xref: /dflybsd-src/sys/kern/kern_synch.c (revision 613a3753e74cbb972288e2c02fb5117c9fbc0f01)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
35  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vmmeter.h>
47 #include <sys/sysctl.h>
48 #include <sys/lock.h>
49 #include <sys/uio.h>
50 #include <sys/kcollect.h>
51 #ifdef KTRACE
52 #include <sys/ktrace.h>
53 #endif
54 #include <sys/ktr.h>
55 #include <sys/serialize.h>
56 
57 #include <sys/signal2.h>
58 #include <sys/thread2.h>
59 #include <sys/spinlock2.h>
60 #include <sys/mutex2.h>
61 
62 #include <machine/cpu.h>
63 #include <machine/smp.h>
64 
65 TAILQ_HEAD(tslpque, thread);
66 
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL);
69 
70 int	lbolt;
71 void	*lbolt_syncer;
72 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
73 int	ncpus;
74 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
75 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
76 int	safepri;
77 int	tsleep_now_works;
78 int	tsleep_crypto_dump = 0;
79 
80 static struct callout loadav_callout;
81 static struct callout schedcpu_callout;
82 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
83 
84 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
85 
86 #if !defined(KTR_TSLEEP)
87 #define KTR_TSLEEP	KTR_ALL
88 #endif
89 KTR_INFO_MASTER(tsleep);
90 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", const volatile void *ident);
91 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit");
92 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", const volatile void *ident);
93 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit");
94 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", const volatile void *ident);
95 
96 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
97 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
98 
99 struct loadavg averunnable =
100 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
101 /*
102  * Constants for averages over 1, 5, and 15 minutes
103  * when sampling at 5 second intervals.
104  */
105 static fixpt_t cexp[3] = {
106 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
107 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
108 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
109 };
110 
111 static void	endtsleep (void *);
112 static void	loadav (void *arg);
113 static void	schedcpu (void *arg);
114 
115 /*
116  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
117  * Note that 'tick' is in microseconds per tick.
118  */
119 static int
120 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
121 {
122 	int error, new_val;
123 
124 	new_val = sched_quantum * ustick;
125 	error = sysctl_handle_int(oidp, &new_val, 0, req);
126         if (error != 0 || req->newptr == NULL)
127 		return (error);
128 	if (new_val < ustick)
129 		return (EINVAL);
130 	sched_quantum = new_val / ustick;
131 	return (0);
132 }
133 
134 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
135 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
136 
137 static int pctcpu_decay = 10;
138 SYSCTL_INT(_kern, OID_AUTO, pctcpu_decay, CTLFLAG_RW, &pctcpu_decay, 0, "");
139 
140 /*
141  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
142  */
143 int     fscale __unused = FSCALE;	/* exported to systat */
144 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
145 
146 /*
147  * Recompute process priorities, once a second.
148  *
149  * Since the userland schedulers are typically event oriented, if the
150  * estcpu calculation at wakeup() time is not sufficient to make a
151  * process runnable relative to other processes in the system we have
152  * a 1-second recalc to help out.
153  *
154  * This code also allows us to store sysclock_t data in the process structure
155  * without fear of an overrun, since sysclock_t are guarenteed to hold
156  * several seconds worth of count.
157  *
158  * WARNING!  callouts can preempt normal threads.  However, they will not
159  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
160  */
161 static int schedcpu_stats(struct proc *p, void *data __unused);
162 static int schedcpu_resource(struct proc *p, void *data __unused);
163 
164 static void
165 schedcpu(void *arg)
166 {
167 	allproc_scan(schedcpu_stats, NULL);
168 	allproc_scan(schedcpu_resource, NULL);
169 	wakeup((caddr_t)&lbolt);
170 	wakeup(lbolt_syncer);
171 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
172 }
173 
174 /*
175  * General process statistics once a second
176  */
177 static int
178 schedcpu_stats(struct proc *p, void *data __unused)
179 {
180 	struct lwp *lp;
181 
182 	/*
183 	 * Threads may not be completely set up if process in SIDL state.
184 	 */
185 	if (p->p_stat == SIDL)
186 		return(0);
187 
188 	PHOLD(p);
189 	if (lwkt_trytoken(&p->p_token) == FALSE) {
190 		PRELE(p);
191 		return(0);
192 	}
193 
194 	p->p_swtime++;
195 	FOREACH_LWP_IN_PROC(lp, p) {
196 		if (lp->lwp_stat == LSSLEEP) {
197 			++lp->lwp_slptime;
198 			if (lp->lwp_slptime == 1)
199 				p->p_usched->uload_update(lp);
200 		}
201 
202 		/*
203 		 * Only recalculate processes that are active or have slept
204 		 * less then 2 seconds.  The schedulers understand this.
205 		 * Otherwise decay by 50% per second.
