1 /*- 2 * Copyright (c) 1982, 1986, 1990, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 39 * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $ 40 * $DragonFly: src/sys/kern/kern_synch.c,v 1.27 2004/01/30 05:42:17 dillon Exp $ 41 */ 42 43 #include "opt_ktrace.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/kernel.h> 49 #include <sys/signalvar.h> 50 #include <sys/resourcevar.h> 51 #include <sys/vmmeter.h> 52 #include <sys/sysctl.h> 53 #include <sys/thread2.h> 54 #ifdef KTRACE 55 #include <sys/uio.h> 56 #include <sys/ktrace.h> 57 #endif 58 #include <sys/xwait.h> 59 60 #include <machine/cpu.h> 61 #include <machine/ipl.h> 62 #include <machine/smp.h> 63 64 static void sched_setup (void *dummy); 65 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL) 66 67 int hogticks; 68 int lbolt; 69 int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ 70 int ncpus; 71 72 static struct callout loadav_callout; 73 74 struct loadavg averunnable = 75 { {0, 0, 0}, FSCALE }; /* load average, of runnable procs */ 76 /* 77 * Constants for averages over 1, 5, and 15 minutes 78 * when sampling at 5 second intervals. 79 */ 80 static fixpt_t cexp[3] = { 81 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 82 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 83 0.9944598480048967 * FSCALE, /* exp(-1/180) */ 84 }; 85 86 static void endtsleep (void *); 87 static void loadav (void *arg); 88 static void roundrobin (void *arg); 89 static void schedcpu (void *arg); 90 static void updatepri (struct proc *p); 91 static void crit_panicints(void); 92 93 static int 94 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) 95 { 96 int error, new_val; 97 98 new_val = sched_quantum * tick; 99 error = sysctl_handle_int(oidp, &new_val, 0, req); 100 if (error != 0 || req->newptr == NULL) 101 return (error); 102 if (new_val < tick) 103 return (EINVAL); 104 sched_quantum = new_val / tick; 105 hogticks = 2 * sched_quantum; 106 return (0); 107 } 108 109 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW, 110 0, sizeof sched_quantum, sysctl_kern_quantum, "I", ""); 111 112 int 113 roundrobin_interval(void) 114 { 115 return (sched_quantum); 116 } 117 118 /* 119 * Force switch among equal priority processes every 100ms. 120 * 121 * WARNING! The MP lock is not held on ipi message remotes. 122 */ 123 #ifdef SMP 124 125 static void 126 roundrobin_remote(void *arg) 127 { 128 struct proc *p = lwkt_preempted_proc(); 129 if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type)) 130 need_resched(); 131 } 132 133 #endif 134 135 static void 136 roundrobin(void *arg) 137 { 138 struct proc *p = lwkt_preempted_proc(); 139 if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type)) 140 need_resched(); 141 #ifdef SMP 142 lwkt_send_ipiq_mask(mycpu->gd_other_cpus, roundrobin_remote, NULL); 143 #endif 144 timeout(roundrobin, NULL, sched_quantum); 145 } 146 147 #ifdef SMP 148 149 void 150 resched_cpus(u_int32_t mask) 151 { 152 lwkt_send_ipiq_mask(mask, roundrobin_remote, NULL); 153 } 154 155 #endif 156 157 /* 158 * Constants for digital decay and forget: 159 * 90% of (p_estcpu) usage in 5 * loadav time 160 * 95% of (p_pctcpu) usage in 60 seconds (load insensitive) 161 * Note that, as ps(1) mentions, this can let percentages 162 * total over 100% (I've seen 137.9% for 3 processes). 163 * 164 * Note that schedulerclock() updates p_estcpu and p_cpticks asynchronously. 