xref: /dflybsd-src/sys/kern/kern_synch.c (revision 43db70b80a8d59e6868543cbc488c33629ecfdc8)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vmmeter.h>
53 #include <sys/sysctl.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 #include <sys/ktr.h>
61 
62 #include <sys/thread2.h>
63 #include <sys/spinlock2.h>
64 #include <sys/mutex2.h>
65 #include <sys/serialize.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/smp.h>
69 
70 TAILQ_HEAD(tslpque, thread);
71 
72 static void sched_setup (void *dummy);
73 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
74 
75 int	hogticks;
76 int	lbolt;
77 int	lbolt_syncer;
78 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
79 int	ncpus;
80 int	ncpus2, ncpus2_shift, ncpus2_mask;
81 int	ncpus_fit, ncpus_fit_mask;
82 int	safepri;
83 int	tsleep_now_works;
84 
85 static struct callout loadav_callout;
86 static struct callout schedcpu_callout;
87 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
88 
89 #if !defined(KTR_TSLEEP)
90 #define KTR_TSLEEP	KTR_ALL
91 #endif
92 KTR_INFO_MASTER(tsleep);
93 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
94 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
95 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
96 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
97 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
98 
99 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
100 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
101 
102 struct loadavg averunnable =
103 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
104 /*
105  * Constants for averages over 1, 5, and 15 minutes
106  * when sampling at 5 second intervals.
107  */
108 static fixpt_t cexp[3] = {
109 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
110 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
111 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
112 };
113 
114 static void	endtsleep (void *);
115 static void	tsleep_wakeup(struct thread *td);
116 static void	loadav (void *arg);
117 static void	schedcpu (void *arg);
118 
119 /*
120  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
121  * Note that 'tick' is in microseconds per tick.
122  */
123 static int
124 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
125 {
126 	int error, new_val;
127 
128 	new_val = sched_quantum * tick;
129 	error = sysctl_handle_int(oidp, &new_val, 0, req);
130         if (error != 0 || req->newptr == NULL)
131 		return (error);
132 	if (new_val < tick)
133 		return (EINVAL);
134 	sched_quantum = new_val / tick;
135 	hogticks = 2 * sched_quantum;
136 	return (0);
137 }
138 
139 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
140 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
141 
142 /*
143  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
144  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
145  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
146  *
147  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
148  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
149  *
150  * If you don't want to bother with the faster/more-accurate formula, you
151  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
152  * (more general) method of calculating the %age of CPU used by a process.
153  *
154  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
155  */
156 #define CCPU_SHIFT	11
157 
158 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
159 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
160 
161 /*
162  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
163  */
164 int     fscale __unused = FSCALE;	/* exported to systat */
165 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
166 
167 /*
168  * Recompute process priorities, once a second.
169  *
170  * Since the userland schedulers are typically event oriented, if the
171  * estcpu calculation at wakeup() time is not sufficient to make a
172  * process runnable relative to other processes in the system we have
173  * a 1-second recalc to help out.
174  *
175  * This code also allows us to store sysclock_t data in the process structure
176  * without fear of an overrun, since sysclock_t are guarenteed to hold
177  * several seconds worth of count.
178  *
179  * WARNING!  callouts can preempt normal threads.  However, they will not
180  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
181  */
182 static int schedcpu_stats(struct proc *p, void *data __unused);
183 static int schedcpu_resource(struct proc *p, void *data __unused);
184 
185 static void
186 schedcpu(void *arg)
187 {
188 	allproc_scan(schedcpu_stats, NULL);
189 	allproc_scan(schedcpu_resource, NULL);
190 	wakeup((caddr_t)&lbolt);
191 	wakeup((caddr_t)&lbolt_syncer);
192 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
193 }
194 
195 /*
196  * General process statistics once a second
197  */
198 static int
199 schedcpu_stats(struct proc *p, void *data __unused)
200 {
201 	struct lwp *lp;
202 
203 	crit_enter();
204 	p->p_swtime++;
205 	FOREACH_LWP_IN_PROC(lp, p) {
206 		if (lp->lwp_stat == LSSLEEP)
207 			lp->lwp_slptime++;
208 
209 		/*
210 		 * Only recalculate processes that are active or have slept
211 		 * less then 2 seconds.  The schedulers understand this.
