xref: /dflybsd-src/sys/kern/kern_synch.c (revision cf6b3eb151560a2fd7f82351b20f7c317617741e)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #include <sys/kcollect.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54 #include <sys/ktr.h>
55 #include <sys/serialize.h>
56 
57 #include <sys/signal2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/mutex2.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/smp.h>
64 
65 TAILQ_HEAD(tslpque, thread);
66 
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
69 static void sched_dyninit (void *dummy);
70 SYSINIT(sched_dyninit, SI_BOOT1_DYNALLOC, SI_ORDER_FIRST, sched_dyninit, NULL);
71 
72 int	lbolt;
73 void	*lbolt_syncer;
74 int	ncpus;
75 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
76 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
77 int	safepri;
78 int	tsleep_now_works;
79 int	tsleep_crypto_dump = 0;
80 
81 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
82 
83 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
84 
85 #if !defined(KTR_TSLEEP)
86 #define KTR_TSLEEP	KTR_ALL
87 #endif
88 KTR_INFO_MASTER(tsleep);
89 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
90 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
91 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
92 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
93 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
94 
95 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
96 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
97 
98 struct loadavg averunnable =
99 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
100 /*
101  * Constants for averages over 1, 5, and 15 minutes
102  * when sampling at 5 second intervals.
103  */
104 static fixpt_t cexp[3] = {
105 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
106 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
107 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
108 };
109 
110 static void	endtsleep (void *);
111 static void	loadav (void *arg);
112 static void	schedcpu (void *arg);
113 
114 static int pctcpu_decay = 10;
115 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
116 
117 /*
118  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
119  */
120 int     fscale __unused = FSCALE;	/* exported to systat */
121 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
122 
123 /*
124  * Recompute process priorities, once a second.
125  *
126  * Since the userland schedulers are typically event oriented, if the
127  * estcpu calculation at wakeup() time is not sufficient to make a
128  * process runnable relative to other processes in the system we have
129  * a 1-second recalc to help out.
130  *
131  * This code also allows us to store sysclock_t data in the process structure
132  * without fear of an overrun, since sysclock_t are guarenteed to hold
133  * several seconds worth of count.
134  *
135  * WARNING!  callouts can preempt normal threads.  However, they will not
136  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
137  */
138 static int schedcpu_stats(struct proc *p, void *data __unused);
139 static int schedcpu_resource(struct proc *p, void *data __unused);
140 
141 static void
142 schedcpu(void *arg)
143 {
144 	allproc_scan(schedcpu_stats, NULL, 1);
145 	allproc_scan(schedcpu_resource, NULL, 1);
146 	if (mycpu->gd_cpuid == 0) {
147 		wakeup((caddr_t)&lbolt);
148 		wakeup(lbolt_syncer);
149 	}
150 	callout_reset(&mycpu->gd_schedcpu_callout, hz, schedcpu, NULL);
151 }
152 
153 /*
154  * General process statistics once a second
155  */
156 static int
157 schedcpu_stats(struct proc *p, void *data __unused)
158 {
159 	struct lwp *lp;
160 
161 	/*
162 	 * Threads may not be completely set up if process in SIDL state.
163 	 */
164 	if (p->p_stat == SIDL)
165 		return(0);
166 
167 	PHOLD(p);
168 	if (lwkt_trytoken(&p->p_token) == FALSE) {
169 		PRELE(p);
170 		return(0);
171 	}
172 
173 	p->p_swtime++;
174 	FOREACH_LWP_IN_PROC(lp, p) {
175 		if (lp->lwp_stat == LSSLEEP) {
176 			++lp->lwp_slptime;
177 			if (lp->lwp_slptime == 1)
178 				p->p_usched->uload_update(lp);
179 		}
180 
181 		/*
182 		 * Only recalculate processes that are active or have slept
183 		 * less then 2 seconds.  The schedulers understand this.
184 		 * Otherwise decay by 50% per second.
185 		 */
186 		if (lp->lwp_slptime <= 1) {
187 			p->p_usched->recalculate(lp);
188 		} else {
189 			int decay;
190 
191 			decay = pctcpu_decay;
192 			cpu_ccfence();
193 			if (decay <= 1)
194 				decay = 1;
195 			if (decay > 100)
196 				decay = 100;
197 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
198 		}
199 	}
200 	lwkt_reltoken(&p->p_token);
201 	lwkt_yield();
202 	PRELE(p);
203 	return(0);
204 }
205 
206 /*
207  * Resource checks.  XXX break out since ksignal/killproc can block,
208  * limiting us to one process killed per second.  There is probably
209  * a better way.
210  */
211 static int
212 schedcpu_resource(struct proc *p, void *data __unused)
213 {
214 	u_int64_t ttime;
215 	struct lwp *lp;
216 
217 	if (p->p_stat == SIDL)
218 		return(0);
219 
220 	PHOLD(p);
221 	if (lwkt_trytoken(&p->p_token) == FALSE) {
222 		PRELE(p);
223 		return(0);
224 	}
225 
226 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
227 		lwkt_reltoken(&p->p_token);
228 		PRELE(p);
229 		return(0);
230 	}
231 
232 	ttime = 0;
233 	FOREACH_LWP_IN_PROC(lp, p) {
234 		/*
235 		 * We may have caught an lp in the middle of being
236 		 * created, lwp_thread can be NULL.