165 * 166 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds. 167 * That is, the system wants to compute a value of decay such 168 * that the following for loop: 169 * for (i = 0; i < (5 * loadavg); i++) 170 * p_estcpu *= decay; 171 * will compute 172 * p_estcpu *= 0.1; 173 * for all values of loadavg: 174 * 175 * Mathematically this loop can be expressed by saying: 176 * decay ** (5 * loadavg) ~= .1 177 * 178 * The system computes decay as: 179 * decay = (2 * loadavg) / (2 * loadavg + 1) 180 * 181 * We wish to prove that the system's computation of decay 182 * will always fulfill the equation: 183 * decay ** (5 * loadavg) ~= .1 184 * 185 * If we compute b as: 186 * b = 2 * loadavg 187 * then 188 * decay = b / (b + 1) 189 * 190 * We now need to prove two things: 191 * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) 192 * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) 193 * 194 * Facts: 195 * For x close to zero, exp(x) =~ 1 + x, since 196 * exp(x) = 0! + x**1/1! + x**2/2! + ... . 197 * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. 198 * For x close to zero, ln(1+x) =~ x, since 199 * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 200 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). 201 * ln(.1) =~ -2.30 202 * 203 * Proof of (1): 204 * Solve (factor)**(power) =~ .1 given power (5*loadav): 205 * solving for factor, 206 * ln(factor) =~ (-2.30/5*loadav), or 207 * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = 208 * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED 209 * 210 * Proof of (2): 211 * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): 212 * solving for power, 213 * power*ln(b/(b+1)) =~ -2.30, or 214 * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED 215 * 216 * Actual power values for the implemented algorithm are as follows: 217 * loadav: 1 2 3 4 218 * power: 5.68 10.32 14.94 19.55 219 */ 220 221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ 222 #define loadfactor(loadav) (2 * (loadav)) 223 #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) 224 225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ 226 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ 227 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); 228 229 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */ 230 static int fscale __unused = FSCALE; 231 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, ""); 232 233 /* 234 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the 235 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below 236 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). 237 * 238 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: 239 * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). 240 * 241 * If you don't want to bother with the faster/more-accurate formula, you 242 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate 243 * (more general) method of calculating the %age of CPU used by a process. 244 */ 245 #define CCPU_SHIFT 11 246 247 /* 248 * Recompute process priorities, every hz ticks. 249 */ 250 /* ARGSUSED */ 251 static void 252 schedcpu(void *arg) 253 { 254 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 255 struct proc *p; 256 int realstathz, s; 257 258 realstathz = stathz ? stathz : hz; 259 FOREACH_PROC_IN_SYSTEM(p) { 260 /* 261 * Increment time in/out of memory and sleep time 262 * (if sleeping). We ignore overflow; with 16-bit int's 263 * (remember them?) overflow takes 45 days. 264 */ 265 p->p_swtime++; 266 if (p->p_stat == SSLEEP || p->p_stat == SSTOP) 267 p->p_slptime++; 268 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 269 /* 270 * If the process has slept the entire second, 271 * stop recalculating its priority until it wakes up. 272 */ 273 if (p->p_slptime > 1) 274 continue; 275 s = splhigh(); /* prevent state changes and protect run queue */ 276 /* 277 * p_pctcpu is only for ps. 278 */ 279 #if (FSHIFT >= CCPU_SHIFT) 280 p->p_pctcpu += (realstathz == 100)? 