1 /* 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 3 * 4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $ 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * API REQUIREMENTS AND SIDE EFFECTS 82 * 83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 84 * have remained compatible with the following API requirements: 85 * 86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 88 * + malloc(0) is allowed and returns non-NULL (ahc driver) 89 * + ability to allocate arbitrarily large chunks of memory 90 */ 91 92 #include "opt_vm.h" 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kernel.h> 97 #include <sys/slaballoc.h> 98 #include <sys/mbuf.h> 99 #include <sys/vmmeter.h> 100 #include <sys/lock.h> 101 #include <sys/thread.h> 102 #include <sys/globaldata.h> 103 #include <sys/sysctl.h> 104 #include <sys/ktr.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_object.h> 111 #include <vm/pmap.h> 112 #include <vm/vm_map.h> 113 #include <vm/vm_page.h> 114 #include <vm/vm_pageout.h> 115 116 #include <machine/cpu.h> 117 118 #include <sys/thread2.h> 119 120 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 121 122 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x" 123 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \ 124 sizeof(int)) 125 126 #if !defined(KTR_MEMORY) 127 #define KTR_MEMORY KTR_ALL 128 #endif 129 KTR_INFO_MASTER(memory); 130 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE); 131 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE); 132 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE); 133 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE); 134 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE); 135 #ifdef SMP 136 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE); 137 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE); 138 #endif 139 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0); 140 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0); 141 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0); 142 143 #define logmemory(name, ptr, type, size, flags) \ 144 KTR_LOG(memory_ ## name, ptr, type, size, flags) 145 #define logmemory_quick(name) \ 146 KTR_LOG(memory_ ## name) 147 148 /* 149 * Fixed globals (not per-cpu) 150 */ 151 static int ZoneSize; 152 static int ZoneLimit; 153 static int ZonePageCount; 154 static int ZoneMask; 155 struct malloc_type *kmemstatistics; /* exported to vmstat */ 156 static struct kmemusage *kmemusage; 157 static int32_t weirdary[16]; 158 159 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 160 static void kmem_slab_free(void *ptr, vm_size_t bytes); 161 #if defined(INVARIANTS) 162 static void chunk_mark_allocated(SLZone *z, void *chunk); 163 static void chunk_mark_free(SLZone *z, void *chunk); 164 #endif 165 166 /* 167 * Misc constants. Note that allocations that are exact multiples of 168 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 169 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 170 */ 171 #define MIN_CHUNK_SIZE 8 /* in bytes */ 172 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 173 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 174 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 175 176 /* 177 * The WEIRD_ADDR is used as known text to copy into free objects to 178 * try to create deterministic failure cases if the data is accessed after 179 * free. 180 */ 181 #define WEIRD_ADDR 0xdeadc0de 182 #define MAX_COPY sizeof(weirdary) 183 #define ZERO_LENGTH_PTR ((void *)-8) 184 185 /* 186 * Misc global malloc buckets 187 */ 188 189 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 190 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 191 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 192 193 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 194 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 195 196 /* 197 * Initialize the slab memory allocator. We have to choose a zone size based 198 * on available physical memory. We choose a zone side which is approximately 199 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 200 * 128K. The zone size is limited to the bounds set in slaballoc.h 201 * (typically 32K min, 128K max). 202 */ 203 static void kmeminit(void *dummy); 204 205 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 206 207 #ifdef INVARIANTS 208 /* 209 * If enabled any memory allocated without M_ZERO is initialized to -1. 