237 		 */
238 		if (lp->lwp_thread) {
239 			ttime += lp->lwp_thread->td_sticks;
240 			ttime += lp->lwp_thread->td_uticks;
241 		}
242 	}
243 
244 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
245 	case PLIMIT_TESTCPU_KILL:
246 		killproc(p, "exceeded maximum CPU limit");
247 		break;
248 	case PLIMIT_TESTCPU_XCPU:
249 		if ((p->p_flags & P_XCPU) == 0) {
250 			p->p_flags |= P_XCPU;
251 			ksignal(p, SIGXCPU);
252 		}
253 		break;
254 	default:
255 		break;
256 	}
257 	lwkt_reltoken(&p->p_token);
258 	lwkt_yield();
259 	PRELE(p);
260 	return(0);
261 }
262 
263 /*
264  * This is only used by ps.  Generate a cpu percentage use over
265  * a period of one second.
266  */
267 void
268 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
269 {
270 	fixpt_t acc;
271 	int remticks;
272 
273 	acc = (cpticks << FSHIFT) / ttlticks;
274 	if (ttlticks >= ESTCPUFREQ) {
275 		lp->lwp_pctcpu = acc;
276 	} else {
277 		remticks = ESTCPUFREQ - ttlticks;
278 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
279 				ESTCPUFREQ;
280 	}
281 }
282 
283 /*
284  * Handy macros to calculate hash indices.  LOOKUP() calculates the
285  * global cpumask hash index, TCHASHSHIFT() converts that into the
286  * pcpu hash index.
287  *
288  * By making the pcpu hash arrays smaller we save a significant amount
289  * of memory at very low cost.  The real cost is in IPIs, which are handled
290  * by the much larger global cpumask hash table.
291  */
292 #define LOOKUP(x)	(((u_int)(uintptr_t)(x)) % slpque_tablesize)
293 #define TCHASHSHIFT(x)	((x) >> 4)
294 
295 static uint32_t	slpque_tablesize;
296 static cpumask_t *slpque_cpumasks;
297 
298 /*
299  * This is a dandy function that allows us to interlock tsleep/wakeup
300  * operations with unspecified upper level locks, such as lockmgr locks,
301  * simply by holding a critical section.  The sequence is:
302  *
303  *	(acquire upper level lock)
304  *	tsleep_interlock(blah)
305  *	(release upper level lock)
306  *	tsleep(blah, ...)
307  *
308  * Basically this functions queues us on the tsleep queue without actually
309  * descheduling us.  When tsleep() is later called with PINTERLOCK it
310  * assumes the thread was already queued, otherwise it queues it there.
311  *
312  * Thus it is possible to receive the wakeup prior to going to sleep and
313  * the race conditions are covered.
314  */
315 static __inline void
316 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
317 {
318 	thread_t td = gd->gd_curthread;
319 	uint32_t cid;
320 	uint32_t gid;
321 
322 	crit_enter_quick(td);
323 	if (td->td_flags & TDF_TSLEEPQ) {
324 		cid = LOOKUP(td->td_wchan);
325 		gid = TCHASHSHIFT(cid);
326 		TAILQ_REMOVE(&gd->gd_tsleep_hash[gid], td, td_sleepq);
327 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[gid]) == NULL) {
328 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
329 					       gd->gd_cpuid);
330 		}
331 	} else {
332 		td->td_flags |= TDF_TSLEEPQ;
333 	}
334 	cid = LOOKUP(ident);
335 	gid = TCHASHSHIFT(cid);
336 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[gid], td, td_sleepq);
337 	ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[cid], gd->gd_cpuid);
338 	td->td_wchan = ident;
339 	td->td_wdomain = flags & PDOMAIN_MASK;
340 	crit_exit_quick(td);
341 }
342 
343 void
344 tsleep_interlock(const volatile void *ident, int flags)
345 {
346 	_tsleep_interlock(mycpu, ident, flags);
347 }
348 
349 /*
350  * Remove thread from sleepq.  Must be called with a critical section held.
351  * The thread must not be migrating.
352  */
353 static __inline void
354 _tsleep_remove(thread_t td)
355 {
356 	globaldata_t gd = mycpu;
357 	uint32_t cid;
358 	uint32_t gid;
359 
360 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
361 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
362 	if (td->td_flags & TDF_TSLEEPQ) {
363 		td->td_flags &= ~TDF_TSLEEPQ;
364 		cid = LOOKUP(td->td_wchan);
365 		gid = TCHASHSHIFT(cid);
366 		TAILQ_REMOVE(&gd->gd_tsleep_hash[gid], td, td_sleepq);
367 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[gid]) == NULL) {
368 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid],
369 					       gd->gd_cpuid);
370 		}
371 		td->td_wchan = NULL;
372 		td->td_wdomain = 0;
373 	}
374 }
375 
376 void
377 tsleep_remove(thread_t td)
378 {
379 	_tsleep_remove(td);
380 }
381 
382 /*
383  * General sleep call.  Suspends the current process until a wakeup is
384  * performed on the specified identifier.  The process will then be made
385  * runnable with the specified priority.  Sleeps at most timo/hz seconds
386  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
387  * before and after sleeping, else signals are not checked.  Returns 0 if
388  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
389  * signal needs to be delivered, ERESTART is returned if the current system
390  * call should be restarted if possible, and EINTR is returned if the system
391  * call should be interrupted by the signal (return EINTR).
392  *
393  * Note that if we are a process, we release_curproc() before messing with
394  * the LWKT scheduler.
395  *
396  * During autoconfiguration or after a panic, a sleep will simply
397  * lower the priority briefly to allow interrupts, then return.
