xref: /dflybsd-src/sys/kern/kern_synch.c (revision 37d4ea13cefac0f93287e0a0a1d5f304a492ffe7)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.91 2008/09/09 04:06:13 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/uio.h>
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 #include <sys/xwait.h>
59 #include <sys/ktr.h>
60 #include <sys/serialize.h>
61 
62 #include <sys/signal2.h>
63 #include <sys/thread2.h>
64 #include <sys/spinlock2.h>
65 #include <sys/mutex2.h>
66 #include <sys/mplock2.h>
67 
68 #include <machine/cpu.h>
69 #include <machine/smp.h>
70 
71 TAILQ_HEAD(tslpque, thread);
72 
73 static void sched_setup (void *dummy);
74 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
75 
76 int	hogticks;
77 int	lbolt;
78 int	lbolt_syncer;
79 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
80 int	ncpus;
81 int	ncpus2, ncpus2_shift, ncpus2_mask;	/* note: mask not cpumask_t */
82 int	ncpus_fit, ncpus_fit_mask;		/* note: mask not cpumask_t */
83 int	safepri;
84 int	tsleep_now_works;
85 int	tsleep_crypto_dump = 0;
86 
87 static struct callout loadav_callout;
88 static struct callout schedcpu_callout;
89 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
90 
91 #define __DEALL(ident)	__DEQUALIFY(void *, ident)
92 
93 #if !defined(KTR_TSLEEP)
94 #define KTR_TSLEEP	KTR_ALL
95 #endif
96 KTR_INFO_MASTER(tsleep);
97 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_beg, 0, "tsleep enter %p", sizeof(void *));
98 KTR_INFO(KTR_TSLEEP, tsleep, tsleep_end, 1, "tsleep exit", 0);
99 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_beg, 2, "wakeup enter %p", sizeof(void *));
100 KTR_INFO(KTR_TSLEEP, tsleep, wakeup_end, 3, "wakeup exit", 0);
101 KTR_INFO(KTR_TSLEEP, tsleep, ilockfail,  4, "interlock failed %p", sizeof(void *));
102 
103 #define logtsleep1(name)	KTR_LOG(tsleep_ ## name)
104 #define logtsleep2(name, val)	KTR_LOG(tsleep_ ## name, val)
105 
106 struct loadavg averunnable =
107 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
108 /*
109  * Constants for averages over 1, 5, and 15 minutes
110  * when sampling at 5 second intervals.
111  */
112 static fixpt_t cexp[3] = {
113 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
114 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
115 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
116 };
117 
118 static void	endtsleep (void *);
119 static void	loadav (void *arg);
120 static void	schedcpu (void *arg);
121 #ifdef SMP
122 static void	tsleep_wakeup_remote(struct thread *td);
123 #endif
124 
125 /*
126  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
127  * Note that 'tick' is in microseconds per tick.
128  */
129 static int
130 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
131 {
132 	int error, new_val;
133 
134 	new_val = sched_quantum * ustick;
135 	error = sysctl_handle_int(oidp, &new_val, 0, req);
136         if (error != 0 || req->newptr == NULL)
137 		return (error);
138 	if (new_val < ustick)
139 		return (EINVAL);
140 	sched_quantum = new_val / ustick;
141 	hogticks = 2 * sched_quantum;
142 	return (0);
143 }
144 
145 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
146 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
147 
148 /*
149  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
150  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
151  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
152  *
153  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
154  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
155  *
156  * If you don't want to bother with the faster/more-accurate formula, you
157  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
158  * (more general) method of calculating the %age of CPU used by a process.
159  *
160  * decay 95% of `lwp_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
161  */
162 #define CCPU_SHIFT	11
163 
164 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
165 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
166 
167 /*
168  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
169  */
170 int     fscale __unused = FSCALE;	/* exported to systat */
171 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
172 
173 /*
174  * Recompute process priorities, once a second.
175  *
176  * Since the userland schedulers are typically event oriented, if the
177  * estcpu calculation at wakeup() time is not sufficient to make a
178  * process runnable relative to other processes in the system we have
179  * a 1-second recalc to help out.
180  *
181  * This code also allows us to store sysclock_t data in the process structure
182  * without fear of an overrun, since sysclock_t are guarenteed to hold
183  * several seconds worth of count.
184  *
185  * WARNING!  callouts can preempt normal threads.  However, they will not
186  * preempt a thread holding a spinlock so we *can* safely use spinlocks.