212 		 */
213 		if (lp->lwp_slptime <= 1) {
214 			p->p_usched->recalculate(lp);
215 		} else {
216 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
217 		}
218 	}
219 	crit_exit();
220 	return(0);
221 }
222 
223 /*
224  * Resource checks.  XXX break out since ksignal/killproc can block,
225  * limiting us to one process killed per second.  There is probably
226  * a better way.
227  */
228 static int
229 schedcpu_resource(struct proc *p, void *data __unused)
230 {
231 	u_int64_t ttime;
232 	struct lwp *lp;
233 
234 	crit_enter();
235 	if (p->p_stat == SIDL ||
236 	    p->p_stat == SZOMB ||
237 	    p->p_limit == NULL
238 	) {
239 		crit_exit();
240 		return(0);
241 	}
242 
243 	ttime = 0;
244 	FOREACH_LWP_IN_PROC(lp, p) {
245 		/*
246 		 * We may have caught an lp in the middle of being
247 		 * created, lwp_thread can be NULL.
248 		 */
249 		if (lp->lwp_thread) {
250 			ttime += lp->lwp_thread->td_sticks;
251 			ttime += lp->lwp_thread->td_uticks;
252 		}
253 	}
254 
255 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
256 	case PLIMIT_TESTCPU_KILL:
257 		killproc(p, "exceeded maximum CPU limit");
258 		break;
259 	case PLIMIT_TESTCPU_XCPU:
260 		if ((p->p_flag & P_XCPU) == 0) {
261 			p->p_flag |= P_XCPU;
262 			ksignal(p, SIGXCPU);
263 		}
264 		break;
265 	default:
266 		break;
267 	}
268 	crit_exit();
269 	return(0);
270 }
271 
272 /*
273  * This is only used by ps.  Generate a cpu percentage use over
274  * a period of one second.
275  *
276  * MPSAFE
277  */
278 void
279 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
280 {
281 	fixpt_t acc;
282 	int remticks;
283 
284 	acc = (cpticks << FSHIFT) / ttlticks;
285 	if (ttlticks >= ESTCPUFREQ) {
286 		lp->lwp_pctcpu = acc;
287 	} else {
288 		remticks = ESTCPUFREQ - ttlticks;
289 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
290 				ESTCPUFREQ;
291 	}
292 }
293 
294 /*
295  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
296  * like addresses being slept on.
297  */
298 #define TABLESIZE	1024
299 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
300 
301 static cpumask_t slpque_cpumasks[TABLESIZE];
302 
303 /*
304  * General scheduler initialization.  We force a reschedule 25 times
305  * a second by default.  Note that cpu0 is initialized in early boot and
306  * cannot make any high level calls.
307  *
308  * Each cpu has its own sleep queue.
309  */
310 void
311 sleep_gdinit(globaldata_t gd)
312 {
313 	static struct tslpque slpque_cpu0[TABLESIZE];
314 	int i;
315 
316 	if (gd->gd_cpuid == 0) {
317 		sched_quantum = (hz + 24) / 25;
318 		hogticks = 2 * sched_quantum;
319 
320 		gd->gd_tsleep_hash = slpque_cpu0;
321 	} else {
322 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
323 					    M_TSLEEP, M_WAITOK | M_ZERO);
324 	}
325 	for (i = 0; i < TABLESIZE; ++i)
326 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
327 }
328 
329 /*
330  * This is a dandy function that allows us to interlock tsleep/wakeup
331  * operations with unspecified upper level locks, such as lockmgr locks,
332  * simply by holding a critical section.  The sequence is:
333  *
334  *	(acquire upper level lock)
335  *	tsleep_interlock(blah)
336  *	(release upper level lock)
337  *	tsleep(blah, ...)
338  *
339  * Basically this functions queues us on the tsleep queue without actually
340  * descheduling us.  When tsleep() is later called with PINTERLOCK it
341  * assumes the thread was already queued, otherwise it queues it there.
342  *
343  * Thus it is possible to receive the wakeup prior to going to sleep and
344  * the race conditions are covered.
