg;
847 		lwkt_deschedule_self(td);
848 		lwkt_switch();
849 		td->td_wmesg = NULL;
850 		td->td_flags &= ~TDF_BLOCKED;
851 		return(0);
852 	}
853 	if ((sig = CURSIG(td->td_lwp)) != 0) {
854 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
855 			return(EINTR);
856 		else
857 			return(ERESTART);
858 
859 	}
860 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
861 	td->td_wmesg = wmesg;
862 	lwkt_deschedule_self(td);
863 	lwkt_switch();
864 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
865 	td->td_wmesg = NULL;
866 	return(0);
867 }
868 
869 /*
870  * Implement the timeout for tsleep.
871  *
872  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
873  * we only call setrunnable if the process is not stopped.
874  *
875  * This type of callout timeout is scheduled on the same cpu the process
876  * is sleeping on.  Also, at the moment, the MP lock is held.
877  */
878 static void
879 endtsleep(void *arg)
880 {
881 	thread_t td = arg;
882 	struct lwp *lp;
883 
884 	crit_enter();
885 
886 	/*
887 	 * Do this before we potentially block acquiring the token.  Setting
888 	 * TDF_TIMEOUT tells tsleep that we have already stopped the callout.
889 	 */
890 	lwkt_hold(td);
891 	td->td_flags |= TDF_TIMEOUT;
892 
893 	/*
894 	 * This can block
895 	 */
896 	if ((lp = td->td_lwp) != NULL)
897 		lwkt_gettoken(&lp->lwp_token);
898 
899 	/*
900 	 * Only do nominal wakeup processing if TDF_TIMEOUT and
901 	 * TDF_TSLEEP_DESCHEDULED are both still set.  Otherwise
902 	 * we raced a wakeup or we began executed and raced due to
903 	 * blocking in the token above, and should do nothing.
904 	 */
905 	if ((td->td_flags & (TDF_TIMEOUT | TDF_TSLEEP_DESCHEDULED)) ==
906 	    (TDF_TIMEOUT | TDF_TSLEEP_DESCHEDULED)) {
907 		if (lp) {
908 			lp->lwp_flag |= LWP_BREAKTSLEEP;
909 			if (lp->lwp_proc->p_stat != SSTOP)
910 				setrunnable(lp);
911 		} else {
912 			_tsleep_wakeup(td);
913 		}
914 	}
915 	if (lp)
916 		lwkt_reltoken(&lp->lwp_token);
917 	lwkt_rele(td);
918 	crit_exit();
919 }
920 
921 /*
922  * Make all processes sleeping on the specified identifier runnable.
923  * count may be zero or one only.
924  *
925  * The domain encodes the sleep/wakeup domain AND the first cpu to check
926  * (which is always the current cpu).  As we iterate across cpus
927  *
928  * This call may run without the MP lock held.  We can only manipulate thread
929  * state on the cpu owning the thread.  We CANNOT manipulate process state
930  * at all.
931  *
932  * _wakeup() can be passed to an IPI so we can't use (const volatile
933  * void *ident).
934  */
935 static void
936 _wakeup(void *ident, int domain)
937 {
938 	struct tslpque *qp;
939 	struct thread *td;
940 	struct thread *ntd;
941 	globaldata_t gd;
942 #ifdef SMP
943 	cpumask_t mask;
944 #endif
945 	int id;
946 
947 	crit_enter();
948 	logtsleep2(wakeup_beg, ident);
949 	gd = mycpu;
950 	id = LOOKUP(ident);
951 	qp = &gd->gd_tsleep_hash[id];
952 restart:
953 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
954 		ntd = TAILQ_NEXT(td, td_sleepq);
955 		if (td->td_wchan == ident &&
956 		    td->td_wdomain == (domain & PDOMAIN_MASK)
957 		) {
958 			KKASSERT(td->td_gd == gd);
959 			_tsleep_remove(td);
960 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
961 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
962 				lwkt_schedule(td);
963 				if (domain & PWAKEUP_ONE)
964 					goto done;
965 			}
966 			goto restart;
967 		}
968 	}
969 
970 #ifdef SMP
971 	/*
972 	 * We finished checking the current cpu but there still may be
973 	 * more work to do.  Either wakeup_one was requested and no matching
974 	 * thread was found, or a normal wakeup was requested and we have
975 	 * to continue checking cpus.