206 		 */
207 		if (lp->lwp_slptime <= 1) {
208 			p->p_usched->recalculate(lp);
209 		} else {
210 			int decay;
211 
212 			decay = pctcpu_decay;
213 			cpu_ccfence();
214 			if (decay <= 1)
215 				decay = 1;
216 			if (decay > 100)
217 				decay = 100;
218 			lp->lwp_pctcpu = (lp->lwp_pctcpu * (decay - 1)) / decay;
219 		}
220 	}
221 	lwkt_reltoken(&p->p_token);
222 	lwkt_yield();
223 	PRELE(p);
224 	return(0);
225 }
226 
227 /*
228  * Resource checks.  XXX break out since ksignal/killproc can block,
229  * limiting us to one process killed per second.  There is probably
230  * a better way.
231  */
232 static int
233 schedcpu_resource(struct proc *p, void *data __unused)
234 {
235 	u_int64_t ttime;
236 	struct lwp *lp;
237 
238 	if (p->p_stat == SIDL)
239 		return(0);
240 
241 	PHOLD(p);
242 	if (lwkt_trytoken(&p->p_token) == FALSE) {
243 		PRELE(p);
244 		return(0);
245 	}
246 
247 	if (p->p_stat == SZOMB || p->p_limit == NULL) {
248 		lwkt_reltoken(&p->p_token);
249 		PRELE(p);
250 		return(0);
251 	}
252 
253 	ttime = 0;
254 	FOREACH_LWP_IN_PROC(lp, p) {
255 		/*
256 		 * We may have caught an lp in the middle of being
257 		 * created, lwp_thread can be NULL.
258 		 */
259 		if (lp->lwp_thread) {
260 			ttime += lp->lwp_thread->td_sticks;
261 			ttime += lp->lwp_thread->td_uticks;
262 		}
263 	}
264 
265 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
266 	case PLIMIT_TESTCPU_KILL:
267 		killproc(p, "exceeded maximum CPU limit");
268 		break;
269 	case PLIMIT_TESTCPU_XCPU:
270 		if ((p->p_flags & P_XCPU) == 0) {
271 			p->p_flags |= P_XCPU;
272 			ksignal(p, SIGXCPU);
273 		}
274 		break;
275 	default:
276 		break;
277 	}
278 	lwkt_reltoken(&p->p_token);
279 	lwkt_yield();
280 	PRELE(p);
281 	return(0);
282 }
283 
284 /*
285  * This is only used by ps.  Generate a cpu percentage use over
286  * a period of one second.
287  */
288 void
289 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
290 {
291 	fixpt_t acc;
292 	int remticks;
293 
294 	acc = (cpticks << FSHIFT) / ttlticks;
295 	if (ttlticks >= ESTCPUFREQ) {
296 		lp->lwp_pctcpu = acc;
297 	} else {
298 		remticks = ESTCPUFREQ - ttlticks;
299 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
300 				ESTCPUFREQ;
301 	}
302 }
303 
304 /*
305  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
306  * like addresses being slept on.
307  */
308 #define TABLESIZE	4001
309 #define LOOKUP(x)	(((u_int)(uintptr_t)(x)) % TABLESIZE)
310 
311 static cpumask_t slpque_cpumasks[TABLESIZE];
312 
313 /*
314  * General scheduler initialization.  We force a reschedule 25 times
315  * a second by default.  Note that cpu0 is initialized in early boot and
316  * cannot make any high level calls.
317  *
318  * Each cpu has its own sleep queue.
319  */
320 void
321 sleep_gdinit(globaldata_t gd)
322 {
323 	static struct tslpque slpque_cpu0[TABLESIZE];
324 	int i;
325 
326 	if (gd->gd_cpuid == 0) {
327 		sched_quantum = (hz + 24) / 25;
328 		gd->gd_tsleep_hash = slpque_cpu0;
329 	} else {
330 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
331 					    M_TSLEEP, M_WAITOK | M_ZERO);
332 	}
333 	for (i = 0; i < TABLESIZE; ++i)
334 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
335 }
336 
337 /*
338  * This is a dandy function that allows us to interlock tsleep/wakeup
339  * operations with unspecified upper level locks, such as lockmgr locks,
340  * simply by holding a critical section.  The sequence is:
341  *
342  *	(acquire upper level lock)
343  *	tsleep_interlock(blah)
344  *	(release upper level lock)
345  *	tsleep(blah, ...)
346  *
347  * Basically this functions queues us on the tsleep queue without actually
348  * descheduling us.  When tsleep() is later called with PINTERLOCK it
349  * assumes the thread was already queued, otherwise it queues it there.
350  *
351  * Thus it is possible to receive the wakeup prior to going to sleep and
352  * the race conditions are covered.
353  */
354 static __inline void
355 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
356 {
357 	thread_t td = gd->gd_curthread;
358 	int id;
359 
360 	crit_enter_quick(td);
361 	if (td->td_flags & TDF_TSLEEPQ) {
362 		id = LOOKUP(td->td_wchan);
363 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
364 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
365 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
366 					       gd->gd_cpuid);
367 		}
368 	} else {
369 		td->td_flags |= TDF_TSLEEPQ;
370 	}
371 	id = LOOKUP(ident);
372 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
373 	ATOMIC_CPUMASK_ORBIT(slpque_cpumasks[id], gd->gd_cpuid);
374 	td->td_wchan = ident;
375 	td->td_wdomain = flags & PDOMAIN_MASK;
376 	crit_exit_quick(td);
377 }
378 
379 void
380 tsleep_interlock(const volatile void *ident, int flags)
381 {
382 	_tsleep_interlock(mycpu, ident, flags);
383 }
384 
385 /*
386  * Remove thread from sleepq.  Must be called with a critical section held.