187  */
188 static int schedcpu_stats(struct proc *p, void *data __unused);
189 static int schedcpu_resource(struct proc *p, void *data __unused);
190 
191 static void
192 schedcpu(void *arg)
193 {
194 	allproc_scan(schedcpu_stats, NULL);
195 	allproc_scan(schedcpu_resource, NULL);
196 	wakeup((caddr_t)&lbolt);
197 	wakeup((caddr_t)&lbolt_syncer);
198 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
199 }
200 
201 /*
202  * General process statistics once a second
203  */
204 static int
205 schedcpu_stats(struct proc *p, void *data __unused)
206 {
207 	struct lwp *lp;
208 
209 	crit_enter();
210 	p->p_swtime++;
211 	FOREACH_LWP_IN_PROC(lp, p) {
212 		if (lp->lwp_stat == LSSLEEP)
213 			lp->lwp_slptime++;
214 
215 		/*
216 		 * Only recalculate processes that are active or have slept
217 		 * less then 2 seconds.  The schedulers understand this.
218 		 */
219 		if (lp->lwp_slptime <= 1) {
220 			p->p_usched->recalculate(lp);
221 		} else {
222 			lp->lwp_pctcpu = (lp->lwp_pctcpu * ccpu) >> FSHIFT;
223 		}
224 	}
225 	crit_exit();
226 	return(0);
227 }
228 
229 /*
230  * Resource checks.  XXX break out since ksignal/killproc can block,
231  * limiting us to one process killed per second.  There is probably
232  * a better way.
233  */
234 static int
235 schedcpu_resource(struct proc *p, void *data __unused)
236 {
237 	u_int64_t ttime;
238 	struct lwp *lp;
239 
240 	crit_enter();
241 	if (p->p_stat == SIDL ||
242 	    p->p_stat == SZOMB ||
243 	    p->p_limit == NULL
244 	) {
245 		crit_exit();
246 		return(0);
247 	}
248 
249 	ttime = 0;
250 	FOREACH_LWP_IN_PROC(lp, p) {
251 		/*
252 		 * We may have caught an lp in the middle of being
253 		 * created, lwp_thread can be NULL.
254 		 */
255 		if (lp->lwp_thread) {
256 			ttime += lp->lwp_thread->td_sticks;
257 			ttime += lp->lwp_thread->td_uticks;
258 		}
259 	}
260 
261 	switch(plimit_testcpulimit(p->p_limit, ttime)) {
262 	case PLIMIT_TESTCPU_KILL:
263 		killproc(p, "exceeded maximum CPU limit");
264 		break;
265 	case PLIMIT_TESTCPU_XCPU:
266 		if ((p->p_flag & P_XCPU) == 0) {
267 			p->p_flag |= P_XCPU;
268 			ksignal(p, SIGXCPU);
269 		}
270 		break;
271 	default:
272 		break;
273 	}
274 	crit_exit();
275 	return(0);
276 }
277 
278 /*
279  * This is only used by ps.  Generate a cpu percentage use over
280  * a period of one second.
281  *
282  * MPSAFE
283  */
284 void
285 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
286 {
287 	fixpt_t acc;
288 	int remticks;
289 
290 	acc = (cpticks << FSHIFT) / ttlticks;
291 	if (ttlticks >= ESTCPUFREQ) {
292 		lp->lwp_pctcpu = acc;
293 	} else {
294 		remticks = ESTCPUFREQ - ttlticks;
295 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
296 				ESTCPUFREQ;
297 	}
298 }
299 
300 /*
301  * tsleep/wakeup hash table parameters.  Try to find the sweet spot for
302  * like addresses being slept on.
303  */
304 #define TABLESIZE	1024
305 #define LOOKUP(x)	(((intptr_t)(x) >> 6) & (TABLESIZE - 1))
306 
307 static cpumask_t slpque_cpumasks[TABLESIZE];
308 
309 /*
310  * General scheduler initialization.  We force a reschedule 25 times
311  * a second by default.  Note that cpu0 is initialized in early boot and
312  * cannot make any high level calls.
313  *
314  * Each cpu has its own sleep queue.
315  */
316 void
317 sleep_gdinit(globaldata_t gd)
318 {
319 	static struct tslpque slpque_cpu0[TABLESIZE];
320 	int i;
321 
322 	if (gd->gd_cpuid == 0) {
323 		sched_quantum = (hz + 24) / 25;
324 		hogticks = 2 * sched_quantum;
325 
326 		gd->gd_tsleep_hash = slpque_cpu0;
327 	} else {
328 		gd->gd_tsleep_hash = kmalloc(sizeof(slpque_cpu0),
329 					    M_TSLEEP, M_WAITOK | M_ZERO);
330 	}
331 	for (i = 0; i < TABLESIZE; ++i)
332 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
333 }
334 
335 /*
336  * This is a dandy function that allows us to interlock tsleep/wakeup
337  * operations with unspecified upper level locks, such as lockmgr locks,
338  * simply by holding a critical section.  The sequence is:
339  *
340  *	(acquire upper level lock)
341  *	tsleep_interlock(blah)
342  *	(release upper level lock)
343  *	tsleep(blah, ...)