345  */
346 static __inline void
347 _tsleep_interlock(globaldata_t gd, void *ident, int flags)
348 {
349 	thread_t td = gd->gd_curthread;
350 	int id;
351 
352 	crit_enter_quick(td);
353 	if (td->td_flags & TDF_TSLEEPQ) {
354 		id = LOOKUP(td->td_wchan);
355 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
356 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
357 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
358 	} else {
359 		td->td_flags |= TDF_TSLEEPQ;
360 	}
361 	id = LOOKUP(ident);
362 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
363 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
364 	td->td_wchan = ident;
365 	td->td_wdomain = flags & PDOMAIN_MASK;
366 	crit_exit_quick(td);
367 }
368 
369 void
370 tsleep_interlock(void *ident, int flags)
371 {
372 	_tsleep_interlock(mycpu, ident, flags);
373 }
374 
375 /*
376  * Remove thread from sleepq.  Must be called with a critical section held.
377  */
378 static __inline void
379 _tsleep_remove(thread_t td)
380 {
381 	globaldata_t gd = mycpu;
382 	int id;
383 
384 	KKASSERT(td->td_gd == gd);
385 	if (td->td_flags & TDF_TSLEEPQ) {
386 		td->td_flags &= ~TDF_TSLEEPQ;
387 		id = LOOKUP(td->td_wchan);
388 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
389 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
390 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
391 		td->td_wchan = NULL;
392 		td->td_wdomain = 0;
393 	}
394 }
395 
396 void
397 tsleep_remove(thread_t td)
398 {
399 	_tsleep_remove(td);
400 }
401 
402 /*
403  * This function removes a thread from the tsleep queue and schedules
404  * it.  This function may act asynchronously.  The target thread may be
405  * sleeping on a different cpu.
406  *
407  * This function mus be called while in a critical section but if the
408  * target thread is sleeping on a different cpu we cannot safely probe
409  * td_flags.
410  */
411 static __inline
412 void
413 _tsleep_wakeup(struct thread *td)
414 {
415 #ifdef SMP
416 	globaldata_t gd = mycpu;
417 
418 	if (td->td_gd != gd) {
419 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup, td);
420 		return;
421 	}
422 #endif
423 	_tsleep_remove(td);
424 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
425 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
426 		lwkt_schedule(td);
427 	}
428 }
429 
430 static
431 void
432 tsleep_wakeup(struct thread *td)
433 {
434 	_tsleep_wakeup(td);
435 }
436 
437 
438 /*
439  * General sleep call.  Suspends the current process until a wakeup is
440  * performed on the specified identifier.  The process will then be made
441  * runnable with the specified priority.  Sleeps at most timo/hz seconds
442  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
443  * before and after sleeping, else signals are not checked.  Returns 0 if
444  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
445  * signal needs to be delivered, ERESTART is returned if the current system
446  * call should be restarted if possible, and EINTR is returned if the system
447  * call should be interrupted by the signal (return EINTR).
448  *
449  * Note that if we are a process, we release_curproc() before messing with
450  * the LWKT scheduler.
451  *
452  * During autoconfiguration or after a panic, a sleep will simply
453  * lower the priority briefly to allow interrupts, then return.
454  */
455 int
456 tsleep(void *ident, int flags, const char *wmesg, int timo)
457 {
458 	struct thread *td = curthread;
459 	struct lwp *lp = td->td_lwp;
460 	struct proc *p = td->td_proc;		/* may be NULL */
461 	globaldata_t gd;
462 	int sig;
463 	int catch;
464 	int id;
465 	int error;
466 	int oldpri;
467 	struct callout thandle;
468 
469 	/*
470 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
471 	 * even in stable.  Just scrap it for now.
472 	 */
473 	if (tsleep_now_works == 0 || panicstr) {
474 		/*
475 		 * After a panic, or before we actually have an operational
476 		 * softclock, just give interrupts a chance, then just return;
477 		 *
478 		 * don't run any other procs or panic below,
479 		 * in case this is the idle process and already asleep.
480 		 */
481 		splz();
482 		oldpri = td->td_pri & TDPRI_MASK;
483 		lwkt_setpri_self(safepri);
484 		lwkt_switch();
485 		lwkt_setpri_self(oldpri);
486 		return (0);
487 	}
488 	logtsleep2(tsleep_beg, ident);
489 	gd = td->td_gd;
490 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
491 
492 	/*
493 	 * NOTE: all of this occurs on the current cpu, including any
494 	 * callout-based wakeups, so a critical section is a sufficient
495 	 * interlock.