210 */ 211 static int use_malloc_pattern; 212 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 213 &use_malloc_pattern, 0, ""); 214 #endif 215 216 static void 217 kmeminit(void *dummy) 218 { 219 vm_poff_t limsize; 220 int usesize; 221 int i; 222 vm_pindex_t npg; 223 224 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 225 if (limsize > KvaSize) 226 limsize = KvaSize; 227 228 usesize = (int)(limsize / 1024); /* convert to KB */ 229 230 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 231 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 232 ZoneSize <<= 1; 233 ZoneLimit = ZoneSize / 4; 234 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 235 ZoneLimit = ZALLOC_ZONE_LIMIT; 236 ZoneMask = ZoneSize - 1; 237 ZonePageCount = ZoneSize / PAGE_SIZE; 238 239 npg = KvaSize / PAGE_SIZE; 240 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), 241 PAGE_SIZE, M_WAITOK|M_ZERO); 242 243 for (i = 0; i < arysize(weirdary); ++i) 244 weirdary[i] = WEIRD_ADDR; 245 246 if (bootverbose) 247 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 248 } 249 250 /* 251 * Initialize a malloc type tracking structure. 252 */ 253 void 254 malloc_init(void *data) 255 { 256 struct malloc_type *type = data; 257 vm_poff_t limsize; 258 259 if (type->ks_magic != M_MAGIC) 260 panic("malloc type lacks magic"); 261 262 if (type->ks_limit != 0) 263 return; 264 265 if (vmstats.v_page_count == 0) 266 panic("malloc_init not allowed before vm init"); 267 268 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 269 if (limsize > KvaSize) 270 limsize = KvaSize; 271 type->ks_limit = limsize / 10; 272 273 type->ks_next = kmemstatistics; 274 kmemstatistics = type; 275 } 276 277 void 278 malloc_uninit(void *data) 279 { 280 struct malloc_type *type = data; 281 struct malloc_type *t; 282 #ifdef INVARIANTS 283 int i; 284 long ttl; 285 #endif 286 287 if (type->ks_magic != M_MAGIC) 288 panic("malloc type lacks magic"); 289 290 if (vmstats.v_page_count == 0) 291 panic("malloc_uninit not allowed before vm init"); 292 293 if (type->ks_limit == 0) 294 panic("malloc_uninit on uninitialized type"); 295 296 #ifdef SMP 297 /* Make sure that all pending kfree()s are finished. */ 298 lwkt_synchronize_ipiqs("muninit"); 299 #endif 300 301 #ifdef INVARIANTS 302 /* 303 * memuse is only correct in aggregation. Due to memory being allocated 304 * on one cpu and freed on another individual array entries may be 305 * negative or positive (canceling each other out). 306 */ 307 for (i = ttl = 0; i < ncpus; ++i) 308 ttl += type->ks_memuse[i]; 309 if (ttl) { 310 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 311 ttl, type->ks_shortdesc, i); 312 } 313 #endif 314 if (type == kmemstatistics) { 315 kmemstatistics = type->ks_next; 316 } else { 317 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 318 if (t->ks_next == type) { 319 t->ks_next = type->ks_next; 320 break; 321 } 322 } 323 } 324 type->ks_next = NULL; 325 type->ks_limit = 0; 326 } 327 328 /* 329 * Increase the kmalloc pool limit for the specified pool. No changes 330 * are the made if the pool would shrink. 331 */ 332 void 333 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 334 { 335 if (type->ks_limit == 0) 336 malloc_init(type); 337 if (type->ks_limit < bytes) 338 type->ks_limit = bytes; 339 } 340 341 /* 342 * Calculate the zone index for the allocation request size and set the 343 * allocation request size to that particular zone's chunk size. 344 */ 345 static __inline int 346 zoneindex(unsigned long *bytes) 347 { 348 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 349 if (n < 128) { 350 *bytes = n = (n + 7) & ~7; 351 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 352 } 353 if (n < 256) { 354 *bytes = n = (n + 15) & ~15; 355 return(n / 16 + 7); 356 } 357 if (n < 8192) { 358 if (n < 512) { 359 *bytes = n = (n + 31) & ~31; 360 return(n / 32 + 15); 361 } 362 if (n < 1024) { 363 *bytes = n = (n + 63) & ~63; 364 return(n / 64 + 23); 365 } 366 if (n < 2048) { 367 *bytes = n = (n + 127) & ~127; 368 return(n / 128 + 31); 369 } 370 if (n < 4096) { 371 *bytes = n = (n + 255) & ~255; 372 return(n / 256 + 39); 373 } 374 *bytes = n = (n + 511) & ~511; 375 return(n / 512 + 47); 376 } 377 #if ZALLOC_ZONE_LIMIT > 8192 378 if (n < 16384) { 379 *bytes = n = (n + 1023) & ~1023; 380 return(n / 1024 + 55); 381 } 382 #endif 383 #if ZALLOC_ZONE_LIMIT > 16384 384 if (n < 32768) { 385 *bytes = n = (n + 2047) & ~2047; 386 return(n / 2048 + 63); 387 } 388 #endif 389 panic("Unexpected byte count %d", n); 390 return(0); 391 } 392 393 /* 394 * malloc() (SLAB ALLOCATOR) 395 * 396 * Allocate memory via the slab allocator. If the request is too large, 397 * or if it page-aligned beyond a certain size, we fall back to the 398 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 399 * &SlabMisc if you don't care. 400 * 401 * M_RNOWAIT - don't block. 