398  *
399  * WARNING!  This code can't block (short of switching away), or bad things
400  *           will happen.  No getting tokens, no blocking locks, etc.
401  */
402 int
403 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
404 {
405 	struct thread *td = curthread;
406 	struct lwp *lp = td->td_lwp;
407 	struct proc *p = td->td_proc;		/* may be NULL */
408 	globaldata_t gd;
409 	int sig;
410 	int catch;
411 	int error;
412 	int oldpri;
413 	struct callout thandle;
414 
415 	/*
416 	 * Currently a severe hack.  Make sure any delayed wakeups
417 	 * are flushed before we sleep or we might deadlock on whatever
418 	 * event we are sleeping on.
419 	 */
420 	if (td->td_flags & TDF_DELAYED_WAKEUP)
421 		wakeup_end_delayed();
422 
423 	/*
424 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
425 	 * even in stable.  Just scrap it for now.
426 	 */
427 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
428 		/*
429 		 * After a panic, or before we actually have an operational
430 		 * softclock, just give interrupts a chance, then just return;
431 		 *
432 		 * don't run any other procs or panic below,
433 		 * in case this is the idle process and already asleep.
434 		 */
435 		splz();
436 		oldpri = td->td_pri;
437 		lwkt_setpri_self(safepri);
438 		lwkt_switch();
439 		lwkt_setpri_self(oldpri);
440 		return (0);
441 	}
442 	logtsleep2(tsleep_beg, ident);
443 	gd = td->td_gd;
444 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
445 	td->td_wakefromcpu = -1;		/* overwritten by _wakeup */
446 
447 	/*
448 	 * NOTE: all of this occurs on the current cpu, including any
449 	 * callout-based wakeups, so a critical section is a sufficient
450 	 * interlock.
451 	 *
452 	 * The entire sequence through to where we actually sleep must
453 	 * run without breaking the critical section.
454 	 */
455 	catch = flags & PCATCH;
456 	error = 0;
457 	sig = 0;
458 
459 	crit_enter_quick(td);
460 
461 	KASSERT(ident != NULL, ("tsleep: no ident"));
462 	KASSERT(lp == NULL ||
463 		lp->lwp_stat == LSRUN ||	/* Obvious */
464 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
465 		("tsleep %p %s %d",
466 			ident, wmesg, lp->lwp_stat));
467 
468 	/*
469 	 * We interlock the sleep queue if the caller has not already done
470 	 * it for us.  This must be done before we potentially acquire any
471 	 * tokens or we can loose the wakeup.
472 	 */
473 	if ((flags & PINTERLOCKED) == 0) {
474 		_tsleep_interlock(gd, ident, flags);
475 	}
476 
477 	/*
478 	 * Setup for the current process (if this is a process).  We must
479 	 * interlock with lwp_token to avoid remote wakeup races via
480 	 * setrunnable()
481 	 */
482 	if (lp) {
483 		lwkt_gettoken(&lp->lwp_token);
484 
485 		/*
486 		 * If the umbrella process is in the SCORE state then
487 		 * make sure that the thread is flagged going into a
488 		 * normal sleep to allow the core dump to proceed, otherwise
489 		 * the coredump can end up waiting forever.  If the normal
490 		 * sleep is woken up, the thread will enter a stopped state
491 		 * upon return to userland.
492 		 *
493 		 * We do not want to interrupt or cause a thread exist at
494 		 * this juncture because that will mess-up the state the
495 		 * coredump is trying to save.
496 		 */
497 		if (p->p_stat == SCORE &&
498 		    (lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
499 			atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
500 			++p->p_nstopped;
501 		}
502 
503 		/*
504 		 * PCATCH requested.
505 		 */
506 		if (catch) {
507 			/*
508 			 * Early termination if PCATCH was set and a
509 			 * signal is pending, interlocked with the
510 			 * critical section.
511 			 *
512 			 * Early termination only occurs when tsleep() is
513 			 * entered while in a normal LSRUN state.
514 			 */
515 			if ((sig = CURSIG(lp)) != 0)
516 				goto resume;
517 
518 			/*
519 			 * Causes ksignal to wake us up if a signal is
520 			 * received (interlocked with lp->lwp_token).
521 			 */
522 			lp->lwp_flags |= LWP_SINTR;
523 		}
524 	} else {
525 		KKASSERT(p == NULL);
526 	}
527 
528 	/*
529 	 * Make sure the current process has been untangled from
530 	 * the userland scheduler and initialize slptime to start
531 	 * counting.
532 	 *
533 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
534 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
535 	 */
536 	if (lp) {
537 		p->p_usched->release_curproc(lp);
538 		lp->lwp_slptime = 0;
539 	}
540 
541 	/*
542 	 * If the interlocked flag is set but our cpu bit in the slpqueue
543 	 * is no longer set, then a wakeup was processed inbetween the
544 	 * tsleep_interlock() (ours or the callers), and here.  This can
545 	 * occur under numerous circumstances including when we release the
546 	 * current process.
547 	 *
548 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
549 	 * to process incoming IPIs, thus draining incoming wakeups.
550 	 */
551 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
552 		logtsleep2(ilockfail, ident);
553 		goto resume;
554 	}
555 
556 	/*
557 	 * scheduling is blocked while in a critical section.  Coincide
558 	 * the descheduled-by-tsleep flag with the descheduling of the
559 	 * lwkt.