281 ((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT): 282 100 * (((fixpt_t) p->p_cpticks) 283 << (FSHIFT - CCPU_SHIFT)) / realstathz; 284 #else 285 p->p_pctcpu += ((FSCALE - ccpu) * 286 (p->p_cpticks * FSCALE / realstathz)) >> FSHIFT; 287 #endif 288 p->p_cpticks = 0; 289 p->p_estcpu = decay_cpu(loadfac, p->p_estcpu); 290 resetpriority(p); 291 splx(s); 292 } 293 wakeup((caddr_t)&lbolt); 294 timeout(schedcpu, (void *)0, hz); 295 } 296 297 /* 298 * Recalculate the priority of a process after it has slept for a while. 299 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at 300 * least six times the loadfactor will decay p_estcpu to zero. 301 */ 302 static void 303 updatepri(struct proc *p) 304 { 305 unsigned int newcpu = p->p_estcpu; 306 fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); 307 308 if (p->p_slptime > 5 * loadfac) { 309 p->p_estcpu = 0; 310 } else { 311 p->p_slptime--; /* the first time was done in schedcpu */ 312 while (newcpu && --p->p_slptime) 313 newcpu = decay_cpu(loadfac, newcpu); 314 p->p_estcpu = newcpu; 315 } 316 resetpriority(p); 317 } 318 319 /* 320 * We're only looking at 7 bits of the address; everything is 321 * aligned to 4, lots of things are aligned to greater powers 322 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 323 */ 324 #define TABLESIZE 128 325 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE]; 326 #define LOOKUP(x) (((intptr_t)(x) >> 8) & (TABLESIZE - 1)) 327 328 /* 329 * During autoconfiguration or after a panic, a sleep will simply 330 * lower the priority briefly to allow interrupts, then return. 331 * The priority to be used (safepri) is machine-dependent, thus this 332 * value is initialized and maintained in the machine-dependent layers. 333 * This priority will typically be 0, or the lowest priority 334 * that is safe for use on the interrupt stack; it can be made 335 * higher to block network software interrupts after panics. 336 */ 337 int safepri; 338 339 void 340 sleepinit(void) 341 { 342 int i; 343 344 sched_quantum = hz/10; 345 hogticks = 2 * sched_quantum; 346 for (i = 0; i < TABLESIZE; i++) 347 TAILQ_INIT(&slpque[i]); 348 } 349 350 /* 351 * General sleep call. Suspends the current process until a wakeup is 352 * performed on the specified identifier. The process will then be made 353 * runnable with the specified priority. Sleeps at most timo/hz seconds 354 * (0 means no timeout). If flags includes PCATCH flag, signals are checked 355 * before and after sleeping, else signals are not checked. Returns 0 if 356 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 357 * signal needs to be delivered, ERESTART is returned if the current system 358 * call should be restarted if possible, and EINTR is returned if the system 359 * call should be interrupted by the signal (return EINTR). 360 * 361 * If the process has P_CURPROC set mi_switch() will not re-queue it to 362 * the userland scheduler queues because we are in a SSLEEP state. If 363 * we are not the current process then we have to remove ourselves from 364 * the scheduler queues. 