387  * The thread must not be migrating.
388  */
389 static __inline void
390 _tsleep_remove(thread_t td)
391 {
392 	globaldata_t gd = mycpu;
393 	int id;
394 
395 	KKASSERT(td->td_gd == gd && IN_CRITICAL_SECT(td));
396 	KKASSERT((td->td_flags & TDF_MIGRATING) == 0);
397 	if (td->td_flags & TDF_TSLEEPQ) {
398 		td->td_flags &= ~TDF_TSLEEPQ;
399 		id = LOOKUP(td->td_wchan);
400 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
401 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL) {
402 			ATOMIC_CPUMASK_NANDBIT(slpque_cpumasks[id],
403 					       gd->gd_cpuid);
404 		}
405 		td->td_wchan = NULL;
406 		td->td_wdomain = 0;
407 	}
408 }
409 
410 void
411 tsleep_remove(thread_t td)
412 {
413 	_tsleep_remove(td);
414 }
415 
416 /*
417  * General sleep call.  Suspends the current process until a wakeup is
418  * performed on the specified identifier.  The process will then be made
419  * runnable with the specified priority.  Sleeps at most timo/hz seconds
420  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
421  * before and after sleeping, else signals are not checked.  Returns 0 if
422  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
423  * signal needs to be delivered, ERESTART is returned if the current system
424  * call should be restarted if possible, and EINTR is returned if the system
425  * call should be interrupted by the signal (return EINTR).
426  *
427  * Note that if we are a process, we release_curproc() before messing with
428  * the LWKT scheduler.
429  *
430  * During autoconfiguration or after a panic, a sleep will simply
431  * lower the priority briefly to allow interrupts, then return.
432  *
433  * WARNING!  This code can't block (short of switching away), or bad things
434  *           will happen.  No getting tokens, no blocking locks, etc.
435  */
436 int
437 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
438 {
439 	struct thread *td = curthread;
440 	struct lwp *lp = td->td_lwp;
441 	struct proc *p = td->td_proc;		/* may be NULL */
442 	globaldata_t gd;
443 	int sig;
444 	int catch;
445 	int error;
446 	int oldpri;
447 	struct callout thandle;
448 
449 	/*
450 	 * Currently a severe hack.  Make sure any delayed wakeups
451 	 * are flushed before we sleep or we might deadlock on whatever
452 	 * event we are sleeping on.
453 	 */
454 	if (td->td_flags & TDF_DELAYED_WAKEUP)
455 		wakeup_end_delayed();
456 
457 	/*
458 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
459 	 * even in stable.  Just scrap it for now.
460 	 */
461 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
462 		/*
463 		 * After a panic, or before we actually have an operational
464 		 * softclock, just give interrupts a chance, then just return;
465 		 *
466 		 * don't run any other procs or panic below,
467 		 * in case this is the idle process and already asleep.
468 		 */
469 		splz();
470 		oldpri = td->td_pri;
471 		lwkt_setpri_self(safepri);
472 		lwkt_switch();
473 		lwkt_setpri_self(oldpri);
474 		return (0);
475 	}
476 	logtsleep2(tsleep_beg, ident);
477 	gd = td->td_gd;
478 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
479 	td->td_wakefromcpu = -1;		/* overwritten by _wakeup */
480 
481 	/*
482 	 * NOTE: all of this occurs on the current cpu, including any
483 	 * callout-based wakeups, so a critical section is a sufficient
484 	 * interlock.
485 	 *
486 	 * The entire sequence through to where we actually sleep must
487 	 * run without breaking the critical section.
488 	 */
489 	catch = flags & PCATCH;
490 	error = 0;
491 	sig = 0;
492 
493 	crit_enter_quick(td);
494 
495 	KASSERT(ident != NULL, ("tsleep: no ident"));
496 	KASSERT(lp == NULL ||
497 		lp->lwp_stat == LSRUN ||	/* Obvious */
498 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
499 		("tsleep %p %s %d",
500 			ident, wmesg, lp->lwp_stat));
501 
502 	/*
503 	 * We interlock the sleep queue if the caller has not already done
504 	 * it for us.  This must be done before we potentially acquire any
505 	 * tokens or we can loose the wakeup.
506 	 */
507 	if ((flags & PINTERLOCKED) == 0) {
508 		_tsleep_interlock(gd, ident, flags);
509 	}
510 
511 	/*
512 	 * Setup for the current process (if this is a process).  We must
513 	 * interlock with lwp_token to avoid remote wakeup races via
514 	 * setrunnable()
515 	 */
516 	if (lp) {
517 		lwkt_gettoken(&lp->lwp_token);
518 
519 		/*
520 		 * If the umbrella process is in the SCORE state then
521 		 * make sure that the thread is flagged going into a
522 		 * normal sleep to allow the core dump to proceed, otherwise
523 		 * the coredump can end up waiting forever.  If the normal
524 		 * sleep is woken up, the thread will enter a stopped state
525 		 * upon return to userland.