496 	 *
497 	 * The entire sequence through to where we actually sleep must
498 	 * run without breaking the critical section.
499 	 */
500 	catch = flags & PCATCH;
501 	error = 0;
502 	sig = 0;
503 
504 	crit_enter_quick(td);
505 
506 	KASSERT(ident != NULL, ("tsleep: no ident"));
507 	KASSERT(lp == NULL ||
508 		lp->lwp_stat == LSRUN ||	/* Obvious */
509 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
510 		("tsleep %p %s %d",
511 			ident, wmesg, lp->lwp_stat));
512 
513 	/*
514 	 * Setup for the current process (if this is a process).
515 	 */
516 	if (lp) {
517 		if (catch) {
518 			/*
519 			 * Early termination if PCATCH was set and a
520 			 * signal is pending, interlocked with the
521 			 * critical section.
522 			 *
523 			 * Early termination only occurs when tsleep() is
524 			 * entered while in a normal LSRUN state.
525 			 */
526 			if ((sig = CURSIG(lp)) != 0)
527 				goto resume;
528 
529 			/*
530 			 * Early termination if PCATCH was set and a
531 			 * mailbox signal was possibly delivered prior to
532 			 * the system call even being made, in order to
533 			 * allow the user to interlock without having to
534 			 * make additional system calls.
535 			 */
536 			if (p->p_flag & P_MAILBOX)
537 				goto resume;
538 
539 			/*
540 			 * Causes ksignal to wake us up when.
541 			 */
542 			lp->lwp_flag |= LWP_SINTR;
543 		}
544 	}
545 
546 	/*
547 	 * We interlock the sleep queue if the caller has not already done
548 	 * it for us.
549 	 */
550 	if ((flags & PINTERLOCKED) == 0) {
551 		id = LOOKUP(ident);
552 		_tsleep_interlock(gd, ident, flags);
553 	}
554 
555 	/*
556 	 *
557 	 * If no interlock was set we do an integrated interlock here.
558 	 * Make sure the current process has been untangled from
559 	 * the userland scheduler and initialize slptime to start
560 	 * counting.  We must interlock the sleep queue before doing
561 	 * this to avoid wakeup/process-ipi races which can occur under
562 	 * heavy loads.
563 	 */
564 	if (lp) {
565 		p->p_usched->release_curproc(lp);
566 		lp->lwp_slptime = 0;
567 	}
568 
569 	/*
570 	 * If the interlocked flag is set but our cpu bit in the slpqueue
571 	 * is no longer set, then a wakeup was processed inbetween the
572 	 * tsleep_interlock() (ours or the callers), and here.  This can
573 	 * occur under numerous circumstances including when we release the
574 	 * current process.
575 	 *
576 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
577 	 * to process incoming IPIs, thus draining incoming wakeups.
578 	 */
579 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
580 		logtsleep2(ilockfail, ident);
581 		goto resume;
582 	}
583 
584 	/*
585 	 * scheduling is blocked while in a critical section.  Coincide
586 	 * the descheduled-by-tsleep flag with the descheduling of the
587 	 * lwkt.
588 	 */
589 	lwkt_deschedule_self(td);
590 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
591 	td->td_wmesg = wmesg;
592 
593 	/*
594 	 * Setup the timeout, if any
595 	 */
596 	if (timo) {
597 		callout_init(&thandle);
598 		callout_reset(&thandle, timo, endtsleep, td);
599 	}
600 
601 	/*
602 	 * Beddy bye bye.
603 	 */
604 	if (lp) {
605 		/*
606 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
607 		 */
608 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
609 		/*
610 		 * tstop() sets LSSTOP, so don't fiddle with that.
611 		 */
612 		if (lp->lwp_stat != LSSTOP)
613 			lp->lwp_stat = LSSLEEP;
614 		lp->lwp_ru.ru_nvcsw++;
615 		lwkt_switch();
616 
617 		/*
618 		 * And when we are woken up, put us back in LSRUN.  If we
619 		 * slept for over a second, recalculate our estcpu.
