xref: /dflybsd-src/sys/kern/kern_synch.c (revision b44a7743c51b984321471081367b0b58ccfa9856)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.27 2004/01/30 05:42:17 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 
60 #include <machine/cpu.h>
61 #include <machine/ipl.h>
62 #include <machine/smp.h>
63 
64 static void sched_setup (void *dummy);
65 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
66 
67 int	hogticks;
68 int	lbolt;
69 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
70 int	ncpus;
71 
72 static struct callout loadav_callout;
73 
74 struct loadavg averunnable =
75 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
76 /*
77  * Constants for averages over 1, 5, and 15 minutes
78  * when sampling at 5 second intervals.
79  */
80 static fixpt_t cexp[3] = {
81 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
82 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
83 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
84 };
85 
86 static void	endtsleep (void *);
87 static void	loadav (void *arg);
88 static void	roundrobin (void *arg);
89 static void	schedcpu (void *arg);
90 static void	updatepri (struct proc *p);
91 static void	crit_panicints(void);
92 
93 static int
94 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
95 {
96 	int error, new_val;
97 
98 	new_val = sched_quantum * tick;
99 	error = sysctl_handle_int(oidp, &new_val, 0, req);
100         if (error != 0 || req->newptr == NULL)
101 		return (error);
102 	if (new_val < tick)
103 		return (EINVAL);
104 	sched_quantum = new_val / tick;
105 	hogticks = 2 * sched_quantum;
106 	return (0);
107 }
108 
109 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
110 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
111 
112 int
113 roundrobin_interval(void)
114 {
115 	return (sched_quantum);
116 }
117 
118 /*
119  * Force switch among equal priority processes every 100ms.
120  *
121  * WARNING!  The MP lock is not held on ipi message remotes.
122  */
123 #ifdef SMP
124 
125 static void
126 roundrobin_remote(void *arg)
127 {
128 	struct proc *p = lwkt_preempted_proc();
129  	if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
130 		need_resched();
131 }
132 
133 #endif
134 
135 static void
136 roundrobin(void *arg)
137 {
138 	struct proc *p = lwkt_preempted_proc();
139  	if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
140 		need_resched();
141 #ifdef SMP
142 	lwkt_send_ipiq_mask(mycpu->gd_other_cpus, roundrobin_remote, NULL);
143 #endif
144  	timeout(roundrobin, NULL, sched_quantum);
145 }
146 
147 #ifdef SMP
148 
149 void
150 resched_cpus(u_int32_t mask)
151 {
152 	lwkt_send_ipiq_mask(mask, roundrobin_remote, NULL);
153 }
154 
155 #endif
156 
157 /*
158  * Constants for digital decay and forget:
159  *	90% of (p_estcpu) usage in 5 * loadav time
160  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
161  *          Note that, as ps(1) mentions, this can let percentages
162  *          total over 100% (I've seen 137.9% for 3 processes).
163  *
164  * Note that schedulerclock() updates p_estcpu and p_cpticks asynchronously.
