xref: /dflybsd-src/sys/kern/kern_synch.c (revision bd4539cc23771f3c0b3fae4ecf80e725b613b305)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.30 2004/03/20 19:16:24 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 
60 #include <machine/cpu.h>
61 #include <machine/ipl.h>
62 #include <machine/smp.h>
63 
64 static void sched_setup (void *dummy);
65 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
66 
67 int	hogticks;
68 int	lbolt;
69 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
70 int	ncpus;
71 int	ncpus2, ncpus2_shift, ncpus2_mask;
72 
73 static struct callout loadav_callout;
74 
75 struct loadavg averunnable =
76 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
77 /*
78  * Constants for averages over 1, 5, and 15 minutes
79  * when sampling at 5 second intervals.
80  */
81 static fixpt_t cexp[3] = {
82 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
83 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
84 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
85 };
86 
87 static void	endtsleep (void *);
88 static void	loadav (void *arg);
89 static void	roundrobin (void *arg);
90 static void	schedcpu (void *arg);
91 static void	updatepri (struct proc *p);
92 static void	crit_panicints(void);
93 
94 static int
95 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
96 {
97 	int error, new_val;
98 
99 	new_val = sched_quantum * tick;
100 	error = sysctl_handle_int(oidp, &new_val, 0, req);
101         if (error != 0 || req->newptr == NULL)
102 		return (error);
103 	if (new_val < tick)
104 		return (EINVAL);
105 	sched_quantum = new_val / tick;
106 	hogticks = 2 * sched_quantum;
107 	return (0);
108 }
109 
110 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
111 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
112 
113 int
114 roundrobin_interval(void)
115 {
116 	return (sched_quantum);
117 }
118 
119 /*
120  * Force switch among equal priority processes every 100ms.
121  *
122  * WARNING!  The MP lock is not held on ipi message remotes.
123  */
124 #ifdef SMP
125 
126 static void
127 roundrobin_remote(void *arg)
128 {
129 	struct proc *p = lwkt_preempted_proc();
130  	if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
131 		need_resched();
132 }
133 
134 #endif
135 
136 static void
137 roundrobin(void *arg)
138 {
139 	struct proc *p = lwkt_preempted_proc();
140  	if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
141 		need_resched();
142 #ifdef SMP
143 	lwkt_send_ipiq_mask(mycpu->gd_other_cpus, roundrobin_remote, NULL);
144 #endif
145  	timeout(roundrobin, NULL, sched_quantum);
146 }
147 
148 #ifdef SMP
149 
150 void
151 resched_cpus(u_int32_t mask)
152 {
153 	lwkt_send_ipiq_mask(mask, roundrobin_remote, NULL);
154 }
155 
156 #endif
157 
158 /*
159  * The load average is scaled by FSCALE (2048 typ).  The estimated cpu is
160  * incremented at a rate of ESTCPUFREQ per second, but this is
161  * divided up across all cpu bound processes running in the system so an
162  * individual process will get less under load.
163  *
164  * We want to decay estcpu by 18% per second, but we have to scale to the
165  * load to avoid overpowering the estcpu aggregation.  To stabilize the
166  * equation under low loads we make everything relative to a load average
167  * of 1.0.
168  *
169  *	estcpu -= estcpu * 0.18 / loadav			base equation
170  *	estcpu -= (estcpu + ESTCPUFREQ) * 0.18 / (loadav + 1)	supplemented
171  *
172  * Note: 0.18 = 100/555
173  */
174 
175 #define decay_cpu(loadav,estcpu)	\
176 	(((estcpu + ESTCPUFREQ) * (100 * FSCALE / 555)) / ((loadav) + FSCALE))
177 
178 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
179 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
180 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
181 
182 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
183 static int	fscale __unused = FSCALE;
184 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
185 
186 /*
187  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
188  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
189  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
190  *
191  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
192  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
193  *
194  * If you don't want to bother with the faster/more-accurate formula, you
195  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
196  * (more general) method of calculating the %age of CPU used by a process.
197  */
198 #define	CCPU_SHIFT	11
199 
200 /*
201  * Recompute process priorities, every hz ticks.
202  */
203 /* ARGSUSED */
204 static void
205 schedcpu(void *arg)
206 {
207 	fixpt_t loadfac = averunnable.ldavg[0];
208 	struct proc *p;
209 	int s;
210 	unsigned int ndecay;
211 
212 	FOREACH_PROC_IN_SYSTEM(p) {
213 		/*
214 		 * Increment time in/out of memory and sleep time
215 		 * (if sleeping).  We ignore overflow; with 16-bit int's
216 		 * (remember them?) overflow takes 45 days.