620 		 */
621 		lp->lwp_stat = LSRUN;
622 		if (lp->lwp_slptime)
623 			p->p_usched->recalculate(lp);
624 		lp->lwp_slptime = 0;
625 	} else {
626 		lwkt_switch();
627 	}
628 
629 	/*
630 	 * Make sure we haven't switched cpus while we were asleep.  It's
631 	 * not supposed to happen.  Cleanup our temporary flags.
632 	 */
633 	KKASSERT(gd == td->td_gd);
634 
635 	/*
636 	 * Cleanup the timeout.
637 	 */
638 	if (timo) {
639 		if (td->td_flags & TDF_TIMEOUT) {
640 			td->td_flags &= ~TDF_TIMEOUT;
641 			error = EWOULDBLOCK;
642 		} else {
643 			callout_stop(&thandle);
644 		}
645 	}
646 
647 	/*
648 	 * Make sure we have been removed from the sleepq.  This should
649 	 * have been done for us already.
650 	 */
651 	_tsleep_remove(td);
652 	td->td_wmesg = NULL;
653 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
654 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
655 		kprintf("td %p (%s) unexpectedly rescheduled\n",
656 			td, td->td_comm);
657 	}
658 
659 	/*
660 	 * Figure out the correct error return.  If interrupted by a
661 	 * signal we want to return EINTR or ERESTART.
662 	 *
663 	 * If P_MAILBOX is set no automatic system call restart occurs
664 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
665 	 * interlock, the user must poll it prior to any system call
666 	 * that it wishes to interlock a mailbox signal against since
667 	 * the flag is cleared on *any* system call that sleeps.
668 	 */
669 resume:
670 	if (p) {
671 		if (catch && error == 0) {
672 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
673 				error = EINTR;
674 			} else if (sig != 0 || (sig = CURSIG(lp))) {
675 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
676 					error = EINTR;
677 				else
678 					error = ERESTART;
679 			}
680 		}
681 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
682 		p->p_flag &= ~P_MAILBOX;
683 	}
684 	logtsleep1(tsleep_end);
685 	crit_exit_quick(td);
686 	return (error);
687 }
688 
689 /*
690  * Interlocked spinlock sleep.  An exclusively held spinlock must
691  * be passed to ssleep().  The function will atomically release the
692  * spinlock and tsleep on the ident, then reacquire the spinlock and
693  * return.
694  *
695  * This routine is fairly important along the critical path, so optimize it
696  * heavily.
697  */
698 int
699 ssleep(void *ident, struct spinlock *spin, int flags,
700        const char *wmesg, int timo)
701 {
702 	globaldata_t gd = mycpu;
703 	int error;
704 
705 	_tsleep_interlock(gd, ident, flags);
706 	spin_unlock_wr_quick(gd, spin);
707 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
708 	spin_lock_wr_quick(gd, spin);
709 
710 	return (error);
711 }
712 
713 /*
714  * Interlocked mutex sleep.  An exclusively held mutex must be passed
715  * to mtxsleep().  The function will atomically release the mutex
716  * and tsleep on the ident, then reacquire the mutex and return.
717  */
718 int
719 mtxsleep(void *ident, struct mtx *mtx, int flags,
720 	 const char *wmesg, int timo)
721 {
722 	globaldata_t gd = mycpu;
723 	int error;
724 
725 	_tsleep_interlock(gd, ident, flags);
726 	mtx_unlock(mtx);
727 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
728 	mtx_lock_ex_quick(mtx, wmesg);
729 
730 	return (error);
731 }
732 
733 /*
734  * Interlocked serializer sleep.  An exclusively held serializer must
735  * be passed to zsleep().  The function will atomically release
736  * the serializer and tsleep on the ident, then reacquire the serializer
737  * and return.
738  */
739 int
740 zsleep(void *ident, struct lwkt_serialize *slz, int flags,
741        const char *wmesg, int timo)
742 {
743 	globaldata_t gd = mycpu;
744 	int ret;
745 
746 	ASSERT_SERIALIZED(slz);
747 
748 	_tsleep_interlock(gd, ident, flags);
749 	lwkt_serialize_exit(slz);
750 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
751 	lwkt_serialize_enter(slz);
752 
753 	return ret;
754 }
755 
756 /*
757  * Directly block on the LWKT thread by descheduling it.  This
758  * is much faster then tsleep(), but the only legal way to wake
759  * us up is to directly schedule the thread.
