xref: /dflybsd-src/sys/kern/kern_synch.c (revision 9d509a69ab2b7b806df8f2de570667d384d4d4f1)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.34 2004/07/24 20:21:35 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #ifdef KTRACE
55 #include <sys/uio.h>
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 
60 #include <machine/cpu.h>
61 #include <machine/ipl.h>
62 #include <machine/smp.h>
63 
64 static void sched_setup (void *dummy);
65 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
66 
67 int	hogticks;
68 int	lbolt;
69 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
70 int	ncpus;
71 int	ncpus2, ncpus2_shift, ncpus2_mask;
72 
73 static struct callout loadav_callout;
74 
75 struct loadavg averunnable =
76 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
77 /*
78  * Constants for averages over 1, 5, and 15 minutes
79  * when sampling at 5 second intervals.
80  */
81 static fixpt_t cexp[3] = {
82 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
83 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
84 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
85 };
86 
87 static void	endtsleep (void *);
88 static void	loadav (void *arg);
89 static void	roundrobin (void *arg);
90 static void	schedcpu (void *arg);
91 static void	updatepri (struct proc *p);
92 static void	crit_panicints(void);
93 
94 static int
95 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
96 {
97 	int error, new_val;
98 
99 	new_val = sched_quantum * tick;
100 	error = sysctl_handle_int(oidp, &new_val, 0, req);
101         if (error != 0 || req->newptr == NULL)
102 		return (error);
103 	if (new_val < tick)
104 		return (EINVAL);
105 	sched_quantum = new_val / tick;
106 	hogticks = 2 * sched_quantum;
107 	return (0);
108 }
109 
110 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
111 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
112 
113 int
114 roundrobin_interval(void)
115 {
116 	return (sched_quantum);
117 }
118 
119 /*
120  * Force switch among equal priority processes every 100ms.
121  *
122  * WARNING!  The MP lock is not held on ipi message remotes.
123  */
124 #ifdef SMP
125 
126 static void
127 roundrobin_remote(void *arg)
128 {
129 	struct proc *p = lwkt_preempted_proc();
130  	if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
131 		need_user_resched();
132 }
133 
134 #endif
135 
136 static void
137 roundrobin(void *arg)
138 {
139 	struct proc *p = lwkt_preempted_proc();
140  	if (p == NULL || RTP_PRIO_NEED_RR(p->p_rtprio.type))
141 		need_user_resched();
142 #ifdef SMP
143 	lwkt_send_ipiq_mask(mycpu->gd_other_cpus, roundrobin_remote, NULL);
144 #endif
145  	timeout(roundrobin, NULL, sched_quantum);
146 }
147 
148 #ifdef SMP
149 
150 void
151 resched_cpus(u_int32_t mask)
152 {
153 	lwkt_send_ipiq_mask(mask, roundrobin_remote, NULL);
154 }
155 
156 #endif
157 
158 /*
159  * The load average is scaled by FSCALE (2048 typ).  The estimated cpu is
160  * incremented at a rate of ESTCPUVFREQ per second (40hz typ), but this is
161  * divided up across all cpu bound processes running in the system so an
162  * individual process will get less under load.  ESTCPULIM typicaly caps
163  * out at ESTCPUMAX (around 376, or 11 nice levels).
164  *
165  * Generally speaking the decay equation needs to break-even on growth
166  * at the limit at all load levels >= 1.0, so if the estimated cpu for
167  * a process increases by (ESTVCPUFREQ / load) per second, then the decay
168  * should reach this value when estcpu reaches ESTCPUMAX.  That calculation
169  * is:
170  *
171  *	ESTCPUMAX * decay = ESTCPUVFREQ / load
172  *	decay = ESTCPUVFREQ / (load * ESTCPUMAX)
173  *	decay = estcpu * 0.053 / load
174  *
175  * If the load is less then 1.0 we assume a load of 1.0.