165  *
166  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
167  * That is, the system wants to compute a value of decay such
168  * that the following for loop:
169  * 	for (i = 0; i < (5 * loadavg); i++)
170  * 		p_estcpu *= decay;
171  * will compute
172  * 	p_estcpu *= 0.1;
173  * for all values of loadavg:
174  *
175  * Mathematically this loop can be expressed by saying:
176  * 	decay ** (5 * loadavg) ~= .1
177  *
178  * The system computes decay as:
179  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
180  *
181  * We wish to prove that the system's computation of decay
182  * will always fulfill the equation:
183  * 	decay ** (5 * loadavg) ~= .1
184  *
185  * If we compute b as:
186  * 	b = 2 * loadavg
187  * then
188  * 	decay = b / (b + 1)
189  *
190  * We now need to prove two things:
191  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
192  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
193  *
194  * Facts:
195  *         For x close to zero, exp(x) =~ 1 + x, since
196  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
197  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
198  *         For x close to zero, ln(1+x) =~ x, since
199  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
200  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
201  *         ln(.1) =~ -2.30
202  *
203  * Proof of (1):
204  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
205  *	solving for factor,
206  *      ln(factor) =~ (-2.30/5*loadav), or
207  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
208  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
209  *
210  * Proof of (2):
211  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
212  *	solving for power,
213  *      power*ln(b/(b+1)) =~ -2.30, or
214  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
215  *
216  * Actual power values for the implemented algorithm are as follows:
217  *      loadav: 1       2       3       4
218  *      power:  5.68    10.32   14.94   19.55
219  */
220 
221 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
222 #define	loadfactor(loadav)	(2 * (loadav))
223 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
224 
225 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
226 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
227 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
228 
229 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
230 static int	fscale __unused = FSCALE;
231 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
232 
233 /*
234  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
235  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
236  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
237  *
238  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
239  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
240  *
241  * If you don't want to bother with the faster/more-accurate formula, you
242  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
243  * (more general) method of calculating the %age of CPU used by a process.
244  */
245 #define	CCPU_SHIFT	11
246 
247 /*
248  * Recompute process priorities, every hz ticks.
249  */
250 /* ARGSUSED */
251 static void
252 schedcpu(void *arg)
253 {
254 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
255 	struct proc *p;
256 	int realstathz, s;
257 
258 	realstathz = stathz ? stathz : hz;
259 	FOREACH_PROC_IN_SYSTEM(p) {
260 		/*
261 		 * Increment time in/out of memory and sleep time
262 		 * (if sleeping).  We ignore overflow; with 16-bit int's
263 		 * (remember them?) overflow takes 45 days.
264 		 */
265 		p->p_swtime++;
266 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
267 			p->p_slptime++;
268 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
269 		/*
270 		 * If the process has slept the entire second,
271 		 * stop recalculating its priority until it wakes up.
272 		 */
273 		if (p->p_slptime > 1)
274 			continue;
275 		s = splhigh();	/* prevent state changes and protect run queue */
276 		/*
277 		 * p_pctcpu is only for ps.
278 		 */
279 #if	(FSHIFT >= CCPU_SHIFT)
280 		p->p_pctcpu += (realstathz == 100)?
281 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
282                 	100 * (((fixpt_t) p->p_cpticks)
283 				<< (FSHIFT - CCPU_SHIFT)) / realstathz;
284 #else
285 		p->p_pctcpu += ((FSCALE - ccpu) *
286 			(p->p_cpticks * FSCALE / realstathz)) >> FSHIFT;
287 #endif
288 		p->p_cpticks = 0;
289 		p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
290 		resetpriority(p);
291 		splx(s);
292 	}
293 	wakeup((caddr_t)&lbolt);
294 	timeout(schedcpu, (void *)0, hz);
295 }
296 
297 /*
298  * Recalculate the priority of a process after it has slept for a while.
299  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
300  * least six times the loadfactor will decay p_estcpu to zero.
301  */
302 static void
303 updatepri(struct proc *p)
304 {
305 	unsigned int newcpu = p->p_estcpu;
306 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
307 
308 	if (p->p_slptime > 5 * loadfac) {
309 		p->p_estcpu = 0;
310 	} else {
311 		p->p_slptime--;	/* the first time was done in schedcpu */
312 		while (newcpu && --p->p_slptime)
313 			newcpu = decay_cpu(loadfac, newcpu);
314 		p->p_estcpu = newcpu;
315 	}
316 	resetpriority(p);
317 }
318 
319 /*
320  * We're only looking at 7 bits of the address; everything is
321  * aligned to 4, lots of things are aligned to greater powers
322  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
323  */
324 #define TABLESIZE	128
325 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
326 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
327 
328 /*
329  * During autoconfiguration or after a panic, a sleep will simply
330  * lower the priority briefly to allow interrupts, then return.