760  *
761  * Setting TDF_SINTR will cause new signals to directly schedule us.
762  *
763  * This routine must be called while in a critical section.
764  */
765 int
766 lwkt_sleep(const char *wmesg, int flags)
767 {
768 	thread_t td = curthread;
769 	int sig;
770 
771 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
772 		td->td_flags |= TDF_BLOCKED;
773 		td->td_wmesg = wmesg;
774 		lwkt_deschedule_self(td);
775 		lwkt_switch();
776 		td->td_wmesg = NULL;
777 		td->td_flags &= ~TDF_BLOCKED;
778 		return(0);
779 	}
780 	if ((sig = CURSIG(td->td_lwp)) != 0) {
781 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
782 			return(EINTR);
783 		else
784 			return(ERESTART);
785 
786 	}
787 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
788 	td->td_wmesg = wmesg;
789 	lwkt_deschedule_self(td);
790 	lwkt_switch();
791 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
792 	td->td_wmesg = NULL;
793 	return(0);
794 }
795 
796 /*
797  * Implement the timeout for tsleep.
798  *
799  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
800  * we only call setrunnable if the process is not stopped.
801  *
802  * This type of callout timeout is scheduled on the same cpu the process
803  * is sleeping on.  Also, at the moment, the MP lock is held.
804  */
805 static void
806 endtsleep(void *arg)
807 {
808 	thread_t td = arg;
809 	struct lwp *lp;
810 
811 	ASSERT_MP_LOCK_HELD(curthread);
812 	crit_enter();
813 
814 	/*
815 	 * cpu interlock.  Thread flags are only manipulated on
816 	 * the cpu owning the thread.  proc flags are only manipulated
817 	 * by the older of the MP lock.  We have both.
818 	 */
819 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
820 		td->td_flags |= TDF_TIMEOUT;
821 
822 		if ((lp = td->td_lwp) != NULL) {
823 			lp->lwp_flag |= LWP_BREAKTSLEEP;
824 			if (lp->lwp_proc->p_stat != SSTOP)
825 				setrunnable(lp);
826 		} else {
827 			_tsleep_wakeup(td);
828 		}
829 	}
830 	crit_exit();
831 }
832 
833 /*
834  * Make all processes sleeping on the specified identifier runnable.
835  * count may be zero or one only.
836  *
837  * The domain encodes the sleep/wakeup domain AND the first cpu to check
838  * (which is always the current cpu).  As we iterate across cpus
839  *
840  * This call may run without the MP lock held.  We can only manipulate thread
841  * state on the cpu owning the thread.  We CANNOT manipulate process state
842  * at all.
843  */
844 static void
845 _wakeup(void *ident, int domain)
846 {
847 	struct tslpque *qp;
848 	struct thread *td;
849 	struct thread *ntd;
850 	globaldata_t gd;
851 #ifdef SMP
852 	cpumask_t mask;
853 #endif
854 	int id;
855 
856 	crit_enter();
857 	logtsleep2(wakeup_beg, ident);
858 	gd = mycpu;
859 	id = LOOKUP(ident);
860 	qp = &gd->gd_tsleep_hash[id];
861 restart:
862 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
863 		ntd = TAILQ_NEXT(td, td_sleepq);
864 		if (td->td_wchan == ident &&
865 		    td->td_wdomain == (domain & PDOMAIN_MASK)
866 		) {
867 			KKASSERT(td->td_gd == gd);
868 			_tsleep_remove(td);
869 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
870 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
871 				lwkt_schedule(td);
872 				if (domain & PWAKEUP_ONE)
873 					goto done;
874 			}
875 			goto restart;
876 		}
877 	}
878 
879 #ifdef SMP
880 	/*
881 	 * We finished checking the current cpu but there still may be
882 	 * more work to do.  Either wakeup_one was requested and no matching
883 	 * thread was found, or a normal wakeup was requested and we have
884 	 * to continue checking cpus.
