xref: /dflybsd-src/sys/kern/kern_synch.c (revision 15a56cb3807bfc9539b6ac36cb59d42bd9af9659)
1 /*-
2  * Copyright (c) 1982, 1986, 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
39  * $FreeBSD: src/sys/kern/kern_synch.c,v 1.87.2.6 2002/10/13 07:29:53 kbyanc Exp $
40  * $DragonFly: src/sys/kern/kern_synch.c,v 1.55 2005/12/01 18:30:08 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vmmeter.h>
52 #include <sys/sysctl.h>
53 #include <sys/thread2.h>
54 #include <sys/lock.h>
55 #ifdef KTRACE
56 #include <sys/uio.h>
57 #include <sys/ktrace.h>
58 #endif
59 #include <sys/xwait.h>
60 
61 #include <machine/cpu.h>
62 #include <machine/ipl.h>
63 #include <machine/smp.h>
64 
65 TAILQ_HEAD(tslpque, thread);
66 
67 static void sched_setup (void *dummy);
68 SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)
69 
70 int	hogticks;
71 int	lbolt;
72 int	lbolt_syncer;
73 int	sched_quantum;		/* Roundrobin scheduling quantum in ticks. */
74 int	ncpus;
75 int	ncpus2, ncpus2_shift, ncpus2_mask;
76 int	safepri;
77 
78 static struct callout loadav_callout;
79 static struct callout schedcpu_callout;
80 MALLOC_DEFINE(M_TSLEEP, "tslpque", "tsleep queues");
81 
82 struct loadavg averunnable =
83 	{ {0, 0, 0}, FSCALE };	/* load average, of runnable procs */
84 /*
85  * Constants for averages over 1, 5, and 15 minutes
86  * when sampling at 5 second intervals.
87  */
88 static fixpt_t cexp[3] = {
89 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
90 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
91 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
92 };
93 
94 static void	endtsleep (void *);
95 static void	unsleep_and_wakeup_thread(struct thread *td);
96 static void	loadav (void *arg);
97 static void	schedcpu (void *arg);
98 
99 /*
100  * Adjust the scheduler quantum.  The quantum is specified in microseconds.
101  * Note that 'tick' is in microseconds per tick.
102  */
103 static int
104 sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
105 {
106 	int error, new_val;
107 
108 	new_val = sched_quantum * tick;
109 	error = sysctl_handle_int(oidp, &new_val, 0, req);
110         if (error != 0 || req->newptr == NULL)
111 		return (error);
112 	if (new_val < tick)
113 		return (EINVAL);
114 	sched_quantum = new_val / tick;
115 	hogticks = 2 * sched_quantum;
116 	return (0);
117 }
118 
119 SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
120 	0, sizeof sched_quantum, sysctl_kern_quantum, "I", "");
121 
122 /*
123  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
124  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
125  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
126  *
127  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
128  *     1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
129  *
130  * If you don't want to bother with the faster/more-accurate formula, you
131  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
132  * (more general) method of calculating the %age of CPU used by a process.
133  *
134  * decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing
135  */
136 #define CCPU_SHIFT	11
137 
138 static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
139 SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");
140 
141 /*
142  * kernel uses `FSCALE', userland (SHOULD) use kern.fscale
143  */
144 static int     fscale __unused = FSCALE;
145 SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");
146 
147 /*
148  * Recompute process priorities, once a second.
149  *
150  * Since the userland schedulers are typically event oriented, if the
151  * estcpu calculation at wakeup() time is not sufficient to make a
152  * process runnable relative to other processes in the system we have
153  * a 1-second recalc to help out.
154  *
155  * This code also allows us to store sysclock_t data in the process structure
156  * without fear of an overrun, since sysclock_t are guarenteed to hold
157  * several seconds worth of count.
158  */
159 /* ARGSUSED */
160 static void
161 schedcpu(void *arg)
162 {
163 	struct rlimit *rlim;
164 	struct proc *p;
165 	u_int64_t ttime;
166 
167 	/*
168 	 * General process statistics once a second
169 	 */
170 	FOREACH_PROC_IN_SYSTEM(p) {
171 		crit_enter();
172 		p->p_swtime++;
173 		if (p->p_stat == SSLEEP)
174 			p->p_slptime++;
175 
176 		/*
177 		 * Only recalculate processes that are active or have slept
178 		 * less then 2 seconds.  The schedulers understand this.