331  * The priority to be used (safepri) is machine-dependent, thus this
332  * value is initialized and maintained in the machine-dependent layers.
333  * This priority will typically be 0, or the lowest priority
334  * that is safe for use on the interrupt stack; it can be made
335  * higher to block network software interrupts after panics.
336  */
337 int safepri;
338 
339 void
340 sleepinit(void)
341 {
342 	int i;
343 
344 	sched_quantum = hz/10;
345 	hogticks = 2 * sched_quantum;
346 	for (i = 0; i < TABLESIZE; i++)
347 		TAILQ_INIT(&slpque[i]);
348 }
349 
350 /*
351  * General sleep call.  Suspends the current process until a wakeup is
352  * performed on the specified identifier.  The process will then be made
353  * runnable with the specified priority.  Sleeps at most timo/hz seconds
354  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
355  * before and after sleeping, else signals are not checked.  Returns 0 if
356  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
357  * signal needs to be delivered, ERESTART is returned if the current system
358  * call should be restarted if possible, and EINTR is returned if the system
359  * call should be interrupted by the signal (return EINTR).
360  *
361  * If the process has P_CURPROC set mi_switch() will not re-queue it to
362  * the userland scheduler queues because we are in a SSLEEP state.  If
363  * we are not the current process then we have to remove ourselves from
364  * the scheduler queues.
365  *
366  * YYY priority now unused
367  */
368 int
369 tsleep(ident, flags, wmesg, timo)
370 	void *ident;
371 	int flags, timo;
372 	const char *wmesg;
373 {
374 	struct thread *td = curthread;
375 	struct proc *p = td->td_proc;		/* may be NULL */
376 	int s, sig = 0, catch = flags & PCATCH;
377 	int id = LOOKUP(ident);
378 	struct callout_handle thandle;
379 
380 	/*
381 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
382 	 * even in stable.  Just scrap it for now.
383 	 */
384 	if (cold || panicstr) {
385 		/*
386 		 * After a panic, or during autoconfiguration,
387 		 * just give interrupts a chance, then just return;
388 		 * don't run any other procs or panic below,
389 		 * in case this is the idle process and already asleep.
390 		 */
391 		crit_panicints();
392 		return (0);
393 	}
394 	KKASSERT(td != &mycpu->gd_idlethread);	/* you must be kidding! */
395 	s = splhigh();
396 	KASSERT(ident != NULL, ("tsleep: no ident"));
397 	KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
398 		ident, wmesg, p->p_stat));
399 
400 	crit_enter();
401 	td->td_wchan = ident;
402 	td->td_wmesg = wmesg;
403 	if (p)
404 		p->p_slptime = 0;
405 	lwkt_deschedule_self();
406 	TAILQ_INSERT_TAIL(&slpque[id], td, td_threadq);
407 	if (timo)
408 		thandle = timeout(endtsleep, (void *)td, timo);
409 	/*
410 	 * We put ourselves on the sleep queue and start our timeout
411 	 * before calling CURSIG, as we could stop there, and a wakeup
412 	 * or a SIGCONT (or both) could occur while we were stopped.
413 	 * A SIGCONT would cause us to be marked as SSLEEP
414 	 * without resuming us, thus we must be ready for sleep
415 	 * when CURSIG is called.  If the wakeup happens while we're
416 	 * stopped, td->td_wchan will be 0 upon return from CURSIG.
417 	 */
418 	if (p) {
419 		if (catch) {
420 			p->p_flag |= P_SINTR;
421 			if ((sig = CURSIG(p))) {
422 				if (td->td_wchan) {
423 					unsleep(td);
424 					lwkt_schedule_self();
425 				}
426 				p->p_stat = SRUN;
427 				goto resume;
428 			}
429 			if (td->td_wchan == NULL) {
430 				catch = 0;
431 				goto resume;
432 			}
433 		} else {
434 			sig = 0;
435 		}
436 
437 		/*
438 		 * If we are not the current process we have to remove ourself
439 		 * from the run queue.