526 		 *
527 		 * We do not want to interrupt or cause a thread exist at
528 		 * this juncture because that will mess-up the state the
529 		 * coredump is trying to save.
530 		 */
531 		if (p->p_stat == SCORE &&
532 		    (lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
533 			atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
534 			++p->p_nstopped;
535 		}
536 
537 		/*
538 		 * PCATCH requested.
539 		 */
540 		if (catch) {
541 			/*
542 			 * Early termination if PCATCH was set and a
543 			 * signal is pending, interlocked with the
544 			 * critical section.
545 			 *
546 			 * Early termination only occurs when tsleep() is
547 			 * entered while in a normal LSRUN state.
548 			 */
549 			if ((sig = CURSIG(lp)) != 0)
550 				goto resume;
551 
552 			/*
553 			 * Causes ksignal to wake us up if a signal is
554 			 * received (interlocked with lp->lwp_token).
555 			 */
556 			lp->lwp_flags |= LWP_SINTR;
557 		}
558 	} else {
559 		KKASSERT(p == NULL);
560 	}
561 
562 	/*
563 	 * Make sure the current process has been untangled from
564 	 * the userland scheduler and initialize slptime to start
565 	 * counting.
566 	 *
567 	 * NOTE: td->td_wakefromcpu is pre-set by the release function
568 	 *	 for the dfly scheduler, and then adjusted by _wakeup()
569 	 */
570 	if (lp) {
571 		p->p_usched->release_curproc(lp);
572 		lp->lwp_slptime = 0;
573 	}
574 
575 	/*
576 	 * If the interlocked flag is set but our cpu bit in the slpqueue
577 	 * is no longer set, then a wakeup was processed inbetween the
578 	 * tsleep_interlock() (ours or the callers), and here.  This can
579 	 * occur under numerous circumstances including when we release the
580 	 * current process.
581 	 *
582 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
583 	 * to process incoming IPIs, thus draining incoming wakeups.
584 	 */
585 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
586 		logtsleep2(ilockfail, ident);
587 		goto resume;
588 	}
589 
590 	/*
591 	 * scheduling is blocked while in a critical section.  Coincide
592 	 * the descheduled-by-tsleep flag with the descheduling of the
593 	 * lwkt.
594 	 *
595 	 * The timer callout is localized on our cpu and interlocked by
596 	 * our critical section.
597 	 */
598 	lwkt_deschedule_self(td);
599 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
600 	td->td_wmesg = wmesg;
601 
602 	/*
603 	 * Setup the timeout, if any.  The timeout is only operable while
604 	 * the thread is flagged descheduled.
605 	 */
606 	KKASSERT((td->td_flags & TDF_TIMEOUT) == 0);
607 	if (timo) {
608 		callout_init_mp(&thandle);
609 		callout_reset(&thandle, timo, endtsleep, td);
610 	}
611 
612 	/*
613 	 * Beddy bye bye.
614 	 */
615 	if (lp) {
616 		/*
617 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
618 		 */
619 		KKASSERT((lp->lwp_mpflags & LWP_MP_ONRUNQ) == 0);
620 
621 		/*
622 		 * tstop() sets LSSTOP, so don't fiddle with that.
623 		 */
624 		if (lp->lwp_stat != LSSTOP)
625 			lp->lwp_stat = LSSLEEP;
626 		lp->lwp_ru.ru_nvcsw++;
627 		p->p_usched->uload_update(lp);
628 		lwkt_switch();
629 
630 		/*
631 		 * And when we are woken up, put us back in LSRUN.  If we
632 		 * slept for over a second, recalculate our estcpu.
633 		 */
634 		lp->lwp_stat = LSRUN;
635 		if (lp->lwp_slptime) {
636 			p->p_usched->uload_update(lp);
637 			p->p_usched->recalculate(lp);
638 		}
639 		lp->lwp_slptime = 0;
640 	} else {
641 		lwkt_switch();
642 	}
643 
644 	/*
645 	 * Make sure we haven't switched cpus while we were asleep.  It's
646 	 * not supposed to happen.  Cleanup our temporary flags.
647 	 */
648 	KKASSERT(gd == td->td_gd);
649 
650 	/*
651 	 * Cleanup the timeout.  If the timeout has already occured thandle
652 	 * has already been stopped, otherwise stop thandle.  If the timeout
653 	 * is running (the callout thread must be blocked trying to get
654 	 * lwp_token) then wait for us to get scheduled.