344  *
345  * Basically this functions queues us on the tsleep queue without actually
346  * descheduling us.  When tsleep() is later called with PINTERLOCK it
347  * assumes the thread was already queued, otherwise it queues it there.
348  *
349  * Thus it is possible to receive the wakeup prior to going to sleep and
350  * the race conditions are covered.
351  */
352 static __inline void
353 _tsleep_interlock(globaldata_t gd, const volatile void *ident, int flags)
354 {
355 	thread_t td = gd->gd_curthread;
356 	int id;
357 
358 	crit_enter_quick(td);
359 	if (td->td_flags & TDF_TSLEEPQ) {
360 		id = LOOKUP(td->td_wchan);
361 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
362 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
363 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
364 	} else {
365 		td->td_flags |= TDF_TSLEEPQ;
366 	}
367 	id = LOOKUP(ident);
368 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_sleepq);
369 	atomic_set_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
370 	td->td_wchan = ident;
371 	td->td_wdomain = flags & PDOMAIN_MASK;
372 	crit_exit_quick(td);
373 }
374 
375 void
376 tsleep_interlock(const volatile void *ident, int flags)
377 {
378 	_tsleep_interlock(mycpu, ident, flags);
379 }
380 
381 /*
382  * Remove thread from sleepq.  Must be called with a critical section held.
383  */
384 static __inline void
385 _tsleep_remove(thread_t td)
386 {
387 	globaldata_t gd = mycpu;
388 	int id;
389 
390 	KKASSERT(td->td_gd == gd);
391 	if (td->td_flags & TDF_TSLEEPQ) {
392 		td->td_flags &= ~TDF_TSLEEPQ;
393 		id = LOOKUP(td->td_wchan);
394 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_sleepq);
395 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
396 			atomic_clear_cpumask(&slpque_cpumasks[id], gd->gd_cpumask);
397 		td->td_wchan = NULL;
398 		td->td_wdomain = 0;
399 	}
400 }
401 
402 void
403 tsleep_remove(thread_t td)
404 {
405 	_tsleep_remove(td);
406 }
407 
408 /*
409  * This function removes a thread from the tsleep queue and schedules
410  * it.  This function may act asynchronously.  The target thread may be
411  * sleeping on a different cpu.
412  *
413  * This function mus be called while in a critical section but if the
414  * target thread is sleeping on a different cpu we cannot safely probe
415  * td_flags.
416  *
417  * This function is only called from a different cpu via setrunnable()
418  * when the thread is in a known sleep.  However, multiple wakeups are
419  * possible and we must hold the td to prevent a race against the thread
420  * exiting.
421  */
422 static __inline
423 void
424 _tsleep_wakeup(struct thread *td)
425 {
426 #ifdef SMP
427 	globaldata_t gd = mycpu;
428 
429 	if (td->td_gd != gd) {
430 		lwkt_hold(td);
431 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)tsleep_wakeup_remote, td);
432 		return;
433 	}
434 #endif
435 	_tsleep_remove(td);
436 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
437 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
438 		lwkt_schedule(td);
439 	}
440 }
441 
442 #ifdef SMP
443 static
444 void
445 tsleep_wakeup_remote(struct thread *td)
446 {
447 	_tsleep_wakeup(td);
448 	lwkt_rele(td);
449 }
450 #endif
451 
452 
453 /*
454  * General sleep call.  Suspends the current process until a wakeup is
455  * performed on the specified identifier.  The process will then be made
456  * runnable with the specified priority.  Sleeps at most timo/hz seconds
457  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
458  * before and after sleeping, else signals are not checked.  Returns 0 if
459  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
460  * signal needs to be delivered, ERESTART is returned if the current system
461  * call should be restarted if possible, and EINTR is returned if the system
462  * call should be interrupted by the signal (return EINTR).
463  *
464  * Note that if we are a process, we release_curproc() before messing with
465  * the LWKT scheduler.
466  *
467  * During autoconfiguration or after a panic, a sleep will simply
468  * lower the priority briefly to allow interrupts, then return.
469  */
470 int
471 tsleep(const volatile void *ident, int flags, const char *wmesg, int timo)
472 {
473 	struct thread *td = curthread;
474 	struct lwp *lp = td->td_lwp;
475 	struct proc *p = td->td_proc;		/* may be NULL */
476 	globaldata_t gd;
477 	int sig;
478 	int catch;
479 	int id;
480 	int error;
481 	int oldpri;
482 	struct callout thandle;
483 
484 	/*
485 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
486 	 * even in stable.  Just scrap it for now.
487 	 */
488 	if (!tsleep_crypto_dump && (tsleep_now_works == 0 || panicstr)) {
489 		/*
490 		 * After a panic, or before we actually have an operational
491 		 * softclock, just give interrupts a chance, then just return;
492 		 *
493 		 * don't run any other procs or panic below,
494 		 * in case this is the idle process and already asleep.