976 	 *
977 	 * It should be noted that this scheme is actually less expensive then
978 	 * the old scheme when waking up multiple threads, since we send
979 	 * only one IPI message per target candidate which may then schedule
980 	 * multiple threads.  Before we could have wound up sending an IPI
981 	 * message for each thread on the target cpu (!= current cpu) that
982 	 * needed to be woken up.
983 	 *
984 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
985 	 * should be ok since we are passing idents in the IPI rather then
986 	 * thread pointers.
987 	 */
988 	if ((domain & PWAKEUP_MYCPU) == 0 &&
989 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
990 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
991 				     domain | PWAKEUP_MYCPU);
992 	}
993 #endif
994 done:
995 	logtsleep1(wakeup_end);
996 	crit_exit();
997 }
998 
999 /*
1000  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
1001  */
1002 void
1003 wakeup(const volatile void *ident)
1004 {
1005     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
1006 }
1007 
1008 /*
1009  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1010  */
1011 void
1012 wakeup_one(const volatile void *ident)
1013 {
1014     /* XXX potentially round-robin the first responding cpu */
1015     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
1016 }
1017 
1018 /*
1019  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1020  * only.
1021  */
1022 void
1023 wakeup_mycpu(const volatile void *ident)
1024 {
1025     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1026 }
1027 
1028 /*
1029  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1030  * only.
1031  */
1032 void
1033 wakeup_mycpu_one(const volatile void *ident)
1034 {
1035     /* XXX potentially round-robin the first responding cpu */
1036     _wakeup(__DEALL(ident), PWAKEUP_MYCPU|PWAKEUP_ONE);
1037 }
1038 
1039 /*
1040  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1041  * only.
1042  */
1043 void
1044 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1045 {
1046 #ifdef SMP
1047     if (gd == mycpu) {
1048 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1049     } else {
1050 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident), PWAKEUP_MYCPU);
1051     }
1052 #else
1053     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1054 #endif
1055 }
1056 
1057 /*
1058  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1059  * only.
1060  */
1061 void
1062 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1063 {
1064 #ifdef SMP
1065     if (gd == mycpu) {
1066 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1067     } else {
1068 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1069 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1070     }
1071 #else
1072     _wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1073 #endif
1074 }
1075 
1076 /*
1077  * Wakeup all threads waiting on the specified ident that slept using
1078  * the specified domain, on all cpus.
1079  */
1080 void
1081 wakeup_domain(const volatile void *ident, int domain)
1082 {
1083     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1084 }
1085 
1086 /*
1087  * Wakeup one thread waiting on the specified ident that slept using
1088  * the specified  domain, on any cpu.
1089  */
1090 void
1091 wakeup_domain_one(const volatile void *ident, int domain)
1092 {
1093     /* XXX potentially round-robin the first responding cpu */
1094     _wakeup(__DEALL(ident),
1095 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1096 }
1097 
1098 /*
1099  * setrunnable()
1100  *
1101  * Make a process runnable.  lp->lwp_proc->p_token must be held on call.
1102  * This only has an effect if we are in SSLEEP.  We only break out of the
1103  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1104  *
1105  * NOTE: With p_token held we can only safely manipulate the process
1106  * structure and the lp's lwp_stat.
1107  */
1108 void
1109 setrunnable(struct lwp *lp)
1110 {
1111 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1112 	crit_enter();
1113 	if (lp->lwp_stat == LSSTOP)
1114 		lp->lwp_stat = LSSLEEP;
1115 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1116 		_tsleep_wakeup(lp->lwp_thread);
1117 	crit_exit();
1118 }
1119 
1120 /*
1121  * The process is stopped due to some condition, usually because p_stat is
1122  * set to SSTOP, but also possibly due to being traced.