179 		 */
180 		if (p->p_slptime <= 1) {
181 			p->p_usched->recalculate(&p->p_lwp);
182 		} else {
183 			p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
184 		}
185 		crit_exit();
186 	}
187 
188 	/*
189 	 * Resource checks.  XXX break out since psignal/killproc can block,
190 	 * limiting us to one process killed per second.  There is probably
191 	 * a better way.
192 	 */
193 	FOREACH_PROC_IN_SYSTEM(p) {
194 		crit_enter();
195 		if (p->p_stat == SIDL ||
196 		    (p->p_flag & P_ZOMBIE) ||
197 		    p->p_limit == NULL ||
198 		    p->p_thread == NULL
199 		) {
200 			crit_exit();
201 			continue;
202 		}
203 		ttime = p->p_thread->td_sticks + p->p_thread->td_uticks;
204 		if (p->p_limit->p_cpulimit != RLIM_INFINITY &&
205 		    ttime > p->p_limit->p_cpulimit
206 		) {
207 			rlim = &p->p_rlimit[RLIMIT_CPU];
208 			if (ttime / (rlim_t)1000000 >= rlim->rlim_max) {
209 				killproc(p, "exceeded maximum CPU limit");
210 			} else {
211 				psignal(p, SIGXCPU);
212 				if (rlim->rlim_cur < rlim->rlim_max) {
213 					/* XXX: we should make a private copy */
214 					rlim->rlim_cur += 5;
215 				}
216 			}
217 			crit_exit();
218 			break;
219 		}
220 		crit_exit();
221 	}
222 
223 	wakeup((caddr_t)&lbolt);
224 	wakeup((caddr_t)&lbolt_syncer);
225 	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
226 }
227 
228 /*
229  * This is only used by ps.  Generate a cpu percentage use over
230  * a period of one second.
231  */
232 void
233 updatepcpu(struct lwp *lp, int cpticks, int ttlticks)
234 {
235 	fixpt_t acc;
236 	int remticks;
237 
238 	acc = (cpticks << FSHIFT) / ttlticks;
239 	if (ttlticks >= ESTCPUFREQ) {
240 		lp->lwp_pctcpu = acc;
241 	} else {
242 		remticks = ESTCPUFREQ - ttlticks;
243 		lp->lwp_pctcpu = (acc * ttlticks + lp->lwp_pctcpu * remticks) /
244 				ESTCPUFREQ;
245 	}
246 }
247 
248 /*
249  * We're only looking at 7 bits of the address; everything is
250  * aligned to 4, lots of things are aligned to greater powers
251  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
252  */
253 #define TABLESIZE	128
254 #define LOOKUP(x)	(((intptr_t)(x) >> 8) & (TABLESIZE - 1))
255 
256 static cpumask_t slpque_cpumasks[TABLESIZE];
257 
258 /*
259  * General scheduler initialization.  We force a reschedule 25 times
260  * a second by default.  Note that cpu0 is initialized in early boot and
261  * cannot make any high level calls.
262  *
263  * Each cpu has its own sleep queue.
264  */
265 void
266 sleep_gdinit(globaldata_t gd)
267 {
268 	static struct tslpque slpque_cpu0[TABLESIZE];
269 	int i;
270 
271 	if (gd->gd_cpuid == 0) {
272 		sched_quantum = (hz + 24) / 25;
273 		hogticks = 2 * sched_quantum;
274 
275 		gd->gd_tsleep_hash = slpque_cpu0;
276 	} else {
277 		gd->gd_tsleep_hash = malloc(sizeof(slpque_cpu0),
278 					    M_TSLEEP, M_WAITOK | M_ZERO);
279 	}
280 	for (i = 0; i < TABLESIZE; ++i)
281 		TAILQ_INIT(&gd->gd_tsleep_hash[i]);
282 }
283 
284 /*
285  * General sleep call.  Suspends the current process until a wakeup is
286  * performed on the specified identifier.  The process will then be made
287  * runnable with the specified priority.  Sleeps at most timo/hz seconds
288  * (0 means no timeout).  If flags includes PCATCH flag, signals are checked
289  * before and after sleeping, else signals are not checked.  Returns 0 if
290  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
291  * signal needs to be delivered, ERESTART is returned if the current system
292  * call should be restarted if possible, and EINTR is returned if the system
293  * call should be interrupted by the signal (return EINTR).