402 * M_NULLOK - return NULL instead of blocking. 403 * M_ZERO - zero the returned memory. 404 * M_USE_RESERVE - allow greater drawdown of the free list 405 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 406 * 407 * MPSAFE 408 */ 409 410 void * 411 kmalloc(unsigned long size, struct malloc_type *type, int flags) 412 { 413 SLZone *z; 414 SLChunk *chunk; 415 SLGlobalData *slgd; 416 struct globaldata *gd; 417 int zi; 418 #ifdef INVARIANTS 419 int i; 420 #endif 421 422 logmemory_quick(malloc_beg); 423 gd = mycpu; 424 slgd = &gd->gd_slab; 425 426 /* 427 * XXX silly to have this in the critical path. 428 */ 429 if (type->ks_limit == 0) { 430 crit_enter(); 431 if (type->ks_limit == 0) 432 malloc_init(type); 433 crit_exit(); 434 } 435 ++type->ks_calls; 436 437 /* 438 * Handle the case where the limit is reached. Panic if we can't return 439 * NULL. The original malloc code looped, but this tended to 440 * simply deadlock the computer. 441 * 442 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 443 * to determine if a more complete limit check should be done. The 444 * actual memory use is tracked via ks_memuse[cpu]. 445 */ 446 while (type->ks_loosememuse >= type->ks_limit) { 447 int i; 448 long ttl; 449 450 for (i = ttl = 0; i < ncpus; ++i) 451 ttl += type->ks_memuse[i]; 452 type->ks_loosememuse = ttl; /* not MP synchronized */ 453 if (ttl >= type->ks_limit) { 454 if (flags & M_NULLOK) { 455 logmemory(malloc, NULL, type, size, flags); 456 return(NULL); 457 } 458 panic("%s: malloc limit exceeded", type->ks_shortdesc); 459 } 460 } 461 462 /* 463 * Handle the degenerate size == 0 case. Yes, this does happen. 464 * Return a special pointer. This is to maintain compatibility with 465 * the original malloc implementation. Certain devices, such as the 466 * adaptec driver, not only allocate 0 bytes, they check for NULL and 467 * also realloc() later on. Joy. 468 */ 469 if (size == 0) { 470 logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags); 471 return(ZERO_LENGTH_PTR); 472 } 473 474 /* 475 * Handle hysteresis from prior frees here in malloc(). We cannot 476 * safely manipulate the kernel_map in free() due to free() possibly 477 * being called via an IPI message or from sensitive interrupt code. 478 */ 479 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 480 crit_enter(); 481 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 482 z = slgd->FreeZones; 483 slgd->FreeZones = z->z_Next; 484 --slgd->NFreeZones; 485 kmem_slab_free(z, ZoneSize); /* may block */ 486 } 487 crit_exit(); 488 } 489 /* 490 * XXX handle oversized frees that were queued from free(). 491 */ 492 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 493 crit_enter(); 494 if ((z = slgd->FreeOvZones) != NULL) { 495 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 496 slgd->FreeOvZones = z->z_Next; 497 kmem_slab_free(z, z->z_ChunkSize); /* may block */ 498 } 499 crit_exit(); 500 } 501 502 /* 503 * Handle large allocations directly. There should not be very many of 504 * these so performance is not a big issue. 505 * 506 * The backend allocator is pretty nasty on a SMP system. Use the 507 * slab allocator for one and two page-sized chunks even though we lose 508 * some efficiency. XXX maybe fix mmio and the elf loader instead. 509 */ 510 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 511 struct kmemusage *kup; 512 513 size = round_page(size); 514 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 515 if (chunk == NULL) { 516 logmemory(malloc, NULL, type, size, flags); 517 return(NULL); 518 } 519 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 520 flags |= M_PASSIVE_ZERO; 521 kup = btokup(chunk); 522 kup->ku_pagecnt = size / PAGE_SIZE; 523 kup->ku_cpu = gd->gd_cpuid; 524 crit_enter(); 525 goto done; 526 } 527 528 /* 529 * Attempt to allocate out of an existing zone. First try the free list, 530 * then allocate out of unallocated space. If we find a good zone move 531 * it to the head of the list so later allocations find it quickly 532 * (we might have thousands of zones in the list). 533 * 534 * Note: zoneindex() will panic of size is too large. 