655 	 */
656 	if (timo) {
657 		while (td->td_flags & TDF_TIMEOUT_RUNNING) {
658 			/* else we won't get rescheduled! */
659 			if (lp->lwp_stat != LSSTOP)
660 				lp->lwp_stat = LSSLEEP;
661 			lwkt_deschedule_self(td);
662 			td->td_wmesg = "tsrace";
663 			lwkt_switch();
664 			kprintf("td %p %s: timeout race\n", td, td->td_comm);
665 		}
666 		if (td->td_flags & TDF_TIMEOUT) {
667 			td->td_flags &= ~TDF_TIMEOUT;
668 			error = EWOULDBLOCK;
669 		} else {
670 			/* does not block when on same cpu */
671 			callout_stop(&thandle);
672 		}
673 	}
674 	td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
675 
676 	/*
677 	 * Make sure we have been removed from the sleepq.  In most
678 	 * cases this will have been done for us already but it is
679 	 * possible for a scheduling IPI to be in-flight from a
680 	 * previous tsleep/tsleep_interlock() or due to a straight-out
681 	 * call to lwkt_schedule() (in the case of an interrupt thread),
682 	 * causing a spurious wakeup.
683 	 */
684 	_tsleep_remove(td);
685 	td->td_wmesg = NULL;
686 
687 	/*
688 	 * Figure out the correct error return.  If interrupted by a
689 	 * signal we want to return EINTR or ERESTART.
690 	 */
691 resume:
692 	if (lp) {
693 		if (catch && error == 0) {
694 			if (sig != 0 || (sig = CURSIG(lp))) {
695 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
696 					error = EINTR;
697 				else
698 					error = ERESTART;
699 			}
700 		}
701 
702 		lp->lwp_flags &= ~LWP_SINTR;
703 
704 		/*
705 		 * Unconditionally set us to LSRUN on resume.  lwp_stat could
706 		 * be in a weird state due to the goto resume, particularly
707 		 * when tsleep() is called from tstop().
708 		 */
709 		lp->lwp_stat = LSRUN;
710 		lwkt_reltoken(&lp->lwp_token);
711 	}
712 	logtsleep1(tsleep_end);
713 	crit_exit_quick(td);
714 	return (error);
715 }
716 
717 /*
718  * Interlocked spinlock sleep.  An exclusively held spinlock must
719  * be passed to ssleep().  The function will atomically release the
720  * spinlock and tsleep on the ident, then reacquire the spinlock and
721  * return.
722  *
723  * This routine is fairly important along the critical path, so optimize it
724  * heavily.
725  */
726 int
727 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
728        const char *wmesg, int timo)
729 {
730 	globaldata_t gd = mycpu;
731 	int error;
732 
733 	_tsleep_interlock(gd, ident, flags);
734 	spin_unlock_quick(gd, spin);
735 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
736 	_spin_lock_quick(gd, spin, wmesg);
737 
738 	return (error);
739 }
740 
741 int
742 lksleep(const volatile void *ident, struct lock *lock, int flags,
743 	const char *wmesg, int timo)
744 {
745 	globaldata_t gd = mycpu;
746 	int error;
747 
748 	_tsleep_interlock(gd, ident, flags);
749 	lockmgr(lock, LK_RELEASE);
750 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
751 	lockmgr(lock, LK_EXCLUSIVE);
752 
753 	return (error);
754 }
755 
756 /*
757  * Interlocked mutex sleep.  An exclusively held mutex must be passed
758  * to mtxsleep().  The function will atomically release the mutex
759  * and tsleep on the ident, then reacquire the mutex and return.
760  */
761 int
762 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
763 	 const char *wmesg, int timo)
764 {
765 	globaldata_t gd = mycpu;
766 	int error;
767 
768 	_tsleep_interlock(gd, ident, flags);
769 	mtx_unlock(mtx);
770 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
771 	mtx_lock_ex_quick(mtx);
772 
773 	return (error);
774 }
775 
776 /*
777  * Interlocked serializer sleep.  An exclusively held serializer must
778  * be passed to zsleep().  The function will atomically release
779  * the serializer and tsleep on the ident, then reacquire the serializer
780  * and return.
781  */
782 int
783 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
784        const char *wmesg, int timo)
785 {
786 	globaldata_t gd = mycpu;
787 	int ret;
788 
789 	ASSERT_SERIALIZED(slz);
790 
791 	_tsleep_interlock(gd, ident, flags);
792 	lwkt_serialize_exit(slz);
793 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
794 	lwkt_serialize_enter(slz);
795 
796 	return ret;
797 }
798 
799 /*
800  * Directly block on the LWKT thread by descheduling it.  This
801  * is much faster then tsleep(), but the only legal way to wake
802  * us up is to directly schedule the thread.
803  *
804  * Setting TDF_SINTR will cause new signals to directly schedule us.
805  *
806  * This routine must be called while in a critical section.
807  */
808 int
809 lwkt_sleep(const char *wmesg, int flags)
810 {
811 	thread_t td = curthread;
812 	int sig;
813 
814 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
815 		td->td_flags |= TDF_BLOCKED;
816 		td->td_wmesg = wmesg;
817 		lwkt_deschedule_self(td);
818 		lwkt_switch();
819 		td->td_wmesg = NULL;
820 		td->td_flags &= ~TDF_BLOCKED;
821 		return(0);
822 	}
823 	if ((sig = CURSIG(td->td_lwp)) != 0) {
824 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
825 			return(EINTR);
826 		else
827 			return(ERESTART);
828 
829 	}
830 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
831 	td->td_wmesg = wmesg;
832 	lwkt_deschedule_self(td);
833 	lwkt_switch();
834 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
835 	td->td_wmesg = NULL;
836 	return(0);
837 }
838 
839 /*
840  * Implement the timeout for tsleep.