217 		 */
218 		p->p_swtime++;
219 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
220 			p->p_slptime++;
221 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
222 		/*
223 		 * If the process has slept the entire second,
224 		 * stop recalculating its priority until it wakes up.
225 		 */
226 		if (p->p_slptime > 1)
227 			continue;
228 		s = splhigh();	/* prevent state changes and protect run queue */
229 		/*
230 		 * p_pctcpu is only for ps.
231 		 */
232 #if	(FSHIFT >= CCPU_SHIFT)
233 		p->p_pctcpu += (ESTCPUFREQ == 100)?
234 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
235                 	100 * (((fixpt_t) p->p_cpticks)
236 				<< (FSHIFT - CCPU_SHIFT)) / ESTCPUFREQ;
237 #else
238 		p->p_pctcpu += ((FSCALE - ccpu) *
239 			(p->p_cpticks * FSCALE / ESTCPUFREQ)) >> FSHIFT;
240 #endif
241 		p->p_cpticks = 0;
242 		ndecay = decay_cpu(loadfac, p->p_estcpu);
243 		if (p->p_estcpu > ndecay)
244 			p->p_estcpu -= ndecay;
245 		else
246 			p->p_estcpu = 0;
247 		resetpriority(p);
248 		splx(s);
249 	}
250 	wakeup((caddr_t)&lbolt);
251 	timeout(schedcpu, (void *)0, hz);
252 }
253 
254 /*
255  * Recalculate the priority of a process after it has slept for a while.
256  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
257  * least six times the loadfactor will decay p_estcpu to zero.
258  */
259 static void
260 updatepri(struct proc *p)
261 {
262 	unsigned int ndecay;
263 
264 	ndecay = decay_cpu(averunnable.ldavg[0], p->p_estcpu) * p->p_slptime;
265 	if (p->p_estcpu > ndecay)
266 		p->p_estcpu -= ndecay;
267 	else
268 		p->p_estcpu = 0;
269 	resetpriority(p);
270 }
271 
272 /*
273  * We're only looking at 7 bits of the address; everything is
274  * aligned to 4, lots of things are aligned to greater powers
275  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
276  */
277 #define TABLESIZE	128
278 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
279 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
280 
281 /*
282  * During autoconfiguration or after a panic, a sleep will simply
283  * lower the priority briefly to allow interrupts, then return.
284  * The priority to be used (safepri) is machine-dependent, thus this
285  * value is initialized and maintained in the machine-dependent layers.
286  * This priority will typically be 0, or the lowest priority
287  * that is safe for use on the interrupt stack; it can be made
288  * higher to block network software interrupts after panics.
289  */
290 int safepri;
291 
292 void
293 sleepinit(void)
294 {
295 	int i;
296 
297 	sched_quantum = hz/10;
298 	hogticks = 2 * sched_quantum;
299 	for (i = 0; i < TABLESIZE; i++)
300 		TAILQ_INIT(&slpque[i]);
301 }
302 
303 /*
304  * General sleep call.  Suspends the current process until a wakeup is
305  * performed on the specified identifier.  The process will then be made
306  * runnable with the specified priority.  Sleeps at most timo/hz seconds
307  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
308  * before and after sleeping, else signals are not checked.  Returns 0 if
309  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
310  * signal needs to be delivered, ERESTART is returned if the current system
311  * call should be restarted if possible, and EINTR is returned if the system
312  * call should be interrupted by the signal (return EINTR).
313  *
314  * If the process has P_CURPROC set mi_switch() will not re-queue it to
315  * the userland scheduler queues because we are in a SSLEEP state.  If
316  * we are not the current process then we have to remove ourselves from
317  * the scheduler queues.
318  *
319  * YYY priority now unused
320  */
321 int
322 tsleep(void *ident, int flags, const char *wmesg, int timo)
323 {
324 	struct thread *td = curthread;
325 	struct proc *p = td->td_proc;		/* may be NULL */
326 	int s, sig = 0, catch = flags & PCATCH;
327 	int id = LOOKUP(ident);
328 	struct callout_handle thandle;
329 
330 	/*
331 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
332 	 * even in stable.  Just scrap it for now.