294  *
295  * Note that if we are a process, we release_curproc() before messing with
296  * the LWKT scheduler.
297  *
298  * During autoconfiguration or after a panic, a sleep will simply
299  * lower the priority briefly to allow interrupts, then return.
300  */
301 int
302 tsleep(void *ident, int flags, const char *wmesg, int timo)
303 {
304 	struct thread *td = curthread;
305 	struct proc *p = td->td_proc;		/* may be NULL */
306 	globaldata_t gd;
307 	int sig;
308 	int catch;
309 	int id;
310 	int error;
311 	int oldpri;
312 	struct callout thandle;
313 
314 	/*
315 	 * NOTE: removed KTRPOINT, it could cause races due to blocking
316 	 * even in stable.  Just scrap it for now.
317 	 */
318 	if (cold || panicstr) {
319 		/*
320 		 * After a panic, or during autoconfiguration,
321 		 * just give interrupts a chance, then just return;
322 		 * don't run any other procs or panic below,
323 		 * in case this is the idle process and already asleep.
324 		 */
325 		splz();
326 		oldpri = td->td_pri & TDPRI_MASK;
327 		lwkt_setpri_self(safepri);
328 		lwkt_switch();
329 		lwkt_setpri_self(oldpri);
330 		return (0);
331 	}
332 	gd = td->td_gd;
333 	KKASSERT(td != &gd->gd_idlethread);	/* you must be kidding! */
334 
335 	/*
336 	 * NOTE: all of this occurs on the current cpu, including any
337 	 * callout-based wakeups, so a critical section is a sufficient
338 	 * interlock.
339 	 *
340 	 * The entire sequence through to where we actually sleep must
341 	 * run without breaking the critical section.
342 	 */
343 	id = LOOKUP(ident);
344 	catch = flags & PCATCH;
345 	error = 0;
346 	sig = 0;
347 
348 	crit_enter_quick(td);
349 
350 	KASSERT(ident != NULL, ("tsleep: no ident"));
351 	KASSERT(p == NULL || p->p_stat == SRUN, ("tsleep %p %s %d",
352 		ident, wmesg, p->p_stat));
353 
354 	/*
355 	 * Setup for the current process (if this is a process).
356 	 */
357 	if (p) {
358 		if (catch) {
359 			/*
360 			 * Early termination if PCATCH was set and a
361 			 * signal is pending, interlocked with the
362 			 * critical section.
363 			 *
364 			 * Early termination only occurs when tsleep() is
365 			 * entered while in a normal SRUN state.
366 			 */
367 			if ((sig = CURSIG(p)) != 0)
368 				goto resume;
369 
370 			/*
371 			 * Causes psignal to wake us up when.
372 			 */
373 			p->p_flag |= P_SINTR;
374 		}
375 
376 		/*
377 		 * Make sure the current process has been untangled from
378 		 * the userland scheduler and initialize slptime to start
379 		 * counting.
380 		 */
381 		if (flags & PNORESCHED)
382 			td->td_flags |= TDF_NORESCHED;
383 		p->p_usched->release_curproc(&p->p_lwp);
384 		p->p_slptime = 0;
385 	}
386 
387 	/*
388 	 * Move our thread to the correct queue and setup our wchan, etc.
389 	 */
390 	lwkt_deschedule_self(td);
391 	td->td_flags |= TDF_TSLEEPQ;
392 	TAILQ_INSERT_TAIL(&gd->gd_tsleep_hash[id], td, td_threadq);
393 	atomic_set_int(&slpque_cpumasks[id], gd->gd_cpumask);
394 
395 	td->td_wchan = ident;
396 	td->td_wmesg = wmesg;
397 	td->td_wdomain = flags & PDOMAIN_MASK;
398 
399 	/*
400 	 * Setup the timeout, if any
401 	 */
402 	if (timo) {
403 		callout_init(&thandle);
404 		callout_reset(&thandle, timo, endtsleep, td);
405 	}
406 
407 	/*
408 	 * Beddy bye bye.