176  */
177 
178 #define cload(loadav)	((loadav) < FSCALE ? FSCALE : (loadav))
179 #define decay_cpu(loadav,estcpu)	\
180     ((estcpu) * (FSCALE * ESTCPUVFREQ / ESTCPUMAX) / cload(loadav))
181 
182 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
183 static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
184 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
185 
186 /* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
187 static int	fscale __unused = FSCALE;
188 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
189 
190 /*
191  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
192  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
193  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
194  *
195  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
196  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
197  *
198  * If you don't want to bother with the faster/more-accurate formula, you
199  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
200  * (more general) method of calculating the %age of CPU used by a process.
201  */
202 #define	CCPU_SHIFT	11
203 
204 /*
205  * Recompute process priorities, once a second.
206  */
207 /* ARGSUSED */
208 static void
209 schedcpu(void *arg)
210 {
211 	fixpt_t loadfac = averunnable.ldavg[0];
212 	struct proc *p;
213 	int s;
214 	unsigned int ndecay;
215 
216 	FOREACH_PROC_IN_SYSTEM(p) {
217 		/*
218 		 * Increment time in/out of memory and sleep time
219 		 * (if sleeping).  We ignore overflow; with 16-bit int's
220 		 * (remember them?) overflow takes 45 days.
221 		 */
222 		p->p_swtime++;
223 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
224 			p->p_slptime++;
225 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
226 
227 		/*
228 		 * If the process has slept the entire second,
229 		 * stop recalculating its priority until it wakes up.
230 		 *
231 		 * Note that interactive calculations do not occur for
232 		 * long sleeps (because that isn't necessarily indicative
233 		 * of an interactive process).
234 		 */
235 		if (p->p_slptime > 1)
236 			continue;
237 		/* prevent state changes and protect run queue */
238 		s = splhigh();
239 		/*
240 		 * p_cpticks runs at ESTCPUFREQ but must be divided by the
241 		 * load average for par-100% use.  Higher p_interactive
242 		 * values mean less interactive, lower values mean more
243 		 * interactive.
244 		 */
245 		if ((((fixpt_t)p->p_cpticks * cload(loadfac)) >> FSHIFT)  >
246 		    ESTCPUFREQ / 4) {
247 			if (p->p_interactive < 127)
248 				++p->p_interactive;
249 		} else {
250 			if (p->p_interactive > -127)
251 				--p->p_interactive;
252 		}
253 		/*
254 		 * p_pctcpu is only for ps.
255 		 */
256 #if	(FSHIFT >= CCPU_SHIFT)
257 		p->p_pctcpu += (ESTCPUFREQ == 100)?
258 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
259                 	100 * (((fixpt_t) p->p_cpticks)
260 				<< (FSHIFT - CCPU_SHIFT)) / ESTCPUFREQ;
261 #else
262 		p->p_pctcpu += ((FSCALE - ccpu) *
263 			(p->p_cpticks * FSCALE / ESTCPUFREQ)) >> FSHIFT;
264 #endif
265 		p->p_cpticks = 0;
266 		ndecay = decay_cpu(loadfac, p->p_estcpu);
267 		if (p->p_estcpu > ndecay)
268 			p->p_estcpu -= ndecay;
269 		else
270 			p->p_estcpu = 0;
271 		resetpriority(p);
272 		splx(s);
273 	}
274 	wakeup((caddr_t)&lbolt);
275 	timeout(schedcpu, (void *)0, hz);
276 }
277 
278 /*
279  * Recalculate the priority of a process after it has slept for a while.
280  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
281  * least six times the loadfactor will decay p_estcpu to zero.
282  */
283 static void
284 updatepri(struct proc *p)
285 {
286 	unsigned int ndecay;
287 
288 	ndecay = decay_cpu(averunnable.ldavg[0], p->p_estcpu) * p->p_slptime;
289 	if (p->p_estcpu > ndecay)
290 		p->p_estcpu -= ndecay;
291 	else
292 		p->p_estcpu = 0;
293 	resetpriority(p);
294 }
295 
296 /*
297  * We're only looking at 7 bits of the address; everything is
298  * aligned to 4, lots of things are aligned to greater powers
299  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
300  */
301 #define TABLESIZE	128
302 static TAILQ_HEAD(slpquehead, thread) slpque[TABLESIZE];
303 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
304 
305 /*
306  * During autoconfiguration or after a panic, a sleep will simply
307  * lower the priority briefly to allow interrupts, then return.