535 */ 536 zi = zoneindex(&size); 537 KKASSERT(zi < NZONES); 538 crit_enter(); 539 if ((z = slgd->ZoneAry[zi]) != NULL) { 540 KKASSERT(z->z_NFree > 0); 541 542 /* 543 * Remove us from the ZoneAry[] when we become empty 544 */ 545 if (--z->z_NFree == 0) { 546 slgd->ZoneAry[zi] = z->z_Next; 547 z->z_Next = NULL; 548 } 549 550 /* 551 * Locate a chunk in a free page. This attempts to localize 552 * reallocations into earlier pages without us having to sort 553 * the chunk list. A chunk may still overlap a page boundary. 554 */ 555 while (z->z_FirstFreePg < ZonePageCount) { 556 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) { 557 #ifdef DIAGNOSTIC 558 /* 559 * Diagnostic: c_Next is not total garbage. 560 */ 561 KKASSERT(chunk->c_Next == NULL || 562 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) == 563 ((intptr_t)chunk & IN_SAME_PAGE_MASK)); 564 #endif 565 #ifdef INVARIANTS 566 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 567 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount); 568 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 569 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount); 570 chunk_mark_allocated(z, chunk); 571 #endif 572 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next; 573 goto done; 574 } 575 ++z->z_FirstFreePg; 576 } 577 578 /* 579 * No chunks are available but NFree said we had some memory, so 580 * it must be available in the never-before-used-memory area 581 * governed by UIndex. The consequences are very serious if our zone 582 * got corrupted so we use an explicit panic rather then a KASSERT. 583 */ 584 if (z->z_UIndex + 1 != z->z_NMax) 585 z->z_UIndex = z->z_UIndex + 1; 586 else 587 z->z_UIndex = 0; 588 if (z->z_UIndex == z->z_UEndIndex) 589 panic("slaballoc: corrupted zone"); 590 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 591 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 592 flags &= ~M_ZERO; 593 flags |= M_PASSIVE_ZERO; 594 } 595 #if defined(INVARIANTS) 596 chunk_mark_allocated(z, chunk); 597 #endif 598 goto done; 599 } 600 601 /* 602 * If all zones are exhausted we need to allocate a new zone for this 603 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 604 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 605 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 606 * we do not pre-zero it because we do not want to mess up the L1 cache. 607 * 608 * At least one subsystem, the tty code (see CROUND) expects power-of-2 609 * allocations to be power-of-2 aligned. We maintain compatibility by 610 * adjusting the base offset below. 611 */ 612 { 613 int off; 614 615 if ((z = slgd->FreeZones) != NULL) { 616 slgd->FreeZones = z->z_Next; 617 --slgd->NFreeZones; 618 bzero(z, sizeof(SLZone)); 619 z->z_Flags |= SLZF_UNOTZEROD; 620 } else { 621 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 622 if (z == NULL) 623 goto fail; 624 } 625 626 /* 627 * How big is the base structure? 628 */ 629 #if defined(INVARIANTS) 630 /* 631 * Make room for z_Bitmap. An exact calculation is somewhat more 632 * complicated so don't make an exact calculation. 633 */ 634 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 635 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 636 #else 637 off = sizeof(SLZone); 638 #endif 639 640 /* 641 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 642 * Otherwise just 8-byte align the data. 643 */ 644 if ((size | (size - 1)) + 1 == (size << 1)) 645 off = (off + size - 1) & ~(size - 1); 646 else 647 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 648 z->z_Magic = ZALLOC_SLAB_MAGIC; 649 z->z_ZoneIndex = zi; 650 z->z_NMax = (ZoneSize - off) / size; 651 z->z_NFree = z->z_NMax - 1; 652 z->z_BasePtr = (char *)z + off; 653 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 654 z->z_ChunkSize = size; 655 z->z_FirstFreePg = ZonePageCount; 656 z->z_CpuGd = gd; 657 z->z_Cpu = gd->gd_cpuid; 658 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 659 z->z_Next = slgd->ZoneAry[zi]; 660 slgd->ZoneAry[zi] = z; 661 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 662 flags &= ~M_ZERO; /* already zero'd */ 663 flags |= M_PASSIVE_ZERO; 664 } 665 #if defined(INVARIANTS) 666 chunk_mark_allocated(z, chunk); 667 #endif 668 669 /* 670 * Slide the base index for initial allocations out of the next 671 * zone we create so we do not over-weight the lower part of the 672 * cpu memory caches. 