495 		 */
496 		splz();
497 		oldpri = td->td_pri;
498 		lwkt_setpri_self(safepri);
499 		lwkt_switch();
500 		lwkt_setpri_self(oldpri);
501 		return (0);
502 	}
503 	logtsleep2(tsleep_beg, ident);
504 	gd = td->td_gd;
505 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
506 
507 	/*
508 	 * NOTE: all of this occurs on the current cpu, including any
509 	 * callout-based wakeups, so a critical section is a sufficient
510 	 * interlock.
511 	 *
512 	 * The entire sequence through to where we actually sleep must
513 	 * run without breaking the critical section.
514 	 */
515 	catch = flags & PCATCH;
516 	error = 0;
517 	sig = 0;
518 
519 	crit_enter_quick(td);
520 
521 	KASSERT(ident != NULL, ("tsleep: no ident"));
522 	KASSERT(lp == NULL ||
523 		lp->lwp_stat == LSRUN ||	/* Obvious */
524 		lp->lwp_stat == LSSTOP,		/* Set in tstop */
525 		("tsleep %p %s %d",
526 			ident, wmesg, lp->lwp_stat));
527 
528 	/*
529 	 * We interlock the sleep queue if the caller has not already done
530 	 * it for us.  This must be done before we potentially acquire any
531 	 * tokens or we can loose the wakeup.
532 	 */
533 	if ((flags & PINTERLOCKED) == 0) {
534 		id = LOOKUP(ident);
535 		_tsleep_interlock(gd, ident, flags);
536 	}
537 
538 	/*
539 	 * Setup for the current process (if this is a process).
540 	 *
541 	 * We hold the process token if lp && catch.  The resume
542 	 * code will release it.
543 	 */
544 	if (lp) {
545 		if (catch) {
546 			/*
547 			 * Early termination if PCATCH was set and a
548 			 * signal is pending, interlocked with the
549 			 * critical section.
550 			 *
551 			 * Early termination only occurs when tsleep() is
552 			 * entered while in a normal LSRUN state.
553 			 */
554 			lwkt_gettoken(&p->p_token);
555 			if ((sig = CURSIG(lp)) != 0)
556 				goto resume;
557 
558 			/*
559 			 * Early termination if PCATCH was set and a
560 			 * mailbox signal was possibly delivered prior to
561 			 * the system call even being made, in order to
562 			 * allow the user to interlock without having to
563 			 * make additional system calls.
564 			 */
565 			if (p->p_flag & P_MAILBOX)
566 				goto resume;
567 
568 			/*
569 			 * Causes ksignal to wake us up if a signal is
570 			 * received (interlocked with p->p_token).
571 			 */
572 			lp->lwp_flag |= LWP_SINTR;
573 		}
574 	} else {
575 		KKASSERT(p == NULL);
576 	}
577 
578 	/*
579 	 * Make sure the current process has been untangled from
580 	 * the userland scheduler and initialize slptime to start
581 	 * counting.
582 	 */
583 	if (lp) {
584 		p->p_usched->release_curproc(lp);
585 		lp->lwp_slptime = 0;
586 	}
587 
588 	/*
589 	 * If the interlocked flag is set but our cpu bit in the slpqueue
590 	 * is no longer set, then a wakeup was processed inbetween the
591 	 * tsleep_interlock() (ours or the callers), and here.  This can
592 	 * occur under numerous circumstances including when we release the
593 	 * current process.
594 	 *
595 	 * Extreme loads can cause the sending of an IPI (e.g. wakeup()'s)
596 	 * to process incoming IPIs, thus draining incoming wakeups.
597 	 */
598 	if ((td->td_flags & TDF_TSLEEPQ) == 0) {
599 		logtsleep2(ilockfail, ident);
600 		goto resume;
601 	}
602 
603 	/*
604 	 * scheduling is blocked while in a critical section.  Coincide
605 	 * the descheduled-by-tsleep flag with the descheduling of the
606 	 * lwkt.
607 	 */
608 	lwkt_deschedule_self(td);
609 	td->td_flags |= TDF_TSLEEP_DESCHEDULED;
610 	td->td_wmesg = wmesg;
611 
612 	/*
613 	 * Setup the timeout, if any
614 	 */
615 	if (timo) {
616 		callout_init(&thandle);
617 		callout_reset(&thandle, timo, endtsleep, td);
618 	}
619 
620 	/*
621 	 * Beddy bye bye.
622 	 */
623 	if (lp) {
624 		/*
625 		 * Ok, we are sleeping.  Place us in the SSLEEP state.
626 		 */
627 		KKASSERT((lp->lwp_flag & LWP_ONRUNQ) == 0);
628 		/*
629 		 * tstop() sets LSSTOP, so don't fiddle with that.