333 	 */
334 	if (cold || panicstr) {
335 		/*
336 		 * After a panic, or during autoconfiguration,
337 		 * just give interrupts a chance, then just return;
338 		 * don't run any other procs or panic below,
339 		 * in case this is the idle process and already asleep.
340 		 */
341 		crit_panicints();
342 		return (0);
343 	}
344 	KKASSERT(td != &mycpu->gd_idlethread);	/* you must be kidding! */
345 	s = splhigh();
346 	KASSERT(ident != NULL, ("tsleep: no ident"));
347 	KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
348 		ident, wmesg, p->p_stat));
349 
350 	crit_enter();
351 	td->td_wchan = ident;
352 	td->td_wmesg = wmesg;
353 	if (p)
354 		p->p_slptime = 0;
355 	lwkt_deschedule_self();
356 	TAILQ_INSERT_TAIL(&slpque[id], td, td_threadq);
357 	if (timo)
358 		thandle = timeout(endtsleep, (void *)td, timo);
359 	/*
360 	 * We put ourselves on the sleep queue and start our timeout
361 	 * before calling CURSIG, as we could stop there, and a wakeup
362 	 * or a SIGCONT (or both) could occur while we were stopped.
363 	 * A SIGCONT would cause us to be marked as SSLEEP
364 	 * without resuming us, thus we must be ready for sleep
365 	 * when CURSIG is called.  If the wakeup happens while we're
366 	 * stopped, td->td_wchan will be 0 upon return from CURSIG.
367 	 */
368 	if (p) {
369 		if (catch) {
370 			p->p_flag |= P_SINTR;
371 			if ((sig = CURSIG(p))) {
372 				if (td->td_wchan) {
373 					unsleep(td);
374 					lwkt_schedule_self();
375 				}
376 				p->p_stat = SRUN;
377 				goto resume;
378 			}
379 			if (td->td_wchan == NULL) {
380 				catch = 0;
381 				goto resume;
382 			}
383 		} else {
384 			sig = 0;
385 		}
386 
387 		/*
388 		 * If we are not the current process we have to remove ourself
389 		 * from the run queue.
390 		 */
391 		KASSERT(p->p_stat == SRUN, ("PSTAT NOT SRUN %d %d", p->p_pid, p->p_stat));
392 		/*
393 		 * If this is the current 'user' process schedule another one.
394 		 */
395 		clrrunnable(p, SSLEEP);
396 		p->p_stats->p_ru.ru_nvcsw++;
397 		KKASSERT(td->td_release || (p->p_flag & P_CURPROC) == 0);
398 		mi_switch();
399 		KASSERT(p->p_stat == SRUN, ("tsleep: stat not srun"));
400 	} else {
401 		lwkt_switch();
402 	}
403 resume:
404 	crit_exit();
405 	if (p)
406 		p->p_flag &= ~P_SINTR;
407 	splx(s);
408 	if (td->td_flags & TDF_TIMEOUT) {
409 		td->td_flags &= ~TDF_TIMEOUT;
410 		if (sig == 0)
411 			return (EWOULDBLOCK);
412 	} else if (timo) {
413 		untimeout(endtsleep, (void *)td, thandle);
414 	} else if (td->td_wmesg) {
415 		/*
416 		 * This can happen if a thread is woken up directly.  Clear
417 		 * wmesg to avoid debugging confusion.
418 		 */
419 		td->td_wmesg = NULL;
420 	}
421 	/* inline of iscaught() */
422 	if (p) {
423 		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
424 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
425 				return (EINTR);
426 			return (ERESTART);
427 		}
428 	}
429 	return (0);
430 }
431 
432 /*
433  * Implement the timeout for tsleep.  We interlock against
434  * wchan when setting TDF_TIMEOUT.  For processes we remove
435  * the sleep if the process is stopped rather then sleeping,
436  * so it remains stopped.