308  * The priority to be used (safepri) is machine-dependent, thus this
309  * value is initialized and maintained in the machine-dependent layers.
310  * This priority will typically be 0, or the lowest priority
311  * that is safe for use on the interrupt stack; it can be made
312  * higher to block network software interrupts after panics.
313  */
314 int safepri;
315 
316 void
317 sleepinit(void)
318 {
319 	int i;
320 
321 	sched_quantum = hz/10;
322 	hogticks = 2 * sched_quantum;
323 	for (i = 0; i < TABLESIZE; i++)
324 		TAILQ_INIT(&slpque[i]);
325 }
326 
327 /*
328  * General sleep call.  Suspends the current process until a wakeup is
329  * performed on the specified identifier.  The process will then be made
330  * runnable with the specified priority.  Sleeps at most timo/hz seconds
331  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
332  * before and after sleeping, else signals are not checked.  Returns 0 if
333  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
334  * signal needs to be delivered, ERESTART is returned if the current system
335  * call should be restarted if possible, and EINTR is returned if the system
336  * call should be interrupted by the signal (return EINTR).
337  *
338  * Note that if we are a process, we release_curproc() before messing with
339  * the LWKT scheduler.
340  */
341 int
342 tsleep(void *ident, int flags, const char *wmesg, int timo)
343 {
344 	struct thread *td = curthread;
345 	struct proc *p = td->td_proc;		/* may be NULL */
346 	int sig = 0, catch = flags & PCATCH;
347 	int id = LOOKUP(ident);
348 	struct callout_handle thandle;
349 
350 	/*
351 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
352 	 * even in stable.  Just scrap it for now.
353 	 */
354 	if (cold || panicstr) {
355 		/*
356 		 * After a panic, or during autoconfiguration,
357 		 * just give interrupts a chance, then just return;
358 		 * don't run any other procs or panic below,
359 		 * in case this is the idle process and already asleep.
360 		 */
361 		crit_panicints();
362 		return (0);
363 	}
364 	KKASSERT(td != &mycpu->gd_idlethread);	/* you must be kidding! */
365 	crit_enter_quick(td);
366 	KASSERT(ident != NULL, ("tsleep: no ident"));
367 	KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
368 		ident, wmesg, p->p_stat));
369 
370 	td->td_wchan = ident;
371 	td->td_wmesg = wmesg;
372 	if (p) {
373 		if (flags & PNORESCHED)
374 			td->td_flags |= TDF_NORESCHED;
375 		release_curproc(p);
376 		p->p_slptime = 0;
377 	}
378 	lwkt_deschedule_self(td);
379 	TAILQ_INSERT_TAIL(&slpque[id], td, td_threadq);
380 	if (timo)
381 		thandle = timeout(endtsleep, (void *)td, timo);
382 	/*
383 	 * We put ourselves on the sleep queue and start our timeout
384 	 * before calling CURSIG, as we could stop there, and a wakeup
385 	 * or a SIGCONT (or both) could occur while we were stopped.
386 	 * A SIGCONT would cause us to be marked as SSLEEP
387 	 * without resuming us, thus we must be ready for sleep
388 	 * when CURSIG is called.  If the wakeup happens while we're
389 	 * stopped, td->td_wchan will be 0 upon return from CURSIG.
390 	 */
391 	if (p) {
392 		if (catch) {
393 			p->p_flag |= P_SINTR;
394 			if ((sig = CURSIG(p))) {
395 				if (td->td_wchan) {
396 					unsleep(td);
397 					lwkt_schedule_self(td);
398 				}
399 				p->p_stat = SRUN;
400 				goto resume;
401 			}
402 			if (td->td_wchan == NULL) {
403 				catch = 0;
404 				goto resume;
405 			}
406 		} else {
407 			sig = 0;
408 		}
409 
410 		/*
411 		 * If we are not the current process we have to remove ourself
412 		 * from the run queue.