630 		 */
631 		if (lp->lwp_stat != LSSTOP)
632 			lp->lwp_stat = LSSLEEP;
633 		lp->lwp_ru.ru_nvcsw++;
634 		lwkt_switch();
635 
636 		/*
637 		 * And when we are woken up, put us back in LSRUN.  If we
638 		 * slept for over a second, recalculate our estcpu.
639 		 */
640 		lp->lwp_stat = LSRUN;
641 		if (lp->lwp_slptime)
642 			p->p_usched->recalculate(lp);
643 		lp->lwp_slptime = 0;
644 	} else {
645 		lwkt_switch();
646 	}
647 
648 	/*
649 	 * Make sure we haven't switched cpus while we were asleep.  It's
650 	 * not supposed to happen.  Cleanup our temporary flags.
651 	 */
652 	KKASSERT(gd == td->td_gd);
653 
654 	/*
655 	 * Cleanup the timeout.
656 	 */
657 	if (timo) {
658 		if (td->td_flags & TDF_TIMEOUT) {
659 			td->td_flags &= ~TDF_TIMEOUT;
660 			error = EWOULDBLOCK;
661 		} else {
662 			callout_stop(&thandle);
663 		}
664 	}
665 
666 	/*
667 	 * Make sure we have been removed from the sleepq.  This should
668 	 * have been done for us already.
669 	 *
670 	 * However, it is possible for a scheduling IPI to be in flight
671 	 * from a previous tsleep/tsleep_interlock or due to a straight-out
672 	 * call to lwkt_schedule() (in the case of an interrupt thread).
673 	 * So don't complain if DESCHEDULED is still set.
674 	 */
675 	_tsleep_remove(td);
676 	td->td_wmesg = NULL;
677 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
678 		td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
679 	}
680 
681 	/*
682 	 * Figure out the correct error return.  If interrupted by a
683 	 * signal we want to return EINTR or ERESTART.
684 	 *
685 	 * If P_MAILBOX is set no automatic system call restart occurs
686 	 * and we return EINTR.  P_MAILBOX is meant to be used as an
687 	 * interlock, the user must poll it prior to any system call
688 	 * that it wishes to interlock a mailbox signal against since
689 	 * the flag is cleared on *any* system call that sleeps.
690 	 *
691 	 * p->p_token is held in the p && catch case.
692 	 */
693 resume:
694 	if (p) {
695 		if (catch && error == 0) {
696 			if ((p->p_flag & P_MAILBOX) && sig == 0) {
697 				error = EINTR;
698 			} else if (sig != 0 || (sig = CURSIG(lp))) {
699 				if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
700 					error = EINTR;
701 				else
702 					error = ERESTART;
703 			}
704 		}
705 		if (catch)
706 			lwkt_reltoken(&p->p_token);
707 		lp->lwp_flag &= ~(LWP_BREAKTSLEEP | LWP_SINTR);
708 		p->p_flag &= ~P_MAILBOX;
709 	}
710 	logtsleep1(tsleep_end);
711 	crit_exit_quick(td);
712 	return (error);
713 }
714 
715 /*
716  * Interlocked spinlock sleep.  An exclusively held spinlock must
717  * be passed to ssleep().  The function will atomically release the
718  * spinlock and tsleep on the ident, then reacquire the spinlock and
719  * return.
720  *
721  * This routine is fairly important along the critical path, so optimize it
722  * heavily.
723  */
724 int
725 ssleep(const volatile void *ident, struct spinlock *spin, int flags,
726        const char *wmesg, int timo)
727 {
728 	globaldata_t gd = mycpu;
729 	int error;
730 
731 	_tsleep_interlock(gd, ident, flags);
732 	spin_unlock_quick(gd, spin);
733 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
734 	spin_lock_quick(gd, spin);
735 
736 	return (error);
737 }
738 
739 int
740 lksleep(const volatile void *ident, struct lock *lock, int flags,
741 	const char *wmesg, int timo)
742 {
743 	globaldata_t gd = mycpu;
744 	int error;
745 
746 	_tsleep_interlock(gd, ident, flags);
747 	lockmgr(lock, LK_RELEASE);
748 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
749 	lockmgr(lock, LK_EXCLUSIVE);
750 
751 	return (error);
752 }
753 
754 /*
755  * Interlocked mutex sleep.  An exclusively held mutex must be passed
756  * to mtxsleep().  The function will atomically release the mutex
757  * and tsleep on the ident, then reacquire the mutex and return.
758  */
759 int
760 mtxsleep(const volatile void *ident, struct mtx *mtx, int flags,
761 	 const char *wmesg, int timo)
762 {
763 	globaldata_t gd = mycpu;
764 	int error;
765 
766 	_tsleep_interlock(gd, ident, flags);
767 	mtx_unlock(mtx);
768 	error = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
769 	mtx_lock_ex_quick(mtx, wmesg);
770 
771 	return (error);
772 }
773 
774 /*
775  * Interlocked serializer sleep.  An exclusively held serializer must
776  * be passed to zsleep().  The function will atomically release
777  * the serializer and tsleep on the ident, then reacquire the serializer
778  * and return.