560 	 *
561 	 * The timer callout is localized on our cpu and interlocked by
562 	 * our critical section.
563 	 */
564 	lwkt_deschedule_self(td);
565 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
566 	td->td_wmesg = wmesg;
567 
568 	/*
569 	 * Setup the timeout, if any.  The timeout is only operable while
570 	 * the thread is flagged descheduled.
571 	 */
572 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
573 	if (timo) {
574 		callout_init_mp(&thandle);
575 		callout_reset(&thandle, timo, endtsleep, td);
576 	}
577 
578 	/*
579 	 * Beddy bye bye.
580 	 */
581 	if (lp) {
582 		/*
583 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
584 		 */
585 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
586 
587 		/*
588 		 * tstop() sets LSSTOP, so don't fiddle with that.
589 		 */
590 		if (lp->lwp_stat != LSSTOP)
591 			lp->lwp_stat = LSSLEEP;
592 		lp->lwp_ru.ru_nvcsw++;
593 		p->p_usched->uload_update(lp);
594 		lwkt_switch();
595 
596 		/*
597 		 * And when we are woken up, put us back in LSRUN.  If we
598 		 * slept for over a second, recalculate our estcpu.
599 		 */
600 		lp->lwp_stat = LSRUN;
601 		if (lp->lwp_slptime) {
602 			p->p_usched->uload_update(lp);
603 			p->p_usched->recalculate(lp);
604 		}
605 		lp->lwp_slptime = 0;
606 	} else {
607 		lwkt_switch();
608 	}
609 
610 	/*
611 	 * Make sure we haven't switched cpus while we were asleep.  It's
612 	 * not supposed to happen.  Cleanup our temporary flags.
613 	 */
614 	KKASSERT(gd == td->td_gd);
615 
616 	/*
617 	 * Cleanup the timeout.  If the timeout has already occured thandle
618 	 * has already been stopped, otherwise stop thandle.  If the timeout
619 	 * is running (the callout thread must be blocked trying to get
620 	 * lwp_token) then wait for us to get scheduled.
621 	 */
622 	if (timo) {
623 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
624 			/* else we won't get rescheduled! */
625 			if (lp->lwp_stat != LSSTOP)
626 				lp->lwp_stat = LSSLEEP;
627 			lwkt_deschedule_self(td);
628 			td->td_wmesg = "tsrace";
629 			lwkt_switch();
630 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
631 		}
632 		if (td->td_flags & TDF_TIMEOUT) {
633 			td->td_flags &= ~TDF_TIMEOUT;
634 			error = EWOULDBLOCK;
635 		} else {
636 			/* does not block when on same cpu */
637 			callout_stop(&thandle);
638 		}
639 	}
640 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
641 
642 	/*
643 	 * Make sure we have been removed from the sleepq.  In most
644 	 * cases this will have been done for us already but it is
645 	 * possible for a scheduling IPI to be in-flight from a
646 	 * previous tsleep/tsleep_interlock() or due to a straight-out
647 	 * call to lwkt_schedule() (in the case of an interrupt thread),
648 	 * causing a spurious wakeup.
649 	 */
650 	_tsleep_remove(td);
651 	td->td_wmesg = NULL;
652 
653 	/*
654 	 * Figure out the correct error return.  If interrupted by a
655 	 * signal we want to return EINTR or ERESTART.
656 	 */
657 resume:
658 	if (lp) {
659 		if (catch && error == 0) {
660 			if (sig != 0 || (sig = CURSIG(lp))) {
661 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
662 					error = EINTR;
663 				else
664 					error = ERESTART;
665 			}
666 		}
667 
668 		lp->lwp_flags &= ~LWP_SINTR;
669 
670 		/*
671 		 * Unconditionally set us to LSRUN on resume.  lwp_stat could
672 		 * be in a weird state due to the goto resume, particularly
673 		 * when tsleep() is called from tstop().
674 		 */
675 		lp->lwp_stat = LSRUN;
676 		lwkt_reltoken(&lp->lwp_token);
677 	}
678 	logtsleep1(tsleep_end);
679 	crit_exit_quick(td);
680 	return (error);
681 }
682 
683 /*
684  * Interlocked spinlock sleep.  An exclusively held spinlock must
685  * be passed to ssleep().  The function will atomically release the
686  * spinlock and tsleep on the ident, then reacquire the spinlock and
687  * return.
688  *
689  * This routine is fairly important along the critical path, so optimize it
690  * heavily.
691  */
692 int
693 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
694        const char *wmesg, int timo)
695 {
696 	globaldata_t gd = mycpu;
697 	int error;
698 
699 	_tsleep_interlock(gd, ident, flags);
700 	spin_unlock_quick(gd, spin);
701 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
702 	_spin_lock_quick(gd, spin, wmesg);
703 
704 	return (error);
705 }
706 
707 int
708 lksleep(const volatile void *ident, struct lock *lock, int flags,
709 	const char *wmesg, int timo)
710 {
711 	globaldata_t gd = mycpu;
712 	int error;
713 
714 	_tsleep_interlock(gd, ident, flags);
715 	lockmgr(lock, LK_RELEASE);
716 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
717 	lockmgr(lock, LK_EXCLUSIVE);
718 
719 	return (error);
720 }
721 
722 /*
723  * Interlocked mutex sleep.  An exclusively held mutex must be passed
724  * to mtxsleep().  The function will atomically release the mutex
725  * and tsleep on the ident, then reacquire the mutex and return.