841  *
842  * This type of callout timeout is scheduled on the same cpu the process
843  * is sleeping on.  Also, at the moment, the MP lock is held.
844  */
845 static void
846 endtsleep(void *arg)
847 {
848 	thread_t td = arg;
849 	struct lwp *lp;
850 
851 	/*
852 	 * We are going to have to get the lwp_token, which means we might
853 	 * block.  This can race a tsleep getting woken up by other means
854 	 * so set TDF_TIMEOUT_RUNNING to force the tsleep to wait for our
855 	 * processing to complete (sorry tsleep!).
856 	 *
857 	 * We can safely set td_flags because td MUST be on the same cpu
858 	 * as we are.
859 	 */
860 	KKASSERT(td->td_gd == mycpu);
861 	crit_enter();
862 	td->td_flags |= TDF_TIMEOUT_RUNNING | TDF_TIMEOUT;
863 
864 	/*
865 	 * This can block but TDF_TIMEOUT_RUNNING will prevent the thread
866 	 * from exiting the tsleep on us.  The flag is interlocked by virtue
867 	 * of lp being on the same cpu as we are.
868 	 */
869 	if ((lp = td->td_lwp) != NULL)
870 		lwkt_gettoken(&lp->lwp_token);
871 
872 	KKASSERT(td->td_flags & TDF_TSLEEP_DESCHEDULED);
873 
874 	if (lp) {
875 		/*
876 		 * callout timer should normally never be set in tstop()
877 		 * because it passes a timeout of 0.  However, there is a
878 		 * case during thread exit (which SSTOP's all the threads)
879 		 * for which tstop() must break out and can (properly) leave
880 		 * the thread in LSSTOP.
881 		 */
882 		KKASSERT(lp->lwp_stat != LSSTOP ||
883 			 (lp->lwp_mpflags & LWP_MP_WEXIT));
884 		setrunnable(lp);
885 		lwkt_reltoken(&lp->lwp_token);
886 	} else {
887 		_tsleep_remove(td);
888 		lwkt_schedule(td);
889 	}
890 	KKASSERT(td->td_gd == mycpu);
891 	td->td_flags &= ~TDF_TIMEOUT_RUNNING;
892 	crit_exit();
893 }
894 
895 /*
896  * Make all processes sleeping on the specified identifier runnable.
897  * count may be zero or one only.
898  *
899  * The domain encodes the sleep/wakeup domain, flags, plus the originating
900  * cpu.
901  *
902  * This call may run without the MP lock held.  We can only manipulate thread
903  * state on the cpu owning the thread.  We CANNOT manipulate process state
904  * at all.
905  *
906  * _wakeup() can be passed to an IPI so we can't use (const volatile
907  * void *ident).
908  */
909 static void
910 _wakeup(void *ident, int domain)
911 {
912 	struct tslpque *qp;
913 	struct thread *td;
914 	struct thread *ntd;
915 	globaldata_t gd;
916 	cpumask_t mask;
917 	int id;
918 
919 	crit_enter();
920 	logtsleep2(wakeup_beg, ident);
921 	gd = mycpu;
922 	id = LOOKUP(ident);
923 	qp = &gd->gd_tsleep_hash[id];
924 restart:
925 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
926 		ntd = TAILQ_NEXT(td, td_sleepq);
927 		if (td->td_wchan == ident &&
928 		    td->td_wdomain == (domain & PDOMAIN_MASK)
929 		) {
930 			KKASSERT(td->td_gd == gd);
931 			_tsleep_remove(td);
932 			td->td_wakefromcpu = PWAKEUP_DECODE(domain);
933 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
934 				lwkt_schedule(td);
935 				if (domain & PWAKEUP_ONE)
936 					goto done;
937 			}
938 			goto restart;
939 		}
940 	}
941 
942 	/*
943 	 * We finished checking the current cpu but there still may be
944 	 * more work to do.  Either wakeup_one was requested and no matching
945 	 * thread was found, or a normal wakeup was requested and we have
946 	 * to continue checking cpus.
947 	 *
948 	 * It should be noted that this scheme is actually less expensive then
949 	 * the old scheme when waking up multiple threads, since we send
950 	 * only one IPI message per target candidate which may then schedule
951 	 * multiple threads.  Before we could have wound up sending an IPI
952 	 * message for each thread on the target cpu (!= current cpu) that
953 	 * needed to be woken up.
954 	 *
955 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
956 	 * should be ok since we are passing idents in the IPI rather then
957 	 * thread pointers.