437  */
438 static void
439 endtsleep(void *arg)
440 {
441 	thread_t td = arg;
442 	struct proc *p;
443 	int s;
444 
445 	s = splhigh();
446 	if (td->td_wchan) {
447 		td->td_flags |= TDF_TIMEOUT;
448 		if ((p = td->td_proc) != NULL) {
449 			if (p->p_stat == SSLEEP)
450 				setrunnable(p);
451 			else
452 				unsleep(td);
453 		} else {
454 			unsleep(td);
455 			lwkt_schedule(td);
456 		}
457 	}
458 	splx(s);
459 }
460 
461 /*
462  * Remove a process from its wait queue
463  */
464 void
465 unsleep(struct thread *td)
466 {
467 	int s;
468 
469 	s = splhigh();
470 	if (td->td_wchan) {
471 #if 0
472 		if (p->p_flag & P_XSLEEP) {
473 			struct xwait *w = p->p_wchan;
474 			TAILQ_REMOVE(&w->waitq, p, p_procq);
475 			p->p_flag &= ~P_XSLEEP;
476 		} else
477 #endif
478 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_threadq);
479 		td->td_wchan = NULL;
480 	}
481 	splx(s);
482 }
483 
484 #if 0
485 /*
486  * Make all processes sleeping on the explicit lock structure runnable.
487  */
488 void
489 xwakeup(struct xwait *w)
490 {
491 	struct proc *p;
492 	int s;
493 
494 	s = splhigh();
495 	++w->gen;
496 	while ((p = TAILQ_FIRST(&w->waitq)) != NULL) {
497 		TAILQ_REMOVE(&w->waitq, p, p_procq);
498 		KASSERT(p->p_wchan == w && (p->p_flag & P_XSLEEP),
499 		    ("xwakeup: wchan mismatch for %p (%p/%p) %08x", p, p->p_wchan, w, p->p_flag & P_XSLEEP));
500 		p->p_wchan = NULL;
501 		p->p_flag &= ~P_XSLEEP;
502 		if (p->p_stat == SSLEEP) {
503 			/* OPTIMIZED EXPANSION OF setrunnable(p); */
504 			if (p->p_slptime > 1)
505 				updatepri(p);
506 			p->p_slptime = 0;
507 			p->p_stat = SRUN;
508 			if (p->p_flag & P_INMEM) {
509 				setrunqueue(p);
510 			} else {
511 				p->p_flag |= P_SWAPINREQ;
512 				wakeup((caddr_t)&proc0);
513 			}
514 		}
515 	}
516 	splx(s);
517 }
518 #endif
519 
520 /*
521  * Make all processes sleeping on the specified identifier runnable.
522  */
523 static void
524 _wakeup(void *ident, int count)
525 {
526 	struct slpquehead *qp;
527 	struct thread *td;
528 	struct thread *ntd;
529 	struct proc *p;
530 	int s;
531 	int id = LOOKUP(ident);
532 
533 	s = splhigh();
534 	qp = &slpque[id];
535 restart:
536 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
537 		ntd = TAILQ_NEXT(td, td_threadq);
538 		if (td->td_wchan == ident) {
539 			TAILQ_REMOVE(qp, td, td_threadq);
540 			td->td_wchan = NULL;
541 			if ((p = td->td_proc) != NULL && p->p_stat == SSLEEP) {
542 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
543 				if (p->p_slptime > 1)
544 					updatepri(p);
545 				p->p_slptime = 0;
546 				p->p_stat = SRUN;
547 				if (p->p_flag & P_INMEM) {
548 					setrunqueue(p);
549 				} else {
550 					p->p_flag |= P_SWAPINREQ;
551 					wakeup((caddr_t)&proc0);
552 				}
553 				/* END INLINE EXPANSION */
554 			} else if (p == NULL) {
555 				lwkt_schedule(td);
556 			}
557 			if (--count == 0)
558 				break;
559 			goto restart;
560 		}
561 	}
562 	splx(s);
563 }
564 
565 void
566 wakeup(void *ident)
567 {
568     _wakeup(ident, 0);
569 }
570 
571 void
572 wakeup_one(void *ident)
573 {
574     _wakeup(ident, 1);
575 }
576 
577 /*
578  * The machine independent parts of mi_switch().
579  * Must be called at splstatclock() or higher.
580  */
581 void
582 mi_switch()
583 {
584 	struct thread *td = curthread;
585 	struct proc *p = td->td_proc;	/* XXX */
586 	struct rlimit *rlim;
587 	int x;
588 	u_int64_t ttime;
589 
590 	/*
591 	 * XXX this spl is almost unnecessary.  It is partly to allow for
592 	 * sloppy callers that don't do it (issignal() via CURSIG() is the
593 	 * main offender).  It is partly to work around a bug in the i386
594 	 * cpu_switch() (the ipl is not preserved).  We ran for years
595 	 * without it.  I think there was only a interrupt latency problem.