726  */
727 int
728 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
729 	 const char *wmesg, int timo)
730 {
731 	globaldata_t gd = mycpu;
732 	int error;
733 
734 	_tsleep_interlock(gd, ident, flags);
735 	mtx_unlock(mtx);
736 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
737 	mtx_lock_ex_quick(mtx);
738 
739 	return (error);
740 }
741 
742 /*
743  * Interlocked serializer sleep.  An exclusively held serializer must
744  * be passed to zsleep().  The function will atomically release
745  * the serializer and tsleep on the ident, then reacquire the serializer
746  * and return.
747  */
748 int
749 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
750        const char *wmesg, int timo)
751 {
752 	globaldata_t gd = mycpu;
753 	int ret;
754 
755 	ASSERT_SERIALIZED(slz);
756 
757 	_tsleep_interlock(gd, ident, flags);
758 	lwkt_serialize_exit(slz);
759 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
760 	lwkt_serialize_enter(slz);
761 
762 	return ret;
763 }
764 
765 /*
766  * Directly block on the LWKT thread by descheduling it.  This
767  * is much faster then tsleep(), but the only legal way to wake
768  * us up is to directly schedule the thread.
769  *
770  * Setting TDF_SINTR will cause new signals to directly schedule us.
771  *
772  * This routine must be called while in a critical section.
773  */
774 int
775 lwkt_sleep(const char *wmesg, int flags)
776 {
777 	thread_t td = curthread;
778 	int sig;
779 
780 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
781 		td->td_flags |= TDF_BLOCKED;
782 		td->td_wmesg = wmesg;
783 		lwkt_deschedule_self(td);
784 		lwkt_switch();
785 		td->td_wmesg = NULL;
786 		td->td_flags &= ~TDF_BLOCKED;
787 		return(0);
788 	}
789 	if ((sig = CURSIG(td->td_lwp)) != 0) {
790 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
791 			return(EINTR);
792 		else
793 			return(ERESTART);
794 
795 	}
796 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
797 	td->td_wmesg = wmesg;
798 	lwkt_deschedule_self(td);
799 	lwkt_switch();
800 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
801 	td->td_wmesg = NULL;
802 	return(0);
803 }
804 
805 /*
806  * Implement the timeout for tsleep.
807  *
808  * This type of callout timeout is scheduled on the same cpu the process
809  * is sleeping on.  Also, at the moment, the MP lock is held.
810  */
811 static void
812 endtsleep(void *arg)
813 {
814 	thread_t td = arg;
815 	struct lwp *lp;
816 
817 	/*
818 	 * We are going to have to get the lwp_token, which means we might
819 	 * block.  This can race a tsleep getting woken up by other means
820 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
821 	 * processing to complete (sorry tsleep!).
822 	 *
823 	 * We can safely set td_flags because td MUST be on the same cpu
824 	 * as we are.
825 	 */
826 	KKASSERT(td->td_gd == mycpu);
827 	crit_enter();
828 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
829 
830 	/*
831 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
832 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
833 	 * of lp being on the same cpu as we are.
834 	 */
835 	if ((lp = td->td_lwp) != NULL)
836 		lwkt_gettoken(&lp->lwp_token);
837 
838 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
839 
840 	if (lp) {
841 		/*
842 		 * callout timer should normally never be set in tstop()
843 		 * because it passes a timeout of 0.  However, there is a
844 		 * case during thread exit (which SSTOP's all the threads)
845 		 * for which tstop() must break out and can (properly) leave
846 		 * the thread in LSSTOP.
847 		 */
848 		KKASSERT(lp->lwp_stat != LSSTOP ||
849 			 (lp->lwp_mpflags & LWP_MP_WEXIT));
850 		setrunnable(lp);
851 		lwkt_reltoken(&lp->lwp_token);
852 	} else {
853 		_tsleep_remove(td);
854 		lwkt_schedule(td);
855 	}
856 	KKASSERT(td->td_gd == mycpu);
857 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
858 	crit_exit();
859 }
860 
861 /*
862  * Make all processes sleeping on the specified identifier runnable.
863  * count may be zero or one only.
864  *
865  * The domain encodes the sleep/wakeup domain, flags, plus the originating
866  * cpu.
867  *
868  * This call may run without the MP lock held.  We can only manipulate thread
869  * state on the cpu owning the thread.  We CANNOT manipulate process state
870  * at all.
871  *
872  * _wakeup() can be passed to an IPI so we can't use (const volatile
873  * void *ident).
874  */
875 static void
876 _wakeup(void *ident, int domain)
877 {
878 	struct tslpque *qp;
879 	struct thread *td;
880 	struct thread *ntd;
881 	globaldata_t gd;
882 	cpumask_t mask;
883 	uint32_t cid;
884 	uint32_t gid;
885 
886 	crit_enter();
887 	logtsleep2(wakeup_beg, ident);
888 	gd = mycpu;
889 	cid = LOOKUP(ident);
890 	gid = TCHASHSHIFT(cid);
891 	qp = &gd->gd_tsleep_hash[gid];
892 restart:
893 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
894 		ntd = TAILQ_NEXT(td, td_sleepq);
895 		if (td->td_wchan == ident &&
896 		    td->td_wdomain == (domain & PDOMAIN_MASK)
897 		) {
898 			KKASSERT(td->td_gd == gd);
899 			_tsleep_remove(td);
900 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
901 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
902 				lwkt_schedule(td);
903 				if (domain & PWAKEUP_ONE)
904 					goto done;
905 			}
906 			goto restart;
907 		}
908 	}
909 
910 	/*
911 	 * Because a bunch of cpumask array entries cover the same queue, it
912 	 * is possible for our bit to remain set in some of them and cause
913 	 * spurious wakeup IPIs later on.  Make sure that the bit is cleared
914 	 * when a spurious IPI occurs to prevent further spurious IPIs.