409 	 */
410 	if (p) {
411 		/*
412 		 * Ok, we are sleeping.  Remove us from the userland runq
413 		 * and place us in the SSLEEP state.
414 		 */
415 		if (p->p_flag & P_ONRUNQ)
416 			p->p_usched->remrunqueue(&p->p_lwp);
417 		p->p_stat = SSLEEP;
418 		p->p_stats->p_ru.ru_nvcsw++;
419 		lwkt_switch();
420 		p->p_stat = SRUN;
421 	} else {
422 		lwkt_switch();
423 	}
424 
425 	/*
426 	 * Make sure we haven't switched cpus while we were asleep.  It's
427 	 * not supposed to happen.  Cleanup our temporary flags.
428 	 */
429 	KKASSERT(gd == td->td_gd);
430 	td->td_flags &= ~TDF_NORESCHED;
431 
432 	/*
433 	 * Cleanup the timeout.
434 	 */
435 	if (timo) {
436 		if (td->td_flags & TDF_TIMEOUT) {
437 			td->td_flags &= ~TDF_TIMEOUT;
438 			if (sig == 0)
439 				error = EWOULDBLOCK;
440 		} else {
441 			callout_stop(&thandle);
442 		}
443 	}
444 
445 	/*
446 	 * Since td_threadq is used both for our run queue AND for the
447 	 * tsleep hash queue, we can't still be on it at this point because
448 	 * we've gotten cpu back.
449 	 */
450 	KKASSERT((td->td_flags & TDF_TSLEEPQ) == 0);
451 	td->td_wchan = NULL;
452 	td->td_wmesg = NULL;
453 	td->td_wdomain = 0;
454 
455 	/*
456 	 * Figure out the correct error return
457 	 */
458 resume:
459 	if (p) {
460 		p->p_flag &= ~(P_BREAKTSLEEP | P_SINTR);
461 		if (catch && error == 0 && (sig != 0 || (sig = CURSIG(p)))) {
462 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
463 				error = EINTR;
464 			else
465 				error = ERESTART;
466 		}
467 	}
468 	crit_exit_quick(td);
469 	return (error);
470 }
471 
472 /*
473  * This is a dandy function that allows us to interlock tsleep/wakeup
474  * operations with unspecified upper level locks, such as lockmgr locks,
475  * simply by holding a critical section.  The sequence is:
476  *
477  *	(enter critical section)
478  *	(acquire upper level lock)
479  *	tsleep_interlock(blah)
480  *	(release upper level lock)
481  *	tsleep(blah, ...)
482  *	(exit critical section)
483  *
484  * Basically this function sets our cpumask for the ident which informs
485  * other cpus that our cpu 'might' be waiting (or about to wait on) the
486  * hash index related to the ident.  The critical section prevents another
487  * cpu's wakeup() from being processed on our cpu until we are actually
488  * able to enter the tsleep().  Thus, no race occurs between our attempt
489  * to release a resource and sleep, and another cpu's attempt to acquire
490  * a resource and call wakeup.
491  *
492  * There isn't much of a point to this function unless you call it while
493  * holding a critical section.
494  */
495 void
496 tsleep_interlock(void *ident)
497 {
498 	int id = LOOKUP(ident);
499 
500 	atomic_set_int(&slpque_cpumasks[id], mycpu->gd_cpumask);
501 }
502 
503 /*
504  * Implement the timeout for tsleep.
505  *
506  * We set P_BREAKTSLEEP to indicate that an event has occured, but
507  * we only call setrunnable if the process is not stopped.
508  *
509  * This type of callout timeout is scheduled on the same cpu the process
510  * is sleeping on.  Also, at the moment, the MP lock is held.