596 	 * The main caller, tsleep(), does an splx() a couple of instructions
597 	 * after calling here.  The buggy caller, issignal(), usually calls
598 	 * here at spl0() and sometimes returns at splhigh().  The process
599 	 * then runs for a little too long at splhigh().  The ipl gets fixed
600 	 * when the process returns to user mode (or earlier).
601 	 *
602 	 * It would probably be better to always call here at spl0(). Callers
603 	 * are prepared to give up control to another process, so they must
604 	 * be prepared to be interrupted.  The clock stuff here may not
605 	 * actually need splstatclock().
606 	 */
607 	x = splstatclock();
608 	clear_resched();
609 
610 	/*
611 	 * Check if the process exceeds its cpu resource allocation.
612 	 * If over max, kill it.  Time spent in interrupts is not
613 	 * included.  YYY 64 bit match is expensive.  Ick.
614 	 */
615 	ttime = td->td_sticks + td->td_uticks;
616 	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
617 	    ttime > p->p_limit->p_cpulimit) {
618 		rlim = &p->p_rlimit[RLIMIT_CPU];
619 		if (ttime / (rlim_t)1000000 >= rlim->rlim_max) {
620 			killproc(p, "exceeded maximum CPU limit");
621 		} else {
622 			psignal(p, SIGXCPU);
623 			if (rlim->rlim_cur < rlim->rlim_max) {
624 				/* XXX: we should make a private copy */
625 				rlim->rlim_cur += 5;
626 			}
627 		}
628 	}
629 
630 	/*
631 	 * Pick a new current process and record its start time.  If we
632 	 * are in a SSTOPped state we deschedule ourselves.  YYY this needs
633 	 * to be cleaned up, remember that LWKTs stay on their run queue
634 	 * which works differently then the user scheduler which removes
635 	 * the process from the runq when it runs it.
636 	 */
637 	mycpu->gd_cnt.v_swtch++;
638 	if (p->p_stat == SSTOP)
639 		lwkt_deschedule_self();
640 	lwkt_switch();
641 
642 	splx(x);
643 }
644 
645 /*
646  * Change process state to be runnable,
647  * placing it on the run queue if it is in memory,
648  * and awakening the swapper if it isn't in memory.
649  */
650 void
651 setrunnable(struct proc *p)
652 {
653 	int s;
654 
655 	s = splhigh();
656 	switch (p->p_stat) {
657 	case 0:
658 	case SRUN:
659 	case SZOMB:
660 	default:
661 		panic("setrunnable");
662 	case SSTOP:
663 	case SSLEEP:
664 		unsleep(p->p_thread);	/* e.g. when sending signals */
665 		break;
666 
667 	case SIDL:
668 		break;
669 	}
670 	p->p_stat = SRUN;
671 	if (p->p_flag & P_INMEM)
672 		setrunqueue(p);
673 	splx(s);
674 	if (p->p_slptime > 1)
675 		updatepri(p);
676 	p->p_slptime = 0;
677 	if ((p->p_flag & P_INMEM) == 0) {
678 		p->p_flag |= P_SWAPINREQ;
679 		wakeup((caddr_t)&proc0);
680 	}
681 }
682 
683 /*
684  * Change the process state to NOT be runnable, removing it from the run
685  * queue.  If P_CURPROC is not set and we are in SRUN the process is on the
686  * run queue (If P_INMEM is not set then it isn't because it is swapped).
687  */
688 void
689 clrrunnable(struct proc *p, int stat)
690 {
691 	int s;
692 
693 	s = splhigh();
694 	switch(p->p_stat) {
695 	case SRUN:
696 		if (p->p_flag & P_ONRUNQ)
697 			remrunqueue(p);
698 		break;
699 	default:
700 		break;
701 	}
702 	p->p_stat = stat;
703 	splx(s);
704 }
705 
706 /*
707  * Compute the priority of a process when running in user mode.
708  * Arrange to reschedule if the resulting priority is better
709  * than that of the current process.