413 		 */
414 		KASSERT(p->p_stat == SRUN, ("PSTAT NOT SRUN %d %d", p->p_pid, p->p_stat));
415 		/*
416 		 * If this is the current 'user' process schedule another one.
417 		 */
418 		clrrunnable(p, SSLEEP);
419 		p->p_stats->p_ru.ru_nvcsw++;
420 		mi_switch(p);
421 		KASSERT(p->p_stat == SRUN, ("tsleep: stat not srun"));
422 	} else {
423 		lwkt_switch();
424 	}
425 resume:
426 	if (p)
427 		p->p_flag &= ~P_SINTR;
428 	crit_exit_quick(td);
429 	td->td_flags &= ~TDF_NORESCHED;
430 	if (td->td_flags & TDF_TIMEOUT) {
431 		td->td_flags &= ~TDF_TIMEOUT;
432 		if (sig == 0)
433 			return (EWOULDBLOCK);
434 	} else if (timo) {
435 		untimeout(endtsleep, (void *)td, thandle);
436 	} else if (td->td_wmesg) {
437 		/*
438 		 * This can happen if a thread is woken up directly.  Clear
439 		 * wmesg to avoid debugging confusion.
440 		 */
441 		td->td_wmesg = NULL;
442 	}
443 	/* inline of iscaught() */
444 	if (p) {
445 		if (catch && (sig != 0 || (sig = CURSIG(p)))) {
446 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
447 				return (EINTR);
448 			return (ERESTART);
449 		}
450 	}
451 	return (0);
452 }
453 
454 /*
455  * Implement the timeout for tsleep.  We interlock against
456  * wchan when setting TDF_TIMEOUT.  For processes we remove
457  * the sleep if the process is stopped rather then sleeping,
458  * so it remains stopped.
459  */
460 static void
461 endtsleep(void *arg)
462 {
463 	thread_t td = arg;
464 	struct proc *p;
465 
466 	crit_enter();
467 	if (td->td_wchan) {
468 		td->td_flags |= TDF_TIMEOUT;
469 		if ((p = td->td_proc) != NULL) {
470 			if (p->p_stat == SSLEEP)
471 				setrunnable(p);
472 			else
473 				unsleep(td);
474 		} else {
475 			unsleep(td);
476 			lwkt_schedule(td);
477 		}
478 	}
479 	crit_exit();
480 }
481 
482 /*
483  * Remove a process from its wait queue
484  */
485 void
486 unsleep(struct thread *td)
487 {
488 	crit_enter();
489 	if (td->td_wchan) {
490 #if 0
491 		if (p->p_flag & P_XSLEEP) {
492 			struct xwait *w = p->p_wchan;
493 			TAILQ_REMOVE(&w->waitq, p, p_procq);
494 			p->p_flag &= ~P_XSLEEP;
495 		} else
496 #endif
497 		TAILQ_REMOVE(&slpque[LOOKUP(td->td_wchan)], td, td_threadq);
498 		td->td_wchan = NULL;
499 	}
500 	crit_exit();
501 }
502 
503 #if 0
504 /*
505  * Make all processes sleeping on the explicit lock structure runnable.
506  */
507 void
508 xwakeup(struct xwait *w)
509 {
510 	struct proc *p;
511 
512 	crit_enter();
513 	++w->gen;
514 	while ((p = TAILQ_FIRST(&w->waitq)) != NULL) {
515 		TAILQ_REMOVE(&w->waitq, p, p_procq);
516 		KASSERT(p->p_wchan == w && (p->p_flag & P_XSLEEP),
517 		    ("xwakeup: wchan mismatch for %p (%p/%p) %08x", p, p->p_wchan, w, p->p_flag & P_XSLEEP));
518 		p->p_wchan = NULL;
519 		p->p_flag &= ~P_XSLEEP;
520 		if (p->p_stat == SSLEEP) {
521 			/* OPTIMIZED EXPANSION OF setrunnable(p); */
522 			if (p->p_slptime > 1)
523 				updatepri(p);
524 			p->p_slptime = 0;
525 			p->p_stat = SRUN;
526 			if (p->p_flag & P_INMEM) {
527 				lwkt_schedule(td);
528 			} else {
529 				p->p_flag |= P_SWAPINREQ;
530 				wakeup((caddr_t)&proc0);
531 			}
532 		}
533 	}
534 	crit_exit();
535 }
536 #endif
537 
538 /*
539  * Make all processes sleeping on the specified identifier runnable.