885 	 *
886 	 * It should be noted that this scheme is actually less expensive then
887 	 * the old scheme when waking up multiple threads, since we send
888 	 * only one IPI message per target candidate which may then schedule
889 	 * multiple threads.  Before we could have wound up sending an IPI
890 	 * message for each thread on the target cpu (!= current cpu) that
891 	 * needed to be woken up.
892 	 *
893 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
894 	 * should be ok since we are passing idents in the IPI rather then
895 	 * thread pointers.
896 	 */
897 	if ((domain & PWAKEUP_MYCPU) == 0 &&
898 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
899 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
900 				     domain | PWAKEUP_MYCPU);
901 	}
902 #endif
903 done:
904 	logtsleep1(wakeup_end);
905 	crit_exit();
906 }
907 
908 /*
909  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
910  */
911 void
912 wakeup(void *ident)
913 {
914     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
915 }
916 
917 /*
918  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
919  */
920 void
921 wakeup_one(void *ident)
922 {
923     /* XXX potentially round-robin the first responding cpu */
924     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
925 }
926 
927 /*
928  * Wakeup threads tsleep()ing on the specified ident on the current cpu
929  * only.
930  */
931 void
932 wakeup_mycpu(void *ident)
933 {
934     _wakeup(ident, PWAKEUP_MYCPU);
935 }
936 
937 /*
938  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
939  * only.
940  */
941 void
942 wakeup_mycpu_one(void *ident)
943 {
944     /* XXX potentially round-robin the first responding cpu */
945     _wakeup(ident, PWAKEUP_MYCPU|PWAKEUP_ONE);
946 }
947 
948 /*
949  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
950  * only.
951  */
952 void
953 wakeup_oncpu(globaldata_t gd, void *ident)
954 {
955 #ifdef SMP
956     if (gd == mycpu) {
957 	_wakeup(ident, PWAKEUP_MYCPU);
958     } else {
959 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU);
960     }
961 #else
962     _wakeup(ident, PWAKEUP_MYCPU);
963 #endif
964 }
965 
966 /*
967  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
968  * only.
969  */
970 void
971 wakeup_oncpu_one(globaldata_t gd, void *ident)
972 {
973 #ifdef SMP
974     if (gd == mycpu) {
975 	_wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
976     } else {
977 	lwkt_send_ipiq2(gd, _wakeup, ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
978     }
979 #else
980     _wakeup(ident, PWAKEUP_MYCPU | PWAKEUP_ONE);
981 #endif
982 }
983 
984 /*
985  * Wakeup all threads waiting on the specified ident that slept using
986  * the specified domain, on all cpus.
987  */
988 void
989 wakeup_domain(void *ident, int domain)
990 {
991     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
992 }
993 
994 /*
995  * Wakeup one thread waiting on the specified ident that slept using
996  * the specified  domain, on any cpu.
997  */
998 void
999 wakeup_domain_one(void *ident, int domain)
1000 {
1001     /* XXX potentially round-robin the first responding cpu */
1002     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1003 }
1004 
1005 /*
1006  * setrunnable()
1007  *
1008  * Make a process runnable.  The MP lock must be held on call.  This only
1009  * has an effect if we are in SSLEEP.  We only break out of the
1010  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1011  *
1012  * NOTE: With the MP lock held we can only safely manipulate the process
1013  * structure.  We cannot safely manipulate the thread structure.
1014  */
1015 void
1016 setrunnable(struct lwp *lp)
1017 {
1018 	crit_enter();
1019 	ASSERT_MP_LOCK_HELD(curthread);
1020 	if (lp->lwp_stat == LSSTOP)
1021 		lp->lwp_stat = LSSLEEP;
1022 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1023 		_tsleep_wakeup(lp->lwp_thread);
1024 	crit_exit();
1025 }
1026 
1027 /*
1028  * The process is stopped due to some condition, usually because p_stat is
1029  * set to SSTOP, but also possibly due to being traced.
1030  *
1031  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1032  * because the parent may check the child's status before the child actually
1033  * gets to this routine.
1034  *
1035  * This routine is called with the current lwp only, typically just
1036  * before returning to userland.
1037  *
1038  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1039  * SIGCONT to break out of the tsleep.