710  */
711 void
712 resetpriority(struct proc *p)
713 {
714 	unsigned int newpriority;
715 	int opq;
716 	int npq;
717 
718 	/*
719 	 * Set p_priority for general process comparisons
720 	 */
721 	switch(p->p_rtprio.type) {
722 	case RTP_PRIO_REALTIME:
723 		p->p_priority = PRIBASE_REALTIME + p->p_rtprio.prio;
724 		return;
725 	case RTP_PRIO_NORMAL:
726 		break;
727 	case RTP_PRIO_IDLE:
728 		p->p_priority = PRIBASE_IDLE + p->p_rtprio.prio;
729 		return;
730 	case RTP_PRIO_THREAD:
731 		p->p_priority = PRIBASE_THREAD + p->p_rtprio.prio;
732 		return;
733 	}
734 
735 	/*
736 	 * NORMAL priorities fall through.  These are based on niceness
737 	 * and cpu use.
738 	 */
739 	newpriority = NICE_ADJUST(p->p_nice - PRIO_MIN) +
740 			p->p_estcpu / ESTCPURAMP;
741 	newpriority = min(newpriority, MAXPRI);
742 	npq = newpriority / PPQ;
743 	crit_enter();
744 	opq = (p->p_priority & PRIMASK) / PPQ;
745 	if (p->p_stat == SRUN && (p->p_flag & P_ONRUNQ) && opq != npq) {
746 		/*
747 		 * We have to move the process to another queue
748 		 */
749 		remrunqueue(p);
750 		p->p_priority = PRIBASE_NORMAL + newpriority;
751 		setrunqueue(p);
752 	} else {
753 		/*
754 		 * We can just adjust the priority and it will be picked
755 		 * up later.
756 		 */
757 		KKASSERT(opq == npq || (p->p_flag & P_ONRUNQ) == 0);
758 		p->p_priority = PRIBASE_NORMAL + newpriority;
759 	}
760 	crit_exit();
761 }
762 
763 /*
764  * Compute a tenex style load average of a quantity on
765  * 1, 5 and 15 minute intervals.
766  */
767 static void
768 loadav(void *arg)
769 {
770 	int i, nrun;
771 	struct loadavg *avg;
772 	struct proc *p;
773 
774 	avg = &averunnable;
775 	nrun = 0;
776 	FOREACH_PROC_IN_SYSTEM(p) {
777 		switch (p->p_stat) {
778 		case SRUN:
779 		case SIDL:
780 			nrun++;
781 		}
782 	}
783 	for (i = 0; i < 3; i++)
784 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
785 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
786 
787 	/*
788 	 * Schedule the next update to occur after 5 seconds, but add a
789 	 * random variation to avoid synchronisation with processes that
790 	 * run at regular intervals.
791 	 */
792 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
793 	    loadav, NULL);
794 }
795 
796 /* ARGSUSED */
797 static void
798 sched_setup(void *dummy)
799 {
800 
801 	callout_init(&loadav_callout);
802 
803 	/* Kick off timeout driven events by calling first time. */
804 	roundrobin(NULL);
805 	schedcpu(NULL);
806 	loadav(NULL);
807 }
808 
809 /*
810  * We adjust the priority of the current process.  The priority of
811  * a process gets worse as it accumulates CPU time.  The cpu usage
812  * estimator (p_estcpu) is increased here.  resetpriority() will
813  * compute a different priority each time p_estcpu increases by
814  * INVERSE_ESTCPU_WEIGHT * (until MAXPRI is reached).
815  *
816  * The cpu usage estimator ramps up quite quickly when the process is
817  * running (linearly), and decays away exponentially, at a rate which
818  * is proportionally slower when the system is busy.  The basic principle
819  * is that the system will 90% forget that the process used a lot of CPU
820  * time in 5 * loadav seconds.  This causes the system to favor processes
821  * which haven't run much recently, and to round-robin among other processes.
822  *
823  * WARNING! called from a fast-int or an IPI, the MP lock MIGHT NOT BE HELD
824  * and we cannot block.
825  */
826 void
827 schedulerclock(void *dummy)
828 {
829 	struct thread *td;
830 	struct proc *p;
831 
832 	td = curthread;
833 	if ((p = td->td_proc) != NULL) {
834 		p->p_cpticks++;
835 		p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
836 		if ((p->p_estcpu % PPQ) == 0 && try_mplock()) {
837 			resetpriority(p);
838 			rel_mplock();
839 		}
840 	}
841 }
842 
843 static
844 void
845 crit_panicints(void)
846 {
847     int s;
848     int cpri;
849 
850     s = splhigh();
851     cpri = crit_panic_save();
852     splx(safepri);
853     crit_panic_restore(cpri);
854     splx(s);
855 }
856 
857