779  */
780 int
781 zsleep(const volatile void *ident, struct lwkt_serialize *slz, int flags,
782        const char *wmesg, int timo)
783 {
784 	globaldata_t gd = mycpu;
785 	int ret;
786 
787 	ASSERT_SERIALIZED(slz);
788 
789 	_tsleep_interlock(gd, ident, flags);
790 	lwkt_serialize_exit(slz);
791 	ret = tsleep(ident, flags | PINTERLOCKED, wmesg, timo);
792 	lwkt_serialize_enter(slz);
793 
794 	return ret;
795 }
796 
797 /*
798  * Directly block on the LWKT thread by descheduling it.  This
799  * is much faster then tsleep(), but the only legal way to wake
800  * us up is to directly schedule the thread.
801  *
802  * Setting TDF_SINTR will cause new signals to directly schedule us.
803  *
804  * This routine must be called while in a critical section.
805  */
806 int
807 lwkt_sleep(const char *wmesg, int flags)
808 {
809 	thread_t td = curthread;
810 	int sig;
811 
812 	if ((flags & PCATCH) == 0 || td->td_lwp == NULL) {
813 		td->td_flags |= TDF_BLOCKED;
814 		td->td_wmesg = wmesg;
815 		lwkt_deschedule_self(td);
816 		lwkt_switch();
817 		td->td_wmesg = NULL;
818 		td->td_flags &= ~TDF_BLOCKED;
819 		return(0);
820 	}
821 	if ((sig = CURSIG(td->td_lwp)) != 0) {
822 		if (SIGISMEMBER(td->td_proc->p_sigacts->ps_sigintr, sig))
823 			return(EINTR);
824 		else
825 			return(ERESTART);
826 
827 	}
828 	td->td_flags |= TDF_BLOCKED | TDF_SINTR;
829 	td->td_wmesg = wmesg;
830 	lwkt_deschedule_self(td);
831 	lwkt_switch();
832 	td->td_flags &= ~(TDF_BLOCKED | TDF_SINTR);
833 	td->td_wmesg = NULL;
834 	return(0);
835 }
836 
837 /*
838  * Implement the timeout for tsleep.
839  *
840  * We set LWP_BREAKTSLEEP to indicate that an event has occured, but
841  * we only call setrunnable if the process is not stopped.
842  *
843  * This type of callout timeout is scheduled on the same cpu the process
844  * is sleeping on.  Also, at the moment, the MP lock is held.
845  */
846 static void
847 endtsleep(void *arg)
848 {
849 	thread_t td = arg;
850 	struct lwp *lp;
851 
852 	crit_enter();
853 	lp = td->td_lwp;
854 
855 	if (lp)
856 		lwkt_gettoken(&lp->lwp_proc->p_token);
857 
858 	/*
859 	 * cpu interlock.  Thread flags are only manipulated on
860 	 * the cpu owning the thread.  proc flags are only manipulated
861 	 * by the holder of p->p_token.  We have both.
862 	 */
863 	if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
864 		td->td_flags |= TDF_TIMEOUT;
865 
866 		if (lp) {
867 			lp->lwp_flag |= LWP_BREAKTSLEEP;
868 			if (lp->lwp_proc->p_stat != SSTOP)
869 				setrunnable(lp);
870 		} else {
871 			_tsleep_wakeup(td);
872 		}
873 	}
874 	if (lp)
875 		lwkt_reltoken(&lp->lwp_proc->p_token);
876 	crit_exit();
877 }
878 
879 /*
880  * Make all processes sleeping on the specified identifier runnable.
881  * count may be zero or one only.
882  *
883  * The domain encodes the sleep/wakeup domain AND the first cpu to check
884  * (which is always the current cpu).  As we iterate across cpus
885  *
886  * This call may run without the MP lock held.  We can only manipulate thread
887  * state on the cpu owning the thread.  We CANNOT manipulate process state
888  * at all.
889  *
890  * _wakeup() can be passed to an IPI so we can't use (const volatile
891  * void *ident).