540  */
541 static void
542 _wakeup(void *ident, int count)
543 {
544 	struct slpquehead *qp;
545 	struct thread *td;
546 	struct thread *ntd;
547 	struct proc *p;
548 	int id = LOOKUP(ident);
549 
550 	crit_enter();
551 	qp = &slpque[id];
552 restart:
553 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
554 		ntd = TAILQ_NEXT(td, td_threadq);
555 		if (td->td_wchan == ident) {
556 			TAILQ_REMOVE(qp, td, td_threadq);
557 			td->td_wchan = NULL;
558 			if ((p = td->td_proc) != NULL && p->p_stat == SSLEEP) {
559 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
560 				if (p->p_slptime > 1)
561 					updatepri(p);
562 				p->p_slptime = 0;
563 				p->p_stat = SRUN;
564 				if (p->p_flag & P_INMEM) {
565 					/*
566 					 * LWKT scheduled now, there is no
567 					 * userland runq interaction until
568 					 * the thread tries to return to user
569 					 * mode.
570 					 *
571 					 * setrunqueue(p);
572 					 */
573 					lwkt_schedule(td);
574 				} else {
575 					p->p_flag |= P_SWAPINREQ;
576 					wakeup((caddr_t)&proc0);
577 				}
578 				/* END INLINE EXPANSION */
579 			} else if (p == NULL) {
580 				lwkt_schedule(td);
581 			}
582 			if (--count == 0)
583 				break;
584 			goto restart;
585 		}
586 	}
587 	crit_exit();
588 }
589 
590 void
591 wakeup(void *ident)
592 {
593     _wakeup(ident, 0);
594 }
595 
596 void
597 wakeup_one(void *ident)
598 {
599     _wakeup(ident, 1);
600 }
601 
602 /*
603  * The machine independent parts of mi_switch().
604  *
605  * 'p' must be the current process.
606  */
607 void
608 mi_switch(struct proc *p)
609 {
610 	thread_t td = p->p_thread;
611 	struct rlimit *rlim;
612 	u_int64_t ttime;
613 
614 	KKASSERT(td == mycpu->gd_curthread);
615 
616 	crit_enter_quick(td);
617 
618 	/*
619 	 * Check if the process exceeds its cpu resource allocation.
620 	 * If over max, kill it.  Time spent in interrupts is not
621 	 * included.  YYY 64 bit match is expensive.  Ick.
622 	 */
623 	ttime = td->td_sticks + td->td_uticks;
624 	if (p->p_stat != SZOMB && p->p_limit->p_cpulimit != RLIM_INFINITY &&
625 	    ttime > p->p_limit->p_cpulimit) {
626 		rlim = &p->p_rlimit[RLIMIT_CPU];
627 		if (ttime / (rlim_t)1000000 >= rlim->rlim_max) {
628 			killproc(p, "exceeded maximum CPU limit");
629 		} else {
630 			psignal(p, SIGXCPU);
631 			if (rlim->rlim_cur < rlim->rlim_max) {
632 				/* XXX: we should make a private copy */
633 				rlim->rlim_cur += 5;
634 			}
635 		}
636 	}
637 
638 	/*
639 	 * If we are in a SSTOPped state we deschedule ourselves.
640 	 * YYY this needs to be cleaned up, remember that LWKTs stay on
641 	 * their run queue which works differently then the user scheduler
642 	 * which removes the process from the runq when it runs it.
643 	 */
644 	mycpu->gd_cnt.v_swtch++;
645 	if (p->p_stat == SSTOP)
646 		lwkt_deschedule_self(td);
647 	lwkt_switch();
648 	crit_exit_quick(td);
649 }
650 
651 /*
652  * Change process state to be runnable,
653  * placing it on the run queue if it is in memory,
654  * and awakening the swapper if it isn't in memory.