365 * 366 * YYY priority now unused 367 */ 368 int 369 tsleep(ident, flags, wmesg, timo) 370 void *ident; 371 int flags, timo; 372 const char *wmesg; 373 { 374 struct thread *td = curthread; 375 struct proc *p = td->td_proc; /* may be NULL */ 376 int s, sig = 0, catch = flags & PCATCH; 377 int id = LOOKUP(ident); 378 struct callout_handle thandle; 379 380 /* 381 * NOTE: removed KTRPOINT, it could cause races due to blocking 382 * even in stable. Just scrap it for now. 383 */ 384 if (cold || panicstr) { 385 /* 386 * After a panic, or during autoconfiguration, 387 * just give interrupts a chance, then just return; 388 * don't run any other procs or panic below, 389 * in case this is the idle process and already asleep. 390 */ 391 crit_panicints(); 392 return (0); 393 } 394 KKASSERT(td != &mycpu->gd_idlethread); /* you must be kidding! */ 395 s = splhigh(); 396 KASSERT(ident != NULL, ("tsleep: no ident")); 397 KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d", 398 ident, wmesg, p->p_stat)); 399 400 crit_enter(); 401 td->td_wchan = ident; 402 td->td_wmesg = wmesg; 403 if (p) 404 p->p_slptime = 0; 405 lwkt_deschedule_self(); 406 TAILQ_INSERT_TAIL(&slpque[id], td, td_threadq); 407 if (timo) 408 thandle = timeout(endtsleep, (void *)td, timo); 409 /* 410 * We put ourselves on the sleep queue and start our timeout 411 * before calling CURSIG, as we could stop there, and a wakeup 412 * or a SIGCONT (or both) could occur while we were stopped. 413 * A SIGCONT would cause us to be marked as SSLEEP 414 * without resuming us, thus we must be ready for sleep 415 * when CURSIG is called. If the wakeup happens while we're 416 * stopped, td->td_wchan will be 0 upon return from CURSIG. 417 */ 418 if (p) { 419 if (catch) { 420 p->p_flag |= P_SINTR; 421 if ((sig = CURSIG(p))) { 422 if (td->td_wchan) { 423 unsleep(td); 424 lwkt_schedule_self(); 425 } 426 p->p_stat = SRUN; 427 goto resume; 428 } 429 if (td->td_wchan == NULL) { 430 catch = 0; 431 goto resume; 432 } 433 } else { 434 sig = 0; 435 } 436 437 /* 438 * If we are not the current process we have to remove ourself 439 * from the run queue. 440 */ 441 KASSERT(p->p_stat == SRUN, ("PSTAT NOT SRUN %d %d", p->p_pid, p->p_stat)); 442 /* 443 * If this is the current 'user' process schedule another one. 444 */ 445 clrrunnable(p, SSLEEP); 446 p->p_stats->p_ru.ru_nvcsw++; 447 KKASSERT(td->td_release || (p->p_flag & P_CURPROC) == 0); 448 mi_switch(); 449 KASSERT(p->p_stat == SRUN, ("tsleep: stat not srun")); 450 } else { 451 lwkt_switch(); 452 } 453 resume: 454 crit_exit(); 455 if (p) 456 p->p_flag &= ~P_SINTR; 457 splx(s); 458 if (td->td_flags & TDF_TIMEOUT) { 459 td->td_flags &= ~TDF_TIMEOUT; 460 if (sig == 0) 461 return (EWOULDBLOCK); 462 } else if (timo) { 463 untimeout(endtsleep, (void *)td, thandle); 464 } else if (td->td_wmesg) { 465 /* 466 * This can happen if a thread is woken up directly. Clear 467 * wmesg to avoid debugging confusion. 468 */ 469 td->td_wmesg = NULL; 470 } 471 /* inline of iscaught() */ 472 if (p) { 473 if (catch && (sig != 0 || (sig = CURSIG(p)))) { 474 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 475 return (EINTR); 476 return (ERESTART); 477 } 478 } 479 return (0); 480 } 481 482 /* 483 * Implement the timeout for tsleep. We interlock against 484 * wchan when setting TDF_TIMEOUT. For processes we remove 485 * the sleep if the process is stopped rather then sleeping, 486 * so it remains stopped. 