915 	 */
916 	if (TAILQ_FIRST(qp) == NULL) {
917 		ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[cid], gd->gd_cpuid);
918 	}
919 
920 	/*
921 	 * We finished checking the current cpu but there still may be
922 	 * more work to do.  Either wakeup_one was requested and no matching
923 	 * thread was found, or a normal wakeup was requested and we have
924 	 * to continue checking cpus.
925 	 *
926 	 * It should be noted that this scheme is actually less expensive then
927 	 * the old scheme when waking up multiple threads, since we send
928 	 * only one IPI message per target candidate which may then schedule
929 	 * multiple threads.  Before we could have wound up sending an IPI
930 	 * message for each thread on the target cpu (!= current cpu) that
931 	 * needed to be woken up.
932 	 *
933 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
934 	 *	 should be ok since we are passing idents in the IPI rather
935 	 *	 then thread pointers.
936 	 *
937 	 * NOTE: We MUST mfence (or use an atomic op) prior to reading
938 	 *	 the cpumask, as another cpu may have written to it in
939 	 *	 a fashion interlocked with whatever the caller did before
940 	 *	 calling wakeup().  Otherwise we might miss the interaction
941 	 *	 (kern_mutex.c can cause this problem).
942 	 *
943 	 *	 lfence is insufficient as it may allow a written state to
944 	 *	 reorder around the cpumask load.
945 	 */
946 	if ((domain & PWAKEUP_MYCPU) == 0) {
947 		cpu_mfence();
948 		mask = slpque_cpumasks[cid];
949 		CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
950 		if (CPUMASK_TESTNZERO(mask)) {
951 			lwkt_send_ipiq2_mask(mask, _wakeup, ident,
952 					     domain | PWAKEUP_MYCPU);
953 		}
954 	}
955 done:
956 	logtsleep1(wakeup_end);
957 	crit_exit();
958 }
959 
960 /*
961  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
962  */
963 void
964 wakeup(const volatile void *ident)
965 {
966     globaldata_t gd = mycpu;
967     thread_t td = gd->gd_curthread;
968 
969     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
970 	/*
971 	 * If we are in a delayed wakeup section, record up to two wakeups in
972 	 * a per-CPU queue and issue them when we block or exit the delayed
973 	 * wakeup section.
974 	 */
975 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
976 		return;
977 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
978 		return;
979 
980 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
981 				__DEALL(ident));
982 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
983 				__DEALL(ident));
984     }
985 
986     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
987 }
988 
989 /*
990  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
991  */
992 void
993 wakeup_one(const volatile void *ident)
994 {
995     /* XXX potentially round-robin the first responding cpu */
996     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
997 			    PWAKEUP_ONE);
998 }
999 
1000 /*
1001  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1002  * only.
1003  */
1004 void
1005 wakeup_mycpu(const volatile void *ident)
1006 {
1007     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1008 			    PWAKEUP_MYCPU);
1009 }
1010 
1011 /*
1012  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1013  * only.
1014  */
1015 void
1016 wakeup_mycpu_one(const volatile void *ident)
1017 {
1018     /* XXX potentially round-robin the first responding cpu */
1019     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1020 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
1021 }
1022 
1023 /*
1024  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1025  * only.
1026  */
1027 void
1028 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1029 {
1030     globaldata_t mygd = mycpu;
1031     if (gd == mycpu) {
1032 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1033 				PWAKEUP_MYCPU);
1034     } else {
1035 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1036 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1037 			PWAKEUP_MYCPU);
1038     }
1039 }
1040 
1041 /*
1042  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1043  * only.
1044  */
1045 void
1046 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1047 {
1048     globaldata_t mygd = mycpu;
1049     if (gd == mygd) {
1050 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1051 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1052     } else {
1053 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1054 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1055 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1056     }
1057 }
1058 
1059 /*
1060  * Wakeup all threads waiting on the specified ident that slept using
1061  * the specified domain, on all cpus.
1062  */
1063 void
1064 wakeup_domain(const volatile void *ident, int domain)
1065 {
1066     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1067 }
1068 
1069 /*
1070  * Wakeup one thread waiting on the specified ident that slept using
1071  * the specified  domain, on any cpu.
1072  */
1073 void
1074 wakeup_domain_one(const volatile void *ident, int domain)
1075 {
1076     /* XXX potentially round-robin the first responding cpu */
1077     _wakeup(__DEALL(ident),
1078 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1079 }
1080 
1081 void
1082 wakeup_start_delayed(void)
1083 {
1084     globaldata_t gd = mycpu;
1085 
1086     crit_enter();
1087     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1088     crit_exit();
1089 }
1090 
1091 void
1092 wakeup_end_delayed(void)
1093 {
1094     globaldata_t gd = mycpu;
1095 
1096     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1097 	crit_enter();
1098 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1099 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1100 	    if (gd->gd_delayed_wakeup[0]) {
1101 		    wakeup(gd->gd_delayed_wakeup[0]);
1102 		    gd->gd_delayed_wakeup[0] = NULL;
1103 	    }
1104 	    if (gd->gd_delayed_wakeup[1]) {
1105 		    wakeup(gd->gd_delayed_wakeup[1]);
1106 		    gd->gd_delayed_wakeup[1] = NULL;
1107 	    }
1108 	}
1109 	crit_exit();
1110     }
1111 }
1112 
1113 /*
1114  * setrunnable()
1115  *
1116  * Make a process runnable.  lp->lwp_token must be held on call and this
1117  * function must be called from the cpu owning lp.