958 	 */
959 	if ((domain & PWAKEUP_MYCPU) == 0) {
960 		mask = slpque_cpumasks[id];
961 		CPUMASK_ANDMASK(mask, gd->gd_other_cpus);
962 		if (CPUMASK_TESTNZERO(mask)) {
963 			lwkt_send_ipiq2_mask(mask, _wakeup, ident,
964 					     domain | PWAKEUP_MYCPU);
965 		}
966 	}
967 done:
968 	logtsleep1(wakeup_end);
969 	crit_exit();
970 }
971 
972 /*
973  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
974  */
975 void
976 wakeup(const volatile void *ident)
977 {
978     globaldata_t gd = mycpu;
979     thread_t td = gd->gd_curthread;
980 
981     if (td && (td->td_flags & TDF_DELAYED_WAKEUP)) {
982 	/*
983 	 * If we are in a delayed wakeup section, record up to two wakeups in
984 	 * a per-CPU queue and issue them when we block or exit the delayed
985 	 * wakeup section.
986 	 */
987 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[0], NULL, ident))
988 		return;
989 	if (atomic_cmpset_ptr(&gd->gd_delayed_wakeup[1], NULL, ident))
990 		return;
991 
992 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[1]),
993 				__DEALL(ident));
994 	ident = atomic_swap_ptr(__DEQUALIFY(volatile void **, &gd->gd_delayed_wakeup[0]),
995 				__DEALL(ident));
996     }
997 
998     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, gd->gd_cpuid));
999 }
1000 
1001 /*
1002  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
1003  */
1004 void
1005 wakeup_one(const volatile void *ident)
1006 {
1007     /* XXX potentially round-robin the first responding cpu */
1008     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1009 			    PWAKEUP_ONE);
1010 }
1011 
1012 /*
1013  * Wakeup threads tsleep()ing on the specified ident on the current cpu
1014  * only.
1015  */
1016 void
1017 wakeup_mycpu(const volatile void *ident)
1018 {
1019     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1020 			    PWAKEUP_MYCPU);
1021 }
1022 
1023 /*
1024  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
1025  * only.
1026  */
1027 void
1028 wakeup_mycpu_one(const volatile void *ident)
1029 {
1030     /* XXX potentially round-robin the first responding cpu */
1031     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) |
1032 			    PWAKEUP_MYCPU | PWAKEUP_ONE);
1033 }
1034 
1035 /*
1036  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
1037  * only.
1038  */
1039 void
1040 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1041 {
1042     globaldata_t mygd = mycpu;
1043     if (gd == mycpu) {
1044 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1045 				PWAKEUP_MYCPU);
1046     } else {
1047 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1048 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1049 			PWAKEUP_MYCPU);
1050     }
1051 }
1052 
1053 /*
1054  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1055  * only.
1056  */
1057 void
1058 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1059 {
1060     globaldata_t mygd = mycpu;
1061     if (gd == mygd) {
1062 	_wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1063 				PWAKEUP_MYCPU | PWAKEUP_ONE);
1064     } else {
1065 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1066 			PWAKEUP_ENCODE(0, mygd->gd_cpuid) |
1067 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1068     }
1069 }
1070 
1071 /*
1072  * Wakeup all threads waiting on the specified ident that slept using
1073  * the specified domain, on all cpus.
1074  */
1075 void
1076 wakeup_domain(const volatile void *ident, int domain)
1077 {
1078     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1079 }
1080 
1081 /*
1082  * Wakeup one thread waiting on the specified ident that slept using
1083  * the specified  domain, on any cpu.
1084  */
1085 void
1086 wakeup_domain_one(const volatile void *ident, int domain)
1087 {
1088     /* XXX potentially round-robin the first responding cpu */
1089     _wakeup(__DEALL(ident),
1090 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1091 }
1092 
1093 void
1094 wakeup_start_delayed(void)
1095 {
1096     globaldata_t gd = mycpu;
1097 
1098     crit_enter();
1099     gd->gd_curthread->td_flags |= TDF_DELAYED_WAKEUP;
1100     crit_exit();
1101 }
1102 
1103 void
1104 wakeup_end_delayed(void)
1105 {
1106     globaldata_t gd = mycpu;
1107 
1108     if (gd->gd_curthread->td_flags & TDF_DELAYED_WAKEUP) {
1109 	crit_enter();
1110 	gd->gd_curthread->td_flags &= ~TDF_DELAYED_WAKEUP;
1111 	if (gd->gd_delayed_wakeup[0] || gd->gd_delayed_wakeup[1]) {
1112 	    if (gd->gd_delayed_wakeup[0]) {
1113 		    wakeup(gd->gd_delayed_wakeup[0]);
1114 		    gd->gd_delayed_wakeup[0] = NULL;
1115 	    }
1116 	    if (gd->gd_delayed_wakeup[1]) {
1117 		    wakeup(gd->gd_delayed_wakeup[1]);
1118 		    gd->gd_delayed_wakeup[1] = NULL;
1119 	    }
1120 	}
1121 	crit_exit();
1122     }
1123 }
1124 
1125 /*
1126  * setrunnable()
1127  *
1128  * Make a process runnable.  lp->lwp_token must be held on call and this
1129  * function must be called from the cpu owning lp.
1130  *
1131  * This only has an effect if we are in LSSTOP or LSSLEEP.