892  */
893 static void
894 _wakeup(void *ident, int domain)
895 {
896 	struct tslpque *qp;
897 	struct thread *td;
898 	struct thread *ntd;
899 	globaldata_t gd;
900 #ifdef SMP
901 	cpumask_t mask;
902 #endif
903 	int id;
904 
905 	crit_enter();
906 	logtsleep2(wakeup_beg, ident);
907 	gd = mycpu;
908 	id = LOOKUP(ident);
909 	qp = &gd->gd_tsleep_hash[id];
910 restart:
911 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
912 		ntd = TAILQ_NEXT(td, td_sleepq);
913 		if (td->td_wchan == ident &&
914 		    td->td_wdomain == (domain & PDOMAIN_MASK)
915 		) {
916 			KKASSERT(td->td_gd == gd);
917 			_tsleep_remove(td);
918 			if (td->td_flags & TDF_TSLEEP_DESCHEDULED) {
919 				td->td_flags &= ~TDF_TSLEEP_DESCHEDULED;
920 				lwkt_schedule(td);
921 				if (domain & PWAKEUP_ONE)
922 					goto done;
923 			}
924 			goto restart;
925 		}
926 	}
927 
928 #ifdef SMP
929 	/*
930 	 * We finished checking the current cpu but there still may be
931 	 * more work to do.  Either wakeup_one was requested and no matching
932 	 * thread was found, or a normal wakeup was requested and we have
933 	 * to continue checking cpus.
934 	 *
935 	 * It should be noted that this scheme is actually less expensive then
936 	 * the old scheme when waking up multiple threads, since we send
937 	 * only one IPI message per target candidate which may then schedule
938 	 * multiple threads.  Before we could have wound up sending an IPI
939 	 * message for each thread on the target cpu (!= current cpu) that
940 	 * needed to be woken up.
941 	 *
942 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
943 	 * should be ok since we are passing idents in the IPI rather then
944 	 * thread pointers.
945 	 */
946 	if ((domain & PWAKEUP_MYCPU) == 0 &&
947 	    (mask = slpque_cpumasks[id] & gd->gd_other_cpus) != 0) {
948 		lwkt_send_ipiq2_mask(mask, _wakeup, ident,
949 				     domain | PWAKEUP_MYCPU);
950 	}
951 #endif
952 done:
953 	logtsleep1(wakeup_end);
954 	crit_exit();
955 }
956 
957 /*
958  * Wakeup all threads tsleep()ing on the specified ident, on all cpus
959  */
960 void
961 wakeup(const volatile void *ident)
962 {
963     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
964 }
965 
966 /*
967  * Wakeup one thread tsleep()ing on the specified ident, on any cpu.
968  */
969 void
970 wakeup_one(const volatile void *ident)
971 {
972     /* XXX potentially round-robin the first responding cpu */
973     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
974 }
975 
976 /*
977  * Wakeup threads tsleep()ing on the specified ident on the current cpu
978  * only.
979  */
980 void
981 wakeup_mycpu(const volatile void *ident)
982 {
983     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
984 }
985 
986 /*
987  * Wakeup one thread tsleep()ing on the specified ident on the current cpu
988  * only.
989  */
990 void
991 wakeup_mycpu_one(const volatile void *ident)
992 {
993     /* XXX potentially round-robin the first responding cpu */
994     _wakeup(__DEALL(ident), PWAKEUP_MYCPU|PWAKEUP_ONE);
995 }
996 
997 /*
998  * Wakeup all thread tsleep()ing on the specified ident on the specified cpu
999  * only.
1000  */
1001 void
1002 wakeup_oncpu(globaldata_t gd, const volatile void *ident)
1003 {
1004 #ifdef SMP
1005     if (gd == mycpu) {
1006 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1007     } else {
1008 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident), PWAKEUP_MYCPU);
1009     }
1010 #else
1011     _wakeup(__DEALL(ident), PWAKEUP_MYCPU);
1012 #endif
1013 }
1014 
1015 /*
1016  * Wakeup one thread tsleep()ing on the specified ident on the specified cpu
1017  * only.
1018  */
1019 void
1020 wakeup_oncpu_one(globaldata_t gd, const volatile void *ident)
1021 {
1022 #ifdef SMP
1023     if (gd == mycpu) {
1024 	_wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1025     } else {
1026 	lwkt_send_ipiq2(gd, _wakeup, __DEALL(ident),
1027 			PWAKEUP_MYCPU | PWAKEUP_ONE);
1028     }
1029 #else
1030     _wakeup(__DEALL(ident), PWAKEUP_MYCPU | PWAKEUP_ONE);
1031 #endif
1032 }
1033 
1034 /*
1035  * Wakeup all threads waiting on the specified ident that slept using
1036  * the specified domain, on all cpus.
1037  */
1038 void
1039 wakeup_domain(const volatile void *ident, int domain)
1040 {
1041     _wakeup(__DEALL(ident), PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
1042 }
1043 
1044 /*
1045  * Wakeup one thread waiting on the specified ident that slept using
1046  * the specified  domain, on any cpu.
1047  */
1048 void
1049 wakeup_domain_one(const volatile void *ident, int domain)
1050 {
1051     /* XXX potentially round-robin the first responding cpu */
1052     _wakeup(__DEALL(ident),
1053 	    PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
1054 }
1055 
1056 /*
1057  * setrunnable()
1058  *
1059  * Make a process runnable.  lp->lwp_proc->p_token must be held on call.