487 */ 488 static void 489 endtsleep(void *arg) 490 { 491 thread_t td = arg; 492 struct proc *p; 493 int s; 494 495 s = splhigh(); 496 if (td->td_wchan) { 497 td->td_flags |= TDF_TIMEOUT; 498 if ((p = td->td_proc) != NULL) { 499 if (p->p_stat == SSLEEP) 500 setrunnable(p); 501 else 502 unsleep(td); 503 } else { 504 unsleep(td); 505 lwkt_schedule(td); 506 } 507 } 508 splx(s); 509 } 510 511 /* 512 * Remove a process from its wait queue 513 */ 514 void 515 unsleep(struct thread *td) 516 { 517 int s; 518 519 s = splhigh(); 520 if (td->td_wchan) { 521 #if 0 522 if (p->p_flag & P_XSLEEP) { 523 struct xwait *w = p->p_wchan; 524 TAILQ_REMOVE(&w->waitq, p, p_procq); 525 p->p_flag &= ~P_XSLEEP; 526 } else 527 #endif 528 TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_threadq); 529 td->td_wchan = NULL; 530 } 531 splx(s); 532 } 533 534 #if 0 535 /* 536 * Make all processes sleeping on the explicit lock structure runnable. 537 */ 538 void 539 xwakeup(struct xwait *w) 540 { 541 struct proc *p; 542 int s; 543 544 s = splhigh(); 545 ++w->gen; 546 while ((p = TAILQ_FIRST(&w->waitq)) != NULL) { 547 TAILQ_REMOVE(&w->waitq, p, p_procq); 548 KASSERT(p->p_wchan == w && (p->p_flag & P_XSLEEP), 549 ("xwakeup: wchan mismatch for %p (%p/%p) %08x", p, p->p_wchan, w, p->p_flag & P_XSLEEP)); 550 p->p_wchan = NULL; 551 p->p_flag &= ~P_XSLEEP; 552 if (p->p_stat == SSLEEP) { 553 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 554 if (p->p_slptime > 1) 555 updatepri(p); 556 p->p_slptime = 0; 557 p->p_stat = SRUN; 558 if (p->p_flag & P_INMEM) { 559 setrunqueue(p); 560 } else { 561 p->p_flag |= P_SWAPINREQ; 562 wakeup((caddr_t)&proc0); 563 } 564 } 565 } 566 splx(s); 567 } 568 #endif 569 570 /* 571 * Make all processes sleeping on the specified identifier runnable. 572 */ 573 static void 574 _wakeup(void *ident, int count) 575 { 576 struct slpquehead *qp; 577 struct thread *td; 578 struct thread *ntd; 579 struct proc *p; 580 int s; 581 int id = LOOKUP(ident); 582 583 s = splhigh(); 584 qp = &slpque[id]; 585 restart: 586 for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) { 587 ntd = TAILQ_NEXT(td, td_threadq); 588 if (td->td_wchan == ident) { 589 TAILQ_REMOVE(qp, td, td_threadq); 590 td->td_wchan = NULL; 591 if ((p = td->td_proc) != NULL && p->p_stat == SSLEEP) { 592 /* OPTIMIZED EXPANSION OF setrunnable(p); */ 593 if (p->p_slptime > 1) 594 updatepri(p); 595 p->p_slptime = 0; 596 p->p_stat = SRUN; 597 if (p->p_flag & P_INMEM) { 598 setrunqueue(p); 599 } else { 600 p->p_flag |= P_SWAPINREQ; 601 wakeup((caddr_t)&proc0); 602 } 603 /* END INLINE EXPANSION */ 604 } else if (p == NULL) { 605 lwkt_schedule(td); 606 } 607 if (--count == 0) 608 break; 609 goto restart; 610 } 611 } 612 splx(s); 613 } 614 615 void 616 wakeup(void *ident) 617 { 618 _wakeup(ident, 0); 619 } 620 621 void 622 wakeup_one(void *ident) 623 { 624 _wakeup(ident, 1); 625 } 626 627 /* 628 * The machine independent parts of mi_switch(). 629 * Must be called at splstatclock() or higher. 630 */ 631 void 632 mi_switch() 633 { 634 struct thread *td = curthread; 635 struct proc *p = td->td_proc; /* XXX */ 636 struct rlimit *rlim; 637 int x; 638 u_int64_t ttime; 639 640 /* 641 * XXX this spl is almost unnecessary. It is partly to allow for 642 * sloppy callers that don't do it (issignal() via CURSIG() is the 643 * main offender). It is partly to work around a bug in the i386 644 * cpu_switch() (the ipl is not preserved). We ran for years 645 * without it. I think there was only a interrupt latency problem. 