1132  */
1133 void
1134 setrunnable(struct lwp *lp)
1135 {
1136 	thread_t td = lp->lwp_thread;
1137 
1138 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_token);
1139 	KKASSERT(td->td_gd == mycpu);
1140 	crit_enter();
1141 	if (lp->lwp_stat == LSSTOP)
1142 		lp->lwp_stat = LSSLEEP;
1143 	if (lp->lwp_stat == LSSLEEP) {
1144 		_tsleep_remove(td);
1145 		lwkt_schedule(td);
1146 	} else if (td->td_flags & TDF_SINTR) {
1147 		lwkt_schedule(td);
1148 	}
1149 	crit_exit();
1150 }
1151 
1152 /*
1153  * The process is stopped due to some condition, usually because p_stat is
1154  * set to SSTOP, but also possibly due to being traced.
1155  *
1156  * Caller must hold p->p_token
1157  *
1158  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1159  * because the parent may check the child's status before the child actually
1160  * gets to this routine.
1161  *
1162  * This routine is called with the current lwp only, typically just
1163  * before returning to userland if the process state is detected as
1164  * possibly being in a stopped state.
1165  */
1166 void
1167 tstop(void)
1168 {
1169 	struct lwp *lp = curthread->td_lwp;
1170 	struct proc *p = lp->lwp_proc;
1171 	struct proc *q;
1172 
1173 	lwkt_gettoken(&lp->lwp_token);
1174 	crit_enter();
1175 
1176 	/*
1177 	 * If LWP_MP_WSTOP is set, we were sleeping
1178 	 * while our process was stopped.  At this point
1179 	 * we were already counted as stopped.
1180 	 */
1181 	if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1182 		/*
1183 		 * If we're the last thread to stop, signal
1184 		 * our parent.
1185 		 */
1186 		p->p_nstopped++;
1187 		atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1188 		wakeup(&p->p_nstopped);
1189 		if (p->p_nstopped == p->p_nthreads) {
1190 			/*
1191 			 * Token required to interlock kern_wait()
1192 			 */
1193 			q = p->p_pptr;
1194 			PHOLD(q);
1195 			lwkt_gettoken(&q->p_token);
1196 			p->p_flags &= ~P_WAITED;
1197 			wakeup(p->p_pptr);
1198 			if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1199 				ksignal(q, SIGCHLD);
1200 			lwkt_reltoken(&q->p_token);
1201 			PRELE(q);
1202 		}
1203 	}
1204 
1205 	/*
1206 	 * Wait here while in a stopped state, interlocked with lwp_token.
1207 	 * We must break-out if the whole process is trying to exit.
1208 	 */
1209 	while (STOPLWP(p, lp)) {
1210 		lp->lwp_stat = LSSTOP;
1211 		tsleep(p, 0, "stop", 0);
1212 	}
1213 	p->p_nstopped--;
1214 	atomic_clear_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1215 	crit_exit();
1216 	lwkt_reltoken(&lp->lwp_token);
1217 }
1218 
1219 /*
1220  * Compute a tenex style load average of a quantity on
1221  * 1, 5 and 15 minute intervals.
1222  */
1223 static int loadav_count_runnable(struct lwp *p, void *data);
1224 
1225 static void
1226 loadav(void *arg)
1227 {
1228 	struct loadavg *avg;
1229 	int i, nrun;
1230 
1231 	nrun = 0;
1232 	alllwp_scan(loadav_count_runnable, &nrun);
1233 	avg = &averunnable;
1234 	for (i = 0; i < 3; i++) {
1235 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1236 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1237 	}
1238 
1239 	/*
1240 	 * Schedule the next update to occur after 5 seconds, but add a
1241 	 * random variation to avoid synchronisation with processes that
1242 	 * run at regular intervals.
1243 	 */
1244 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1245 		      loadav, NULL);
1246 }
1247 
1248 static int
1249 loadav_count_runnable(struct lwp *lp, void *data)
1250 {
1251 	int *nrunp = data;
1252 	thread_t td;
1253 
1254 	switch (lp->lwp_stat) {
1255 	case LSRUN:
1256 		if ((td = lp->lwp_thread) == NULL)
1257 			break;
1258 		if (td->td_flags & TDF_BLOCKED)
1259 			break;
1260 		++*nrunp;
1261 		break;
1262 	default:
1263 		break;
1264 	}
1265 	lwkt_yield();
1266 	return(0);
1267 }
1268 
1269 /*
1270  * Regular data collection
1271  */
1272 static uint64_t
1273 collect_load_callback(int n)
1274 {
1275 	int fscale = averunnable.fscale;
1276 
1277 	return ((averunnable.ldavg[0] * 100 + (fscale >> 1)) / fscale);
1278 }
1279 
1280 /* ARGSUSED */
1281 static void
1282 sched_setup(void *dummy)
1283 {
1284 	callout_init_mp(&loadav_callout);
1285 	callout_init_mp(&schedcpu_callout);
1286 	kcollect_register(KCOLLECT_LOAD, "load", collect_load_callback,
1287 			  KCOLLECT_SCALE(KCOLLECT_LOAD_FORMAT, 0));
1288 	/* Kick off timeout driven events by calling first time. */
1289 	schedcpu(NULL);
1290 	loadav(NULL);
1291 }
1292 
1293