440 		 */
441 		KASSERT(p->p_stat == SRUN, ("PSTAT NOT SRUN %d %d", p->p_pid, p->p_stat));
442 		/*
443 		 * If this is the current 'user' process schedule another one.
444 		 */
445 		clrrunnable(p, SSLEEP);
446 		p->p_stats->p_ru.ru_nvcsw++;
447 		KKASSERT(td->td_release || (p->p_flag & P_CURPROC) == 0);
448 		mi_switch();
449 		KASSERT(p->p_stat == SRUN, ("tsleep: stat not srun"));
450 	} else {
451 		lwkt_switch();
452 	}
453 resume:
454 	crit_exit();
455 	if (p)
456 		p->p_flag &= ~P_SINTR;
457 	splx(s);
458 	if (td->td_flags & TDF_TIMEOUT) {
459 		td->td_flags &= ~TDF_TIMEOUT;
460 		if (sig == 0)
461 			return (EWOULDBLOCK);
462 	} else if (timo) {
463 		untimeout(endtsleep, (void *)td, thandle);
464 	} else if (td->td_wmesg) {
465 		/*
466 		 * This can happen if a thread is woken up directly.  Clear
467 		 * wmesg to avoid debugging confusion.
468 		 */
469 		td->td_wmesg = NULL;
470 	}
471 	/* inline of iscaught() */
472 	if (p) {
473 		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
474 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
475 				return (EINTR);
476 			return (ERESTART);
477 		}
478 	}
479 	return (0);
480 }
481 
482 /*
483  * Implement the timeout for tsleep.  We interlock against
484  * wchan when setting TDF_TIMEOUT.  For processes we remove
485  * the sleep if the process is stopped rather then sleeping,
486  * so it remains stopped.
487  */
488 static void
489 endtsleep(void *arg)
490 {
491 	thread_t td = arg;
492 	struct proc *p;
493 	int s;
494 
495 	s = splhigh();
496 	if (td->td_wchan) {
497 		td->td_flags |= TDF_TIMEOUT;
498 		if ((p = td->td_proc) != NULL) {
499 			if (p->p_stat == SSLEEP)
500 				setrunnable(p);
501 			else
502 				unsleep(td);
503 		} else {
504 			unsleep(td);
505 			lwkt_schedule(td);
506 		}
507 	}
508 	splx(s);
509 }
510 
511 /*
512  * Remove a process from its wait queue
513  */
514 void
515 unsleep(struct thread *td)
516 {
517 	int s;
518 
519 	s = splhigh();
520 	if (td->td_wchan) {
521 #if 0
522 		if (p->p_flag & P_XSLEEP) {
523 			struct xwait *w = p->p_wchan;
524 			TAILQ_REMOVE(&w->waitq, p, p_procq);
525 			p->p_flag &= ~P_XSLEEP;
526 		} else
527 #endif
528 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_threadq);
529 		td->td_wchan = NULL;
530 	}
531 	splx(s);
532 }
533 
534 #if 0
535 /*
536  * Make all processes sleeping on the explicit lock structure runnable.
537  */
538 void
539 xwakeup(struct xwait *w)
540 {
541 	struct proc *p;
542 	int s;
543 
544 	s = splhigh();
545 	++w->gen;
546 	while ((p = TAILQ_FIRST(&w->waitq)) != NULL) {
547 		TAILQ_REMOVE(&w->waitq, p, p_procq);
548 		KASSERT(p->p_wchan == w && (p->p_flag & P_XSLEEP),
549 		    ("xwakeup: wchan mismatch for %p (%p/%p) %08x", p, p->p_wchan, w, p->p_flag & P_XSLEEP));
550 		p->p_wchan = NULL;
551 		p->p_flag &= ~P_XSLEEP;
552 		if (p->p_stat == SSLEEP) {
553 			/* OPTIMIZED EXPANSION OF setrunnable(p); */
554 			if (p->p_slptime > 1)
555 				updatepri(p);
556 			p->p_slptime = 0;
557 			p->p_stat = SRUN;
558 			if (p->p_flag & P_INMEM) {
559 				setrunqueue(p);
560 			} else {
561 				p->p_flag |= P_SWAPINREQ;
562 				wakeup((caddr_t)&proc0);
563 			}
564 		}
565 	}
566 	splx(s);
567 }
568 #endif
569 
570 /*
571  * Make all processes sleeping on the specified identifier runnable.