646 * The main caller, tsleep(), does an splx() a couple of instructions 647 * after calling here. The buggy caller, issignal(), usually calls 648 * here at spl0() and sometimes returns at splhigh(). The process 649 * then runs for a little too long at splhigh(). The ipl gets fixed 650 * when the process returns to user mode (or earlier). 651 * 652 * It would probably be better to always call here at spl0(). Callers 653 * are prepared to give up control to another process, so they must 654 * be prepared to be interrupted. The clock stuff here may not 655 * actually need splstatclock(). 656 */ 657 x = splstatclock(); 658 clear_resched(); 659 660 /* 661 * Check if the process exceeds its cpu resource allocation. 662 * If over max, kill it. Time spent in interrupts is not 663 * included. YYY 64 bit match is expensive. Ick. 664 */ 665 ttime = td->td_sticks + td->td_uticks; 666 if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY && 667 ttime > p->p_limit->p_cpulimit) { 668 rlim = &p->p_rlimit[RLIMIT_CPU]; 669 if (ttime / (rlim_t)1000000 >= rlim->rlim_max) { 670 killproc(p, "exceeded maximum CPU limit"); 671 } else { 672 psignal(p, SIGXCPU); 673 if (rlim->rlim_cur < rlim->rlim_max) { 674 /* XXX: we should make a private copy */ 675 rlim->rlim_cur += 5; 676 } 677 } 678 } 679 680 /* 681 * Pick a new current process and record its start time. If we 682 * are in a SSTOPped state we deschedule ourselves. YYY this needs 683 * to be cleaned up, remember that LWKTs stay on their run queue 684 * which works differently then the user scheduler which removes 685 * the process from the runq when it runs it. 686 */ 687 mycpu->gd_cnt.v_swtch++; 688 if (p->p_stat == SSTOP) 689 lwkt_deschedule_self(); 690 lwkt_switch(); 691 692 splx(x); 693 } 694 695 /* 696 * Change process state to be runnable, 697 * placing it on the run queue if it is in memory, 698 * and awakening the swapper if it isn't in memory. 699 */ 700 void 701 setrunnable(struct proc *p) 702 { 703 int s; 704 705 s = splhigh(); 706 switch (p->p_stat) { 707 case 0: 708 case SRUN: 709 case SZOMB: 710 default: 711 panic("setrunnable"); 712 case SSTOP: 713 case SSLEEP: 714 unsleep(p->p_thread); /* e.g. when sending signals */ 715 break; 716 717 case SIDL: 718 break; 719 } 720 p->p_stat = SRUN; 721 if (p->p_flag & P_INMEM) 722 setrunqueue(p); 723 splx(s); 724 if (p->p_slptime > 1) 725 updatepri(p); 726 p->p_slptime = 0; 727 if ((p->p_flag & P_INMEM) == 0) { 728 p->p_flag |= P_SWAPINREQ; 729 wakeup((caddr_t)&proc0); 730 } 731 } 732 733 /* 734 * Change the process state to NOT be runnable, removing it from the run 735 * queue. If P_CURPROC is not set and we are in SRUN the process is on the 736 * run queue (If P_INMEM is not set then it isn't because it is swapped). 737 */ 738 void 739 clrrunnable(struct proc *p, int stat) 740 { 741 int s; 742 743 s = splhigh(); 744 switch(p->p_stat) { 745 case SRUN: 746 if (p->p_flag & P_ONRUNQ) 747 remrunqueue(p); 748 break; 749 default: 750 break; 751 } 752 p->p_stat = stat; 753 splx(s); 754 } 755 756 /* 757 * Compute the priority of a process when running in user mode. 758 * Arrange to reschedule if the resulting priority is better 759 * than that of the current process. 