655  */
656 void
657 setrunnable(struct proc *p)
658 {
659 	int s;
660 
661 	s = splhigh();
662 	switch (p->p_stat) {
663 	case 0:
664 	case SRUN:
665 	case SZOMB:
666 	default:
667 		panic("setrunnable");
668 	case SSTOP:
669 	case SSLEEP:
670 		unsleep(p->p_thread);	/* e.g. when sending signals */
671 		break;
672 
673 	case SIDL:
674 		break;
675 	}
676 	p->p_stat = SRUN;
677 
678 	/*
679 	 * The process is controlled by LWKT at this point, we do not mess
680 	 * around with the userland scheduler until the thread tries to
681 	 * return to user mode.
682 	 */
683 #if 0
684 	if (p->p_flag & P_INMEM)
685 		setrunqueue(p);
686 #endif
687 	if (p->p_flag & P_INMEM)
688 		lwkt_schedule(p->p_thread);
689 	splx(s);
690 	if (p->p_slptime > 1)
691 		updatepri(p);
692 	p->p_slptime = 0;
693 	if ((p->p_flag & P_INMEM) == 0) {
694 		p->p_flag |= P_SWAPINREQ;
695 		wakeup((caddr_t)&proc0);
696 	}
697 }
698 
699 /*
700  * Change the process state to NOT be runnable, removing it from the run
701  * queue.
702  */
703 void
704 clrrunnable(struct proc *p, int stat)
705 {
706 	crit_enter_quick(p->p_thread);
707 	if (p->p_stat == SRUN && (p->p_flag & P_ONRUNQ))
708 		remrunqueue(p);
709 	p->p_stat = stat;
710 	crit_exit_quick(p->p_thread);
711 }
712 
713 /*
714  * Compute the priority of a process when running in user mode.
715  * Arrange to reschedule if the resulting priority is better
716  * than that of the current process.
717  */
718 void
719 resetpriority(struct proc *p)
720 {
721 	int newpriority;
722 	int interactive;
723 	int opq;
724 	int npq;
725 
726 	/*
727 	 * Set p_priority for general process comparisons
728 	 */
729 	switch(p->p_rtprio.type) {
730 	case RTP_PRIO_REALTIME:
731 		p->p_priority = PRIBASE_REALTIME + p->p_rtprio.prio;
732 		return;
733 	case RTP_PRIO_NORMAL:
734 		break;
735 	case RTP_PRIO_IDLE:
736 		p->p_priority = PRIBASE_IDLE + p->p_rtprio.prio;
737 		return;
738 	case RTP_PRIO_THREAD:
739 		p->p_priority = PRIBASE_THREAD + p->p_rtprio.prio;
740 		return;
741 	}
742 
743 	/*
744 	 * NORMAL priorities fall through.  These are based on niceness
745 	 * and cpu use.  Lower numbers == higher priorities.
746 	 */
747 	newpriority = (int)(NICE_ADJUST(p->p_nice - PRIO_MIN) +
748 			p->p_estcpu / ESTCPURAMP);
749 
750 	/*
751 	 * p_interactive is -128 to +127 and represents very long term
752 	 * interactivity or batch (whereas estcpu is a much faster variable).
753 	 * Interactivity can modify the priority by up to 8 units either way.
754 	 * (8 units == approximately 4 nice levels).
755 	 */
756 	interactive = p->p_interactive / 10;
757 	newpriority += interactive;
758 
759 	newpriority = min(newpriority, MAXPRI);
760 	newpriority = max(newpriority, 0);
761 	npq = newpriority / PPQ;
762 	crit_enter();
763 	opq = (p->p_priority & PRIMASK) / PPQ;
764 	if (p->p_stat == SRUN && (p->p_flag & P_ONRUNQ) && opq != npq) {
765 		/*
766 		 * We have to move the process to another queue
767 		 */
768 		remrunqueue(p);
769 		p->p_priority = PRIBASE_NORMAL + newpriority;
770 		setrunqueue(p);
771 	} else {
772 		/*
773 		 * We can just adjust the priority and it will be picked
774 		 * up later.