572  */
573 static void
574 _wakeup(void *ident, int count)
575 {
576 	struct slpquehead *qp;
577 	struct thread *td;
578 	struct thread *ntd;
579 	struct proc *p;
580 	int s;
581 	int id = LOOKUP(ident);
582 
583 	s = splhigh();
584 	qp = &slpque[id];
585 restart:
586 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
587 		ntd = TAILQ_NEXT(td, td_threadq);
588 		if (td->td_wchan == ident) {
589 			TAILQ_REMOVE(qp, td, td_threadq);
590 			td->td_wchan = NULL;
591 			if ((p = td->td_proc) != NULL && p->p_stat == SSLEEP) {
592 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
593 				if (p->p_slptime > 1)
594 					updatepri(p);
595 				p->p_slptime = 0;
596 				p->p_stat = SRUN;
597 				if (p->p_flag & P_INMEM) {
598 					setrunqueue(p);
599 				} else {
600 					p->p_flag |= P_SWAPINREQ;
601 					wakeup((caddr_t)&proc0);
602 				}
603 				/* END INLINE EXPANSION */
604 			} else if (p == NULL) {
605 				lwkt_schedule(td);
606 			}
607 			if (--count == 0)
608 				break;
609 			goto restart;
610 		}
611 	}
612 	splx(s);
613 }
614 
615 void
616 wakeup(void *ident)
617 {
618     _wakeup(ident, 0);
619 }
620 
621 void
622 wakeup_one(void *ident)
623 {
624     _wakeup(ident, 1);
625 }
626 
627 /*
628  * The machine independent parts of mi_switch().
629  * Must be called at splstatclock() or higher.
630  */
631 void
632 mi_switch()
633 {
634 	struct thread *td = curthread;
635 	struct proc *p = td->td_proc;	/* XXX */
636 	struct rlimit *rlim;
637 	int x;
638 	u_int64_t ttime;
639 
640 	/*
641 	 * XXX this spl is almost unnecessary.  It is partly to allow for
642 	 * sloppy callers that don't do it (issignal() via CURSIG() is the
643 	 * main offender).  It is partly to work around a bug in the i386
644 	 * cpu_switch() (the ipl is not preserved).  We ran for years
645 	 * without it.  I think there was only a interrupt latency problem.
646 	 * The main caller, tsleep(), does an splx() a couple of instructions
647 	 * after calling here.  The buggy caller, issignal(), usually calls
648 	 * here at spl0() and sometimes returns at splhigh().  The process
649 	 * then runs for a little too long at splhigh().  The ipl gets fixed
650 	 * when the process returns to user mode (or earlier).
651 	 *
652 	 * It would probably be better to always call here at spl0(). Callers
653 	 * are prepared to give up control to another process, so they must
654 	 * be prepared to be interrupted.  The clock stuff here may not
655 	 * actually need splstatclock().
656 	 */
657 	x = splstatclock();
658 	clear_resched();
659 
660 	/*
661 	 * Check if the process exceeds its cpu resource allocation.
662 	 * If over max, kill it.  Time spent in interrupts is not
663 	 * included.  YYY 64 bit match is expensive.  Ick.