760 */ 761 void 762 resetpriority(struct proc *p) 763 { 764 unsigned int newpriority; 765 int opq; 766 int npq; 767 768 /* 769 * Set p_priority for general process comparisons 770 */ 771 switch(p->p_rtprio.type) { 772 case RTP_PRIO_REALTIME: 773 p->p_priority = PRIBASE_REALTIME + p->p_rtprio.prio; 774 return; 775 case RTP_PRIO_NORMAL: 776 break; 777 case RTP_PRIO_IDLE: 778 p->p_priority = PRIBASE_IDLE + p->p_rtprio.prio; 779 return; 780 case RTP_PRIO_THREAD: 781 p->p_priority = PRIBASE_THREAD + p->p_rtprio.prio; 782 return; 783 } 784 785 /* 786 * NORMAL priorities fall through. These are based on niceness 787 * and cpu use. 788 */ 789 newpriority = NICE_ADJUST(p->p_nice - PRIO_MIN) + 790 p->p_estcpu / ESTCPURAMP; 791 newpriority = min(newpriority, MAXPRI); 792 npq = newpriority / PPQ; 793 crit_enter(); 794 opq = (p->p_priority & PRIMASK) / PPQ; 795 if (p->p_stat == SRUN && (p->p_flag & P_ONRUNQ) && opq != npq) { 796 /* 797 * We have to move the process to another queue 798 */ 799 remrunqueue(p); 800 p->p_priority = PRIBASE_NORMAL + newpriority; 801 setrunqueue(p); 802 } else { 803 /* 804 * We can just adjust the priority and it will be picked 805 * up later. 806 */ 807 KKASSERT(opq == npq || (p->p_flag & P_ONRUNQ) == 0); 808 p->p_priority = PRIBASE_NORMAL + newpriority; 809 } 810 crit_exit(); 811 } 812 813 /* 814 * Compute a tenex style load average of a quantity on 815 * 1, 5 and 15 minute intervals. 816 */ 817 static void 818 loadav(void *arg) 819 { 820 int i, nrun; 821 struct loadavg *avg; 822 struct proc *p; 823 824 avg = &averunnable; 825 nrun = 0; 826 FOREACH_PROC_IN_SYSTEM(p) { 827 switch (p->p_stat) { 828 case SRUN: 829 case SIDL: 830 nrun++; 831 } 832 } 833 for (i = 0; i < 3; i++) 834 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + 835 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; 836 837 /* 838 * Schedule the next update to occur after 5 seconds, but add a 839 * random variation to avoid synchronisation with processes that 840 * run at regular intervals. 841 */ 842 callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)), 843 loadav, NULL); 844 } 845 846 /* ARGSUSED */ 847 static void 848 sched_setup(dummy) 849 void *dummy; 850 { 851 852 callout_init(&loadav_callout); 853 854 /* Kick off timeout driven events by calling first time. */ 855 roundrobin(NULL); 856 schedcpu(NULL); 857 loadav(NULL); 858 } 859 860 /* 861 * We adjust the priority of the current process. The priority of 862 * a process gets worse as it accumulates CPU time. The cpu usage 863 * estimator (p_estcpu) is increased here. resetpriority() will 864 * compute a different priority each time p_estcpu increases by 865 * INVERSE_ESTCPU_WEIGHT * (until MAXPRI is reached). 866 * 867 * The cpu usage estimator ramps up quite quickly when the process is 868 * running (linearly), and decays away exponentially, at a rate which 869 * is proportionally slower when the system is busy. The basic principle 870 * is that the system will 90% forget that the process used a lot of CPU 871 * time in 5 * loadav seconds. This causes the system to favor processes 872 * which haven't run much recently, and to round-robin among other processes. 873 * 874 * WARNING! called from a fast-int or an IPI, the MP lock MIGHT NOT BE HELD 875 * and we cannot block. 876 */ 877 void 878 schedulerclock(void *dummy) 879 { 880 struct thread *td; 881 struct proc *p; 882 883 td = curthread; 884 if ((p = td->td_proc) != NULL) { 885 p->p_cpticks++; 886 p->p_estcpu = ESTCPULIM(p->p_estcpu + 1); 887 if ((p->p_estcpu % PPQ) == 0 && try_mplock()) { 888 resetpriority(p); 889 rel_mplock(); 890 } 891 } 892 } 893 894 static 895 void 896 crit_panicints(void) 897 { 898 int s; 899 int cpri; 900 901 s = splhigh(); 902 cpri = crit_panic_save(); 903 splx(safepri); 904 crit_panic_restore(cpri); 905 splx(s); 906 } 907 908