511  */
512 static void
513 endtsleep(void *arg)
514 {
515 	thread_t td = arg;
516 	struct proc *p;
517 
518 	ASSERT_MP_LOCK_HELD(curthread);
519 	crit_enter();
520 
521 	/*
522 	 * cpu interlock.  Thread flags are only manipulated on
523 	 * the cpu owning the thread.  proc flags are only manipulated
524 	 * by the older of the MP lock.  We have both.
525 	 */
526 	if (td->td_flags & TDF_TSLEEPQ) {
527 		td->td_flags |= TDF_TIMEOUT;
528 
529 		if ((p = td->td_proc) != NULL) {
530 			p->p_flag |= P_BREAKTSLEEP;
531 			if ((p->p_flag & P_STOPPED) == 0)
532 				setrunnable(p);
533 		} else {
534 			unsleep_and_wakeup_thread(td);
535 		}
536 	}
537 	crit_exit();
538 }
539 
540 /*
541  * Unsleep and wakeup a thread.  This function runs without the MP lock
542  * which means that it can only manipulate thread state on the owning cpu,
543  * and cannot touch the process state at all.
544  */
545 static
546 void
547 unsleep_and_wakeup_thread(struct thread *td)
548 {
549 	globaldata_t gd = mycpu;
550 	int id;
551 
552 #ifdef SMP
553 	if (td->td_gd != gd) {
554 		lwkt_send_ipiq(td->td_gd, (ipifunc1_t)unsleep_and_wakeup_thread, td);
555 		return;
556 	}
557 #endif
558 	crit_enter();
559 	if (td->td_flags & TDF_TSLEEPQ) {
560 		td->td_flags &= ~TDF_TSLEEPQ;
561 		id = LOOKUP(td->td_wchan);
562 		TAILQ_REMOVE(&gd->gd_tsleep_hash[id], td, td_threadq);
563 		if (TAILQ_FIRST(&gd->gd_tsleep_hash[id]) == NULL)
564 			atomic_clear_int(&slpque_cpumasks[id], gd->gd_cpumask);
565 		lwkt_schedule(td);
566 	}
567 	crit_exit();
568 }
569 
570 /*
571  * Make all processes sleeping on the specified identifier runnable.
572  * count may be zero or one only.
573  *
574  * The domain encodes the sleep/wakeup domain AND the first cpu to check
575  * (which is always the current cpu).  As we iterate across cpus
576  *
577  * This call may run without the MP lock held.  We can only manipulate thread
578  * state on the cpu owning the thread.  We CANNOT manipulate process state
579  * at all.
580  */
581 static void
582 _wakeup(void *ident, int domain)
583 {
584 	struct tslpque *qp;
585 	struct thread *td;
586 	struct thread *ntd;
587 	globaldata_t gd;
588 #ifdef SMP
589 	cpumask_t mask;
590 	cpumask_t tmask;
591 	int startcpu;
592 	int nextcpu;
593 #endif
594 	int id;
595 
596 	crit_enter();
597 	gd = mycpu;
598 	id = LOOKUP(ident);
599 	qp = &gd->gd_tsleep_hash[id];
600 restart:
601 	for (td = TAILQ_FIRST(qp); td != NULL; td = ntd) {
602 		ntd = TAILQ_NEXT(td, td_threadq);
603 		if (td->td_wchan == ident &&
604 		    td->td_wdomain == (domain & PDOMAIN_MASK)
605 		) {
606 			KKASSERT(td->td_flags & TDF_TSLEEPQ);
607 			td->td_flags &= ~TDF_TSLEEPQ;
608 			TAILQ_REMOVE(qp, td, td_threadq);
609 			if (TAILQ_FIRST(qp) == NULL) {
610 				atomic_clear_int(&slpque_cpumasks[id],
611 						 gd->gd_cpumask);
612 			}
613 			lwkt_schedule(td);
614 			if (domain & PWAKEUP_ONE)
615 				goto done;
616 			goto restart;
617 		}
618 	}
619 
620 #ifdef SMP
621 	/*
622 	 * We finished checking the current cpu but there still may be
623 	 * more work to do.  Either wakeup_one was requested and no matching
624 	 * thread was found, or a normal wakeup was requested and we have
625 	 * to continue checking cpus.