775 		 */
776 		KKASSERT(opq == npq || (p->p_flag & P_ONRUNQ) == 0);
777 		p->p_priority = PRIBASE_NORMAL + newpriority;
778 	}
779 	crit_exit();
780 }
781 
782 /*
783  * Compute a tenex style load average of a quantity on
784  * 1, 5 and 15 minute intervals.
785  */
786 static void
787 loadav(void *arg)
788 {
789 	int i, nrun;
790 	struct loadavg *avg;
791 	struct proc *p;
792 	thread_t td;
793 
794 	avg = &averunnable;
795 	nrun = 0;
796 	FOREACH_PROC_IN_SYSTEM(p) {
797 		switch (p->p_stat) {
798 		case SRUN:
799 			if ((td = p->p_thread) == NULL)
800 				break;
801 			if (td->td_flags & TDF_BLOCKED)
802 				break;
803 			/* fall through */
804 		case SIDL:
805 			nrun++;
806 			break;
807 		default:
808 			break;
809 		}
810 	}
811 	for (i = 0; i < 3; i++)
812 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
813 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
814 
815 	/*
816 	 * Schedule the next update to occur after 5 seconds, but add a
817 	 * random variation to avoid synchronisation with processes that
818 	 * run at regular intervals.
819 	 */
820 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
821 	    loadav, NULL);
822 }
823 
824 /* ARGSUSED */
825 static void
826 sched_setup(void *dummy)
827 {
828 
829 	callout_init(&loadav_callout);
830 
831 	/* Kick off timeout driven events by calling first time. */
832 	roundrobin(NULL);
833 	schedcpu(NULL);
834 	loadav(NULL);
835 }
836 
837 /*
838  * We adjust the priority of the current process.  The priority of
839  * a process gets worse as it accumulates CPU time.  The cpu usage
840  * estimator (p_estcpu) is increased here.  resetpriority() will
841  * compute a different priority each time p_estcpu increases by
842  * INVERSE_ESTCPU_WEIGHT * (until MAXPRI is reached).
843  *
844  * The cpu usage estimator ramps up quite quickly when the process is
845  * running (linearly), and decays away exponentially, at a rate which
846  * is proportionally slower when the system is busy.  The basic principle
847  * is that the system will 90% forget that the process used a lot of CPU
848  * time in 5 * loadav seconds.  This causes the system to favor processes
849  * which haven't run much recently, and to round-robin among other processes.
850  *
851  * The actual schedulerclock interrupt rate is ESTCPUFREQ, but we generally
852  * want to ramp-up at a faster rate, ESTCPUVFREQ, so p_estcpu is scaled
853  * by (ESTCPUVFREQ / ESTCPUFREQ).  You can control the ramp-up/ramp-down
854  * rate by adjusting ESTCPUVFREQ in sys/proc.h in integer multiples
855  * of ESTCPUFREQ.
856  *
857  * WARNING! called from a fast-int or an IPI, the MP lock MIGHT NOT BE HELD
858  * and we cannot block.
859  */
860 void
861 schedulerclock(void *dummy)
862 {
863 	struct thread *td;
864 	struct proc *p;
865 
866 	td = curthread;
867 	if ((p = td->td_proc) != NULL) {
868 		p->p_cpticks++;		/* cpticks runs at ESTCPUFREQ */
869 		p->p_estcpu = ESTCPULIM(p->p_estcpu + ESTCPUVFREQ / ESTCPUFREQ);
870 		if (try_mplock()) {
871 			resetpriority(p);
872 			rel_mplock();
873 		}
874 	}
875 }
876 
877 static
878 void
879 crit_panicints(void)
880 {
881     int s;
882     int cpri;
883 
884     s = splhigh();
885     cpri = crit_panic_save();
886     splx(safepri);
887     crit_panic_restore(cpri);
888     splx(s);
889 }
890 
891