1060  * This only has an effect if we are in SSLEEP.  We only break out of the
1061  * tsleep if LWP_BREAKTSLEEP is set, otherwise we just fix-up the state.
1062  *
1063  * NOTE: With p_token held we can only safely manipulate the process
1064  * structure and the lp's lwp_stat.
1065  */
1066 void
1067 setrunnable(struct lwp *lp)
1068 {
1069 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_proc->p_token);
1070 	crit_enter();
1071 	if (lp->lwp_stat == LSSTOP)
1072 		lp->lwp_stat = LSSLEEP;
1073 	if (lp->lwp_stat == LSSLEEP && (lp->lwp_flag & LWP_BREAKTSLEEP))
1074 		_tsleep_wakeup(lp->lwp_thread);
1075 	crit_exit();
1076 }
1077 
1078 /*
1079  * The process is stopped due to some condition, usually because p_stat is
1080  * set to SSTOP, but also possibly due to being traced.
1081  *
1082  * NOTE!  If the caller sets SSTOP, the caller must also clear P_WAITED
1083  * because the parent may check the child's status before the child actually
1084  * gets to this routine.
1085  *
1086  * This routine is called with the current lwp only, typically just
1087  * before returning to userland.
1088  *
1089  * Setting LWP_BREAKTSLEEP before entering the tsleep will cause a passive
1090  * SIGCONT to break out of the tsleep.
1091  */
1092 void
1093 tstop(void)
1094 {
1095 	struct lwp *lp = curthread->td_lwp;
1096 	struct proc *p = lp->lwp_proc;
1097 
1098 	crit_enter();
1099 	/*
1100 	 * If LWP_WSTOP is set, we were sleeping
1101 	 * while our process was stopped.  At this point
1102 	 * we were already counted as stopped.
1103 	 */
1104 	if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1105 		/*
1106 		 * If we're the last thread to stop, signal
1107 		 * our parent.
1108 		 */
1109 		p->p_nstopped++;
1110 		lp->lwp_flag |= LWP_WSTOP;
1111 		wakeup(&p->p_nstopped);
1112 		if (p->p_nstopped == p->p_nthreads) {
1113 			p->p_flag &= ~P_WAITED;
1114 			wakeup(p->p_pptr);
1115 			if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1116 				ksignal(p->p_pptr, SIGCHLD);
1117 		}
1118 	}
1119 	while (p->p_stat == SSTOP) {
1120 		lp->lwp_flag |= LWP_BREAKTSLEEP;
1121 		lp->lwp_stat = LSSTOP;
1122 		tsleep(p, 0, "stop", 0);
1123 	}
1124 	p->p_nstopped--;
1125 	lp->lwp_flag &= ~LWP_WSTOP;
1126 	crit_exit();
1127 }
1128 
1129 /*
1130  * Compute a tenex style load average of a quantity on
1131  * 1, 5 and 15 minute intervals.
1132  */
1133 static int loadav_count_runnable(struct lwp *p, void *data);
1134 
1135 static void
1136 loadav(void *arg)
1137 {
1138 	struct loadavg *avg;
1139 	int i, nrun;
1140 
1141 	nrun = 0;
1142 	alllwp_scan(loadav_count_runnable, &nrun);
1143 	avg = &averunnable;
1144 	for (i = 0; i < 3; i++) {
1145 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1146 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1147 	}
1148 
1149 	/*
1150 	 * Schedule the next update to occur after 5 seconds, but add a
1151 	 * random variation to avoid synchronisation with processes that
1152 	 * run at regular intervals.
1153 	 */
1154 	callout_reset(&loadav_callout, hz * 4 + (int)(krandom() % (hz * 2 + 1)),
1155 		      loadav, NULL);
1156 }
1157 
1158 static int
1159 loadav_count_runnable(struct lwp *lp, void *data)
1160 {
1161 	int *nrunp = data;
1162 	thread_t td;
1163 
1164 	switch (lp->lwp_stat) {
1165 	case LSRUN:
1166 		if ((td = lp->lwp_thread) == NULL)
1167 			break;
1168 		if (td->td_flags & TDF_BLOCKED)
1169 			break;
1170 		++*nrunp;
1171 		break;
1172 	default:
1173 		break;
1174 	}
1175 	return(0);
1176 }
1177 
1178 /* ARGSUSED */
1179 static void
1180 sched_setup(void *dummy)
1181 {
1182 	callout_init(&loadav_callout);
1183 	callout_init(&schedcpu_callout);
1184 
1185 	/* Kick off timeout driven events by calling first time. */
1186 	schedcpu(NULL);
1187 	loadav(NULL);
1188 }
1189 
1190