664 	 */
665 	ttime = td->td_sticks + td->td_uticks;
666 	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
667 	    ttime > p->p_limit->p_cpulimit) {
668 		rlim = &p->p_rlimit[RLIMIT_CPU];
669 		if (ttime / (rlim_t)1000000 >= rlim->rlim_max) {
670 			killproc(p, "exceeded maximum CPU limit");
671 		} else {
672 			psignal(p, SIGXCPU);
673 			if (rlim->rlim_cur < rlim->rlim_max) {
674 				/* XXX: we should make a private copy */
675 				rlim->rlim_cur += 5;
676 			}
677 		}
678 	}
679 
680 	/*
681 	 * Pick a new current process and record its start time.  If we
682 	 * are in a SSTOPped state we deschedule ourselves.  YYY this needs
683 	 * to be cleaned up, remember that LWKTs stay on their run queue
684 	 * which works differently then the user scheduler which removes
685 	 * the process from the runq when it runs it.
686 	 */
687 	mycpu->gd_cnt.v_swtch++;
688 	if (p->p_stat == SSTOP)
689 		lwkt_deschedule_self();
690 	lwkt_switch();
691 
692 	splx(x);
693 }
694 
695 /*
696  * Change process state to be runnable,
697  * placing it on the run queue if it is in memory,
698  * and awakening the swapper if it isn't in memory.
699  */
700 void
701 setrunnable(struct proc *p)
702 {
703 	int s;
704 
705 	s = splhigh();
706 	switch (p->p_stat) {
707 	case 0:
708 	case SRUN:
709 	case SZOMB:
710 	default:
711 		panic("setrunnable");
712 	case SSTOP:
713 	case SSLEEP:
714 		unsleep(p->p_thread);	/* e.g. when sending signals */
715 		break;
716 
717 	case SIDL:
718 		break;
719 	}
720 	p->p_stat = SRUN;
721 	if (p->p_flag & P_INMEM)
722 		setrunqueue(p);
723 	splx(s);
724 	if (p->p_slptime > 1)
725 		updatepri(p);
726 	p->p_slptime = 0;
727 	if ((p->p_flag & P_INMEM) == 0) {
728 		p->p_flag |= P_SWAPINREQ;
729 		wakeup((caddr_t)&proc0);
730 	}
731 }
732 
733 /*
734  * Change the process state to NOT be runnable, removing it from the run
735  * queue.  If P_CURPROC is not set and we are in SRUN the process is on the
736  * run queue (If P_INMEM is not set then it isn't because it is swapped).
737  */
738 void
739 clrrunnable(struct proc *p, int stat)
740 {
741 	int s;
742 
743 	s = splhigh();
744 	switch(p->p_stat) {
745 	case SRUN:
746 		if (p->p_flag & P_ONRUNQ)
747 			remrunqueue(p);
748 		break;
749 	default:
750 		break;
751 	}
752 	p->p_stat = stat;
753 	splx(s);
754 }
755 
756 /*
757  * Compute the priority of a process when running in user mode.
758  * Arrange to reschedule if the resulting priority is better
759  * than that of the current process.
760  */
761 void
762 resetpriority(struct proc *p)
763 {
764 	unsigned int newpriority;
765 	int opq;
766 	int npq;
767 
768 	/*
769 	 * Set p_priority for general process comparisons
770 	 */
771 	switch(p->p_rtprio.type) {
772 	case RTP_PRIO_REALTIME:
773 		p->p_priority = PRIBASE_REALTIME + p->p_rtprio.prio;
774 		return;
775 	case RTP_PRIO_NORMAL:
776 		break;
777 	case RTP_PRIO_IDLE:
778 		p->p_priority = PRIBASE_IDLE + p->p_rtprio.prio;
779 		return;
780 	case RTP_PRIO_THREAD:
781 		p->p_priority = PRIBASE_THREAD + p->p_rtprio.prio;
782 		return;
783 	}
784 
785 	/*
786 	 * NORMAL priorities fall through.  These are based on niceness
787 	 * and cpu use.