1118  *
1119  * This only has an effect if we are in LSSTOP or LSSLEEP.
1120  */
1121 void
1122 setrunnable(struct lwp *lp)
1123 {
1124 	thread_t td = lp->lwp_thread;
1125 
1126 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1127 	KKASSERT(td->td_gd == mycpu);
1128 	crit_enter();
1129 	if (lp->lwp_stat == LSSTOP)
1130 		lp->lwp_stat = LSSLEEP;
1131 	if (lp->lwp_stat == LSSLEEP) {
1132 		_tsleep_remove(td);
1133 		lwkt_schedule(td);
1134 	} else if (td->td_flags & TDF_SINTR) {
1135 		lwkt_schedule(td);
1136 	}
1137 	crit_exit();
1138 }
1139 
1140 /*
1141  * The process is stopped due to some condition, usually because p_stat is
1142  * set to SSTOP, but also possibly due to being traced.
1143  *
1144  * Caller must hold p->p_token
1145  *
1146  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1147  * because the parent may check the child's status before the child actually
1148  * gets to this routine.
1149  *
1150  * This routine is called with the current lwp only, typically just
1151  * before returning to userland if the process state is detected as
1152  * possibly being in a stopped state.
1153  */
1154 void
1155 tstop(void)
1156 {
1157 	struct lwp *lp = curthread->td_lwp;
1158 	struct proc *p = lp->lwp_proc;
1159 	struct proc *q;
1160 
1161 	lwkt_gettoken(&lp->lwp_token);
1162 	crit_enter();
1163 
1164 	/*
1165 	 * If LWP_MP_WSTOP is set, we were sleeping
1166 	 * while our process was stopped.  At this point
1167 	 * we were already counted as stopped.
1168 	 */
1169 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1170 		/*
1171 		 * If we're the last thread to stop, signal
1172 		 * our parent.
1173 		 */
1174 		p->p_nstopped++;
1175 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1176 		wakeup(&p->p_nstopped);
1177 		if (p->p_nstopped == p->p_nthreads) {
1178 			/*
1179 			 * Token required to interlock kern_wait()
1180 			 */
1181 			q = p->p_pptr;
1182 			PHOLD(q);
1183 			lwkt_gettoken(&q->p_token);
1184 			p->p_flags &= ~P_WAITED;
1185 			wakeup(p->p_pptr);
1186 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1187 				ksignal(q, SIGCHLD);
1188 			lwkt_reltoken(&q->p_token);
1189 			PRELE(q);
1190 		}
1191 	}
1192 
1193 	/*
1194 	 * Wait here while in a stopped state, interlocked with lwp_token.
1195 	 * We must break-out if the whole process is trying to exit.
1196 	 */
1197 	while (STOPLWP(p, lp)) {
1198 		lp->lwp_stat = LSSTOP;
1199 		tsleep(p, 0, "stop", 0);
1200 	}
1201 	p->p_nstopped--;
1202 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1203 	crit_exit();
1204 	lwkt_reltoken(&lp->lwp_token);
1205 }
1206 
1207 /*
1208  * Compute a tenex style load average of a quantity on
1209  * 1, 5 and 15 minute intervals.  This is a pcpu callout.
1210  *
1211  * We segment the lwp scan on a pcpu basis.  This does NOT
1212  * mean the associated lwps are on this cpu, it is done
1213  * just to break the work up.
1214  *
1215  * The callout on cpu0 rolls up the stats from the other
1216  * cpus.
1217  */
1218 static int loadav_count_runnable(struct lwp *p, void *data);
1219 
1220 static void
1221 loadav(void *arg)
1222 {
1223 	globaldata_t gd = mycpu;
1224 	struct loadavg *avg;
1225 	int i, nrun;
1226 
1227 	nrun = 0;
1228 	alllwp_scan(loadav_count_runnable, &nrun, 1);
1229 	gd->gd_loadav_nrunnable = nrun;
1230 	if (gd->gd_cpuid == 0) {
1231 		avg = &averunnable;
1232 		nrun = 0;
1233 		for (i = 0; i < ncpus; ++i)
1234 			nrun += globaldata_find(i)->gd_loadav_nrunnable;
1235 		for (i = 0; i < 3; i++) {
1236 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1237 			    (long)nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Schedule the next update to occur after 5 seconds, but add a
1243 	 * random variation to avoid synchronisation with processes that
1244 	 * run at regular intervals.