626 	 *
627 	 * The cpu that started the wakeup sequence is encoded in the domain.
628 	 * We use this information to determine which cpus still need to be
629 	 * checked, locate a candidate cpu, and chain the wakeup
630 	 * asynchronously with an IPI message.
631 	 *
632 	 * It should be noted that this scheme is actually less expensive then
633 	 * the old scheme when waking up multiple threads, since we send
634 	 * only one IPI message per target candidate which may then schedule
635 	 * multiple threads.  Before we could have wound up sending an IPI
636 	 * message for each thread on the target cpu (!= current cpu) that
637 	 * needed to be woken up.
638 	 *
639 	 * NOTE: Wakeups occuring on remote cpus are asynchronous.  This
640 	 * should be ok since we are passing idents in the IPI rather then
641 	 * thread pointers.
642 	 */
643 	if ((mask = slpque_cpumasks[id]) != 0) {
644 		/*
645 		 * Look for a cpu that might have work to do.  Mask out cpus
646 		 * which have already been processed.
647 		 *
648 		 * 31xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0
649 		 *        ^        ^           ^
650 		 *      start   currentcpu    start
651 		 *      case2                 case1
652 		 *        *        *           *
653 		 * 11111111111111110000000000000111	case1
654 		 * 00000000111111110000000000000000	case2
655 		 *
656 		 * case1:  We started at start_case1 and processed through
657 		 *  	   to the current cpu.  We have to check any bits
658 		 *	   after the current cpu, then check bits before
659 		 *         the starting cpu.
660 		 *
661 		 * case2:  We have already checked all the bits from
662 		 *         start_case2 to the end, and from 0 to the current
663 		 *         cpu.  We just have the bits from the current cpu
664 		 *         to start_case2 left to check.
665 		 */
666 		startcpu = PWAKEUP_DECODE(domain);
667 		if (gd->gd_cpuid >= startcpu) {
668 			/*
669 			 * CASE1
670 			 */
671 			tmask = mask & ~((gd->gd_cpumask << 1) - 1);
672 			if (mask & tmask) {
673 				nextcpu = bsfl(mask & tmask);
674 				lwkt_send_ipiq2(globaldata_find(nextcpu),
675 						_wakeup, ident, domain);
676 			} else {
677 				tmask = (1 << startcpu) - 1;
678 				if (mask & tmask) {
679 					nextcpu = bsfl(mask & tmask);
680 					lwkt_send_ipiq2(
681 						    globaldata_find(nextcpu),
682 						    _wakeup, ident, domain);
683 				}
684 			}
685 		} else {
686 			/*
687 			 * CASE2
688 			 */
689 			tmask = ~((gd->gd_cpumask << 1) - 1) &
690 				 ((1 << startcpu) - 1);
691 			if (mask & tmask) {
692 				nextcpu = bsfl(mask & tmask);
693 				lwkt_send_ipiq2(globaldata_find(nextcpu),
694 						_wakeup, ident, domain);
695 			}
696 		}
697 	}
698 #endif
699 done:
700 	crit_exit();
701 }
702 
703 void
704 wakeup(void *ident)
705 {
706     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid));
707 }
708 
709 void
710 wakeup_one(void *ident)
711 {
712     /* XXX potentially round-robin the first responding cpu */
713     _wakeup(ident, PWAKEUP_ENCODE(0, mycpu->gd_cpuid) | PWAKEUP_ONE);
714 }
715 
716 void
717 wakeup_domain(void *ident, int domain)
718 {
719     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid));
720 }
721 
722 void
723 wakeup_domain_one(void *ident, int domain)
724 {
725     /* XXX potentially round-robin the first responding cpu */
726     _wakeup(ident, PWAKEUP_ENCODE(domain, mycpu->gd_cpuid) | PWAKEUP_ONE);
727 }
728 
729 /*
730  * setrunnable()
731  *
732  * Make a process runnable.  The MP lock must be held on call.  This only
733  * has an effect if we are in SSLEEP.  We only break out of the
734  * tsleep if P_BREAKTSLEEP is set, otherwise we just fix-up the state.
735  *
736  * NOTE: With the MP lock held we can only safely manipulate the process
737  * structure.  We cannot safely manipulate the thread structure.