788 	 */
789 	newpriority = NICE_ADJUST(p->p_nice - PRIO_MIN) +
790 			p->p_estcpu / ESTCPURAMP;
791 	newpriority = min(newpriority, MAXPRI);
792 	npq = newpriority / PPQ;
793 	crit_enter();
794 	opq = (p->p_priority & PRIMASK) / PPQ;
795 	if (p->p_stat == SRUN && (p->p_flag & P_ONRUNQ) && opq != npq) {
796 		/*
797 		 * We have to move the process to another queue
798 		 */
799 		remrunqueue(p);
800 		p->p_priority = PRIBASE_NORMAL + newpriority;
801 		setrunqueue(p);
802 	} else {
803 		/*
804 		 * We can just adjust the priority and it will be picked
805 		 * up later.
806 		 */
807 		KKASSERT(opq == npq || (p->p_flag & P_ONRUNQ) == 0);
808 		p->p_priority = PRIBASE_NORMAL + newpriority;
809 	}
810 	crit_exit();
811 }
812 
813 /*
814  * Compute a tenex style load average of a quantity on
815  * 1, 5 and 15 minute intervals.
816  */
817 static void
818 loadav(void *arg)
819 {
820 	int i, nrun;
821 	struct loadavg *avg;
822 	struct proc *p;
823 
824 	avg = &averunnable;
825 	nrun = 0;
826 	FOREACH_PROC_IN_SYSTEM(p) {
827 		switch (p->p_stat) {
828 		case SRUN:
829 		case SIDL:
830 			nrun++;
831 		}
832 	}
833 	for (i = 0; i < 3; i++)
834 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
835 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
836 
837 	/*
838 	 * Schedule the next update to occur after 5 seconds, but add a
839 	 * random variation to avoid synchronisation with processes that
840 	 * run at regular intervals.
841 	 */
842 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
843 	    loadav, NULL);
844 }
845 
846 /* ARGSUSED */
847 static void
848 sched_setup(dummy)
849 	void *dummy;
850 {
851 
852 	callout_init(&loadav_callout);
853 
854 	/* Kick off timeout driven events by calling first time. */
855 	roundrobin(NULL);
856 	schedcpu(NULL);
857 	loadav(NULL);
858 }
859 
860 /*
861  * We adjust the priority of the current process.  The priority of
862  * a process gets worse as it accumulates CPU time.  The cpu usage
863  * estimator (p_estcpu) is increased here.  resetpriority() will
864  * compute a different priority each time p_estcpu increases by
865  * INVERSE_ESTCPU_WEIGHT * (until MAXPRI is reached).
866  *
867  * The cpu usage estimator ramps up quite quickly when the process is
868  * running (linearly), and decays away exponentially, at a rate which
869  * is proportionally slower when the system is busy.  The basic principle
870  * is that the system will 90% forget that the process used a lot of CPU
871  * time in 5 * loadav seconds.  This causes the system to favor processes
872  * which haven't run much recently, and to round-robin among other processes.
873  *
874  * WARNING! called from a fast-int or an IPI, the MP lock MIGHT NOT BE HELD
875  * and we cannot block.
876  */
877 void
878 schedulerclock(void *dummy)
879 {
880 	struct thread *td;
881 	struct proc *p;
882 
883 	td = curthread;
884 	if ((p = td->td_proc) != NULL) {
885 		p->p_cpticks++;
886 		p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
887 		if ((p->p_estcpu % PPQ) == 0 && try_mplock()) {
888 			resetpriority(p);
889 			rel_mplock();
890 		}
891 	}
892 }
893 
894 static
895 void
896 crit_panicints(void)
897 {
898     int s;
899     int cpri;
900 
901     s = splhigh();
902     cpri = crit_panic_save();
903     splx(safepri);
904     crit_panic_restore(cpri);
905     splx(s);
906 }
907 
908