1123  *
1124  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1125  * because the parent may check the child's status before the child actually
1126  * gets to this routine.
1127  *
1128  * This routine is called with the current lwp only, typically just
1129  * before returning to userland.
1130  *
1131  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1132  * SIGCONT to break out of the tsleep.
1133  */
1134 void
1135 tstop(void)
1136 {
1137 	struct lwp *lp = curthread->td_lwp;
1138 	struct proc *p = lp->lwp_proc;
1139 	struct proc *q;
1140 
1141 	crit_enter();
1142 	/*
1143 	 * If LWP_WSTOP is set, we were sleeping
1144 	 * while our process was stopped.  At this point
1145 	 * we were already counted as stopped.
1146 	 */
1147 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1148 		/*
1149 		 * If we're the last thread to stop, signal
1150 		 * our parent.
1151 		 */
1152 		p->p_nstopped++;
1153 		lp->lwp_flag |= LWP_WSTOP;
1154 		wakeup(&p->p_nstopped);
1155 		if (p->p_nstopped == p->p_nthreads) {
1156 			/*
1157 			 * Token required to interlock kern_wait()
1158 			 */
1159 			q = p->p_pptr;
1160 			PHOLD(q);
1161 			lwkt_gettoken(&q->p_token);
1162 			p->p_flag &= ~P_WAITED;
1163 			wakeup(p->p_pptr);
1164 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1165 				ksignal(q, SIGCHLD);
1166 			lwkt_reltoken(&q->p_token);
1167 			PRELE(q);
1168 		}
1169 	}
1170 	while (p->p_stat == SSTOP) {
1171 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1172 		lp->lwp_stat = LSSTOP;
1173 		tsleep(p, 0, "stop", 0);
1174 	}
1175 	p->p_nstopped--;
1176 	lp->lwp_flag &= ~LWP_WSTOP;
1177 	crit_exit();
1178 }
1179 
1180 /*
1181  * Compute a tenex style load average of a quantity on
1182  * 1, 5 and 15 minute intervals.
1183  */
1184 static int loadav_count_runnable(struct lwp *p, void *data);
1185 
1186 static void
1187 loadav(void *arg)
1188 {
1189 	struct loadavg *avg;
1190 	int i, nrun;
1191 
1192 	nrun = 0;
1193 	alllwp_scan(loadav_count_runnable, &nrun);
1194 	avg = &averunnable;
1195 	for (i = 0; i < 3; i++) {
1196 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1197 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1198 	}
1199 
1200 	/*
1201 	 * Schedule the next update to occur after 5 seconds, but add a
1202 	 * random variation to avoid synchronisation with processes that
1203 	 * run at regular intervals.
1204 	 */
1205 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1206 		      loadav, NULL);
1207 }
1208 
1209 static int
1210 loadav_count_runnable(struct lwp *lp, void *data)
1211 {
1212 	int *nrunp = data;
1213 	thread_t td;
1214 
1215 	switch (lp->lwp_stat) {
1216 	case LSRUN:
1217 		if ((td = lp->lwp_thread) == NULL)
1218 			break;
1219 		if (td->td_flags & TDF_BLOCKED)
1220 			break;
1221 		++*nrunp;
1222 		break;
1223 	default:
1224 		break;
1225 	}
1226 	lwkt_yield();
1227 	return(0);
1228 }
1229 
1230 /* ARGSUSED */
1231 static void
1232 sched_setup(void *dummy)
1233 {
1234 	callout_init_mp(&loadav_callout);
1235 	callout_init_mp(&schedcpu_callout);
1236 
1237 	/* Kick off timeout driven events by calling first time. */
1238 	schedcpu(NULL);
1239 	loadav(NULL);
1240 }
1241 
1242