1040  */
1041 void
1042 tstop(void)
1043 {
1044 	struct lwp *lp = curthread->td_lwp;
1045 	struct proc *p = lp->lwp_proc;
1046 
1047 	crit_enter();
1048 	/*
1049 	 * If LWP_WSTOP is set, we were sleeping
1050 	 * while our process was stopped.  At this point
1051 	 * we were already counted as stopped.
1052 	 */
1053 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1054 		/*
1055 		 * If we're the last thread to stop, signal
1056 		 * our parent.
1057 		 */
1058 		p->p_nstopped++;
1059 		lp->lwp_flag |= LWP_WSTOP;
1060 		wakeup(&p->p_nstopped);
1061 		if (p->p_nstopped == p->p_nthreads) {
1062 			p->p_flag &= ~P_WAITED;
1063 			wakeup(p->p_pptr);
1064 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1065 				ksignal(p->p_pptr, SIGCHLD);
1066 		}
1067 	}
1068 	while (p->p_stat == SSTOP) {
1069 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1070 		lp->lwp_stat = LSSTOP;
1071 		tsleep(p, 0, "stop", 0);
1072 	}
1073 	p->p_nstopped--;
1074 	lp->lwp_flag &= ~LWP_WSTOP;
1075 	crit_exit();
1076 }
1077 
1078 /*
1079  * Yield / synchronous reschedule.  This is a bit tricky because the trap
1080  * code might have set a lazy release on the switch function.   Setting
1081  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
1082  * switch, and that we are given a greater chance of affinity with our
1083  * current cpu.
1084  *
1085  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
1086  * run queue.  lwkt_switch() will also execute any assigned passive release
1087  * (which usually calls release_curproc()), allowing a same/higher priority
1088  * process to be designated as the current process.
1089  *
1090  * While it is possible for a lower priority process to be designated,
1091  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
1092  * round-robin back to us and we will be able to re-acquire the current
1093  * process designation.
1094  */
1095 void
1096 uio_yield(void)
1097 {
1098 	struct thread *td = curthread;
1099 	struct proc *p = td->td_proc;
1100 
1101 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
1102 	if (p) {
1103 		p->p_flag |= P_PASSIVE_ACQ;
1104 		lwkt_switch();
1105 		p->p_flag &= ~P_PASSIVE_ACQ;
1106 	} else {
1107 		lwkt_switch();
1108 	}
1109 }
1110 
1111 /*
1112  * Compute a tenex style load average of a quantity on
1113  * 1, 5 and 15 minute intervals.
1114  */
1115 static int loadav_count_runnable(struct lwp *p, void *data);
1116 
1117 static void
1118 loadav(void *arg)
1119 {
1120 	struct loadavg *avg;
1121 	int i, nrun;
1122 
1123 	nrun = 0;
1124 	alllwp_scan(loadav_count_runnable, &nrun);
1125 	avg = &averunnable;
1126 	for (i = 0; i < 3; i++) {
1127 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1128 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1129 	}
1130 
1131 	/*
1132 	 * Schedule the next update to occur after 5 seconds, but add a
1133 	 * random variation to avoid synchronisation with processes that
1134 	 * run at regular intervals.
1135 	 */
1136 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1137 		      loadav, NULL);
1138 }
1139 
1140 static int
1141 loadav_count_runnable(struct lwp *lp, void *data)
1142 {
1143 	int *nrunp = data;
1144 	thread_t td;
1145 
1146 	switch (lp->lwp_stat) {
1147 	case LSRUN:
1148 		if ((td = lp->lwp_thread) == NULL)
1149 			break;
1150 		if (td->td_flags & TDF_BLOCKED)
1151 			break;
1152 		++*nrunp;
1153 		break;
1154 	default:
1155 		break;
1156 	}
1157 	return(0);
1158 }
1159 
1160 /* ARGSUSED */
1161 static void
1162 sched_setup(void *dummy)
1163 {
1164 	callout_init(&loadav_callout);
1165 	callout_init(&schedcpu_callout);
1166 
1167 	/* Kick off timeout driven events by calling first time. */
1168 	schedcpu(NULL);
1169 	loadav(NULL);
1170 }
1171 
1172