1245 	 */
1246 	callout_reset(&gd->gd_loadav_callout,
1247 		      hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1248 		      loadav, NULL);
1249 }
1250 
1251 static int
1252 loadav_count_runnable(struct lwp *lp, void *data)
1253 {
1254 	int *nrunp = data;
1255 	thread_t td;
1256 
1257 	switch (lp->lwp_stat) {
1258 	case LSRUN:
1259 		if ((td = lp->lwp_thread) == NULL)
1260 			break;
1261 		if (td->td_flags & TDF_BLOCKED)
1262 			break;
1263 		++*nrunp;
1264 		break;
1265 	default:
1266 		break;
1267 	}
1268 	lwkt_yield();
1269 	return(0);
1270 }
1271 
1272 /*
1273  * Regular data collection
1274  */
1275 static uint64_t
1276 collect_load_callback(int n)
1277 {
1278 	int fscale = averunnable.fscale;
1279 
1280 	return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1281 }
1282 
1283 static void
1284 sched_setup(void *dummy __unused)
1285 {
1286 	globaldata_t save_gd = mycpu;
1287 	globaldata_t gd;
1288 	int n;
1289 
1290 	kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1291 			  KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1292 
1293 	/*
1294 	 * Kick off timeout driven events by calling first time.  We
1295 	 * split the work across available cpus to help scale it,
1296 	 * it can eat a lot of cpu when there are a lot of processes
1297 	 * on the system.
1298 	 */
1299 	for (n = 0; n < ncpus; ++n) {
1300 		gd = globaldata_find(n);
1301 		lwkt_setcpu_self(gd);
1302 		callout_init_mp(&gd->gd_loadav_callout);
1303 		callout_init_mp(&gd->gd_schedcpu_callout);
1304 		schedcpu(NULL);
1305 		loadav(NULL);
1306 	}
1307 	lwkt_setcpu_self(save_gd);
1308 }
1309 
1310 /*
1311  * Extremely early initialization, dummy-up the tables so we don't have
1312  * to conditionalize for NULL in _wakeup() and tsleep_interlock().  Even
1313  * though the system isn't blocking this early, these functions still
1314  * try to access the hash table.
1315  *
1316  * This setup will be overridden once sched_dyninit() -> sleep_gdinit()
1317  * is called.
1318  */
1319 void
1320 sleep_early_gdinit(globaldata_t gd)
1321 {
1322 	static struct tslpque	dummy_slpque;
1323 	static cpumask_t dummy_cpumasks;
1324 
1325 	slpque_tablesize = 1;
1326 	gd->gd_tsleep_hash = &dummy_slpque;
1327 	slpque_cpumasks = &dummy_cpumasks;
1328 	TAILQ_INIT(&dummy_slpque);
1329 }
1330 
1331 /*
1332  * PCPU initialization.  Called after KMALLOC is operational, by
1333  * sched_dyninit() for cpu 0, and by mi_gdinit() for other cpus later.
1334  *
1335  * WARNING! The pcpu hash table is smaller than the global cpumask
1336  *	    hash table, which can save us a lot of memory when maxproc
1337  *	    is set high.
1338  */
1339 void
1340 sleep_gdinit(globaldata_t gd)
1341 {
1342 	struct thread *td;
1343 	uint32_t n;
1344 	uint32_t i;
1345 
1346 	/*
1347 	 * This shouldn't happen, that is there shouldn't be any threads
1348 	 * waiting on the dummy tsleep queue this early in the boot.
1349 	 */
1350 	if (gd->gd_cpuid == 0) {
1351 		TAILQ_FOREACH(td, &gd->gd_tsleep_hash[0], td_sleepq) {
1352 			kprintf("SLEEP_GDINIT SWITCH %s\n", td->td_comm);
1353 		}
1354 	}
1355 
1356 	/*
1357 	 * Note that we have to allocate one extra slot because we are
1358 	 * shifting a modulo value.  TCHASHSHIFT(slpque_tablesize - 1) can
1359 	 * return the same value as TCHASHSHIFT(slpque_tablesize).
1360 	 */
1361 	n = TCHASHSHIFT(slpque_tablesize) + 1;
1362 
1363 	gd->gd_tsleep_hash = kmalloc(sizeof(struct tslpque) * n,
1364 				     M_TSLEEP, M_WAITOK | M_ZERO);
1365 	for (i = 0; i < n; ++i)
1366 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
1367 }
1368 
1369 /*
1370  * Dynamic initialization after the memory system is operational.
1371  */
1372 static void
1373 sched_dyninit(void *dummy __unused)
1374 {
1375 	int tblsize;
1376 	int tblsize2;
1377 	int n;
1378 
1379 	/*
1380 	 * Calculate table size for slpque hash.  We want a prime number
1381 	 * large enough to avoid overloading slpque_cpumasks when the
1382 	 * system has a large number of sleeping processes, which will
1383 	 * spam IPIs on wakeup().
1384 	 *
1385 	 * While it is true this is really a per-lwp factor, generally
1386 	 * speaking the maxproc limit is a good metric to go by.
1387 	 */
1388 	for (tblsize = maxproc | 1; ; tblsize += 2) {
1389 		if (tblsize % 3 == 0)
1390 			continue;
1391 		if (tblsize % 5 == 0)
1392 			continue;
1393 		tblsize2 = (tblsize / 2) | 1;
1394 		for (n = 7; n < tblsize2; n += 2) {
1395 			if (tblsize % n == 0)
1396 				break;
1397 		}
1398 		if (n == tblsize2)
1399 			break;
1400 	}
1401 
1402 	/*
1403 	 * PIDs are currently limited to 6 digits.  Cap the table size
1404 	 * at double this.
1405 	 */
1406 	if (tblsize > 2000003)
1407 		tblsize = 2000003;
1408 
1409 	slpque_tablesize = tblsize;
1410 	slpque_cpumasks = kmalloc(sizeof(*slpque_cpumasks) * slpque_tablesize,
1411 				  M_TSLEEP, M_WAITOK | M_ZERO);
1412 	sleep_gdinit(mycpu);
1413 }
1414