738  */
739 void
740 setrunnable(struct proc *p)
741 {
742 	crit_enter();
743 	ASSERT_MP_LOCK_HELD(curthread);
744 	p->p_flag &= ~P_STOPPED;
745 	if (p->p_stat == SSLEEP && (p->p_flag & P_BREAKTSLEEP)) {
746 		unsleep_and_wakeup_thread(p->p_thread);
747 	}
748 	crit_exit();
749 }
750 
751 /*
752  * The process is stopped due to some condition, usually because P_STOPPED
753  * is set but also possibly due to being traced.
754  *
755  * NOTE!  If the caller sets P_STOPPED, the caller must also clear P_WAITED
756  * because the parent may check the child's status before the child actually
757  * gets to this routine.
758  *
759  * This routine is called with the current process only, typically just
760  * before returning to userland.
761  *
762  * Setting P_BREAKTSLEEP before entering the tsleep will cause a passive
763  * SIGCONT to break out of the tsleep.
764  */
765 void
766 tstop(struct proc *p)
767 {
768 	wakeup((caddr_t)p->p_pptr);
769 	p->p_flag |= P_BREAKTSLEEP;
770 	tsleep(p, 0, "stop", 0);
771 }
772 
773 /*
774  * Yield / synchronous reschedule.  This is a bit tricky because the trap
775  * code might have set a lazy release on the switch function.   Setting
776  * P_PASSIVE_ACQ will ensure that the lazy release executes when we call
777  * switch, and that we are given a greater chance of affinity with our
778  * current cpu.
779  *
780  * We call lwkt_setpri_self() to rotate our thread to the end of the lwkt
781  * run queue.  lwkt_switch() will also execute any assigned passive release
782  * (which usually calls release_curproc()), allowing a same/higher priority
783  * process to be designated as the current process.
784  *
785  * While it is possible for a lower priority process to be designated,
786  * it's call to lwkt_maybe_switch() in acquire_curproc() will likely
787  * round-robin back to us and we will be able to re-acquire the current
788  * process designation.
789  */
790 void
791 uio_yield(void)
792 {
793 	struct thread *td = curthread;
794 	struct proc *p = td->td_proc;
795 
796 	lwkt_setpri_self(td->td_pri & TDPRI_MASK);
797 	if (p) {
798 		p->p_flag |= P_PASSIVE_ACQ;
799 		lwkt_switch();
800 		p->p_flag &= ~P_PASSIVE_ACQ;
801 	} else {
802 		lwkt_switch();
803 	}
804 }
805 
806 /*
807  * Compute a tenex style load average of a quantity on
808  * 1, 5 and 15 minute intervals.
809  */
810 static void
811 loadav(void *arg)
812 {
813 	int i, nrun;
814 	struct loadavg *avg;
815 	struct proc *p;
816 	thread_t td;
817 
818 	avg = &averunnable;
819 	nrun = 0;
820 	FOREACH_PROC_IN_SYSTEM(p) {
821 		switch (p->p_stat) {
822 		case SRUN:
823 			if ((td = p->p_thread) == NULL)
824 				break;
825 			if (td->td_flags & TDF_BLOCKED)
826 				break;
827 			/* fall through */
828 		case SIDL:
829 			nrun++;
830 			break;
831 		default:
832 			break;
833 		}
834 	}
835 	for (i = 0; i < 3; i++)
836 		avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
837 		    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
838 
839 	/*
840 	 * Schedule the next update to occur after 5 seconds, but add a
841 	 * random variation to avoid synchronisation with processes that
842 	 * run at regular intervals.
843 	 */
844 	callout_reset(&loadav_callout, hz * 4 + (int)(random() % (hz * 2 + 1)),
845 	    loadav, NULL);
846 }
847 
848 /* ARGSUSED */
849 static void
850 sched_setup(void *dummy)
851 {
852 	callout_init(&loadav_callout);
853 	callout_init(&schedcpu_callout);
854 
855 	/* Kick off timeout driven events by calling first time. */
856 	schedcpu(NULL);
857 	loadav(NULL);
858 }
859 
860