673 */ 674 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 675 & (ZALLOC_MAX_ZONE_SIZE - 1); 676 } 677 done: 678 ++type->ks_inuse[gd->gd_cpuid]; 679 type->ks_memuse[gd->gd_cpuid] += size; 680 type->ks_loosememuse += size; /* not MP synchronized */ 681 crit_exit(); 682 if (flags & M_ZERO) 683 bzero(chunk, size); 684 #ifdef INVARIANTS 685 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 686 if (use_malloc_pattern) { 687 for (i = 0; i < size; i += sizeof(int)) { 688 *(int *)((char *)chunk + i) = -1; 689 } 690 } 691 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 692 } 693 #endif 694 logmemory(malloc, chunk, type, size, flags); 695 return(chunk); 696 fail: 697 crit_exit(); 698 logmemory(malloc, NULL, type, size, flags); 699 return(NULL); 700 } 701 702 /* 703 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 704 * 705 * Generally speaking this routine is not called very often and we do 706 * not attempt to optimize it beyond reusing the same pointer if the 707 * new size fits within the chunking of the old pointer's zone. 708 */ 709 void * 710 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 711 { 712 SLZone *z; 713 void *nptr; 714 unsigned long osize; 715 716 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 717 718 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 719 return(kmalloc(size, type, flags)); 720 if (size == 0) { 721 kfree(ptr, type); 722 return(NULL); 723 } 724 725 /* 726 * Handle oversized allocations. XXX we really should require that a 727 * size be passed to free() instead of this nonsense. 728 */ 729 { 730 struct kmemusage *kup; 731 732 kup = btokup(ptr); 733 if (kup->ku_pagecnt) { 734 osize = kup->ku_pagecnt << PAGE_SHIFT; 735 if (osize == round_page(size)) 736 return(ptr); 737 if ((nptr = kmalloc(size, type, flags)) == NULL) 738 return(NULL); 739 bcopy(ptr, nptr, min(size, osize)); 740 kfree(ptr, type); 741 return(nptr); 742 } 743 } 744 745 /* 746 * Get the original allocation's zone. If the new request winds up 747 * using the same chunk size we do not have to do anything. 748 */ 749 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 750 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 751 752 zoneindex(&size); 753 if (z->z_ChunkSize == size) 754 return(ptr); 755 756 /* 757 * Allocate memory for the new request size. Note that zoneindex has 758 * already adjusted the request size to the appropriate chunk size, which 759 * should optimize our bcopy(). Then copy and return the new pointer. 760 */ 761 if ((nptr = kmalloc(size, type, flags)) == NULL) 762 return(NULL); 763 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 764 kfree(ptr, type); 765 return(nptr); 766 } 767 768 /* 769 * Return the kmalloc limit for this type, in bytes. 770 */ 771 long 772 kmalloc_limit(struct malloc_type *type) 773 { 774 if (type->ks_limit == 0) { 775 crit_enter(); 776 if (type->ks_limit == 0) 777 malloc_init(type); 778 crit_exit(); 779 } 780 return(type->ks_limit); 781 } 782 783 /* 784 * Allocate a copy of the specified string. 785 * 786 * (MP SAFE) (MAY BLOCK) 787 */ 788 char * 789 kstrdup(const char *str, struct malloc_type *type) 790 { 791 int zlen; /* length inclusive of terminating NUL */ 792 char *nstr; 793 794 if (str == NULL) 795 return(NULL); 796 zlen = strlen(str) + 1; 797 nstr = kmalloc(zlen, type, M_WAITOK); 798 bcopy(str, nstr, zlen); 799 return(nstr); 800 } 801 802 #ifdef SMP 803 /* 804 * free() (SLAB ALLOCATOR) 805 * 806 * Free the specified chunk of memory. 807 */ 808 static 809 void 810 free_remote(void *ptr) 811 { 812 logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0); 813 kfree(ptr, *(struct malloc_type **)ptr); 814 } 815 816 #endif 817 818 /* 819 * free (SLAB ALLOCATOR) 820 * 821 * Free a memory block previously allocated by malloc. Note that we do not 822 * attempt to uplodate ks_loosememuse as MP races could prevent us from 823 * checking memory limits in malloc. 824 * 825 * MPSAFE 826 */ 827 void 828 kfree(void *ptr, struct malloc_type *type) 829 { 830 SLZone *z; 831 SLChunk *chunk; 832 SLGlobalData *slgd; 833 struct globaldata *gd; 834 int pgno; 835 836 logmemory_quick(free_beg); 837 gd = mycpu; 838 slgd = &gd->gd_slab; 839 840 if (ptr == NULL) 841 panic("trying to free NULL pointer"); 842 843 /* 844 * Handle special 0-byte allocations 845 */ 846 if (ptr == ZERO_LENGTH_PTR) { 847 logmemory(free_zero, ptr, type, -1, 0); 848 logmemory_quick(free_end); 849 return; 850 } 851 852 /* 853 * Handle oversized allocations. XXX we really should require that a 854 * size be passed to free() instead of this nonsense. 855 * 856 * This code is never called via an ipi. 857 */ 858 { 859 struct kmemusage *kup; 860 unsigned long size; 861 862 kup = btokup(ptr); 863 if (kup->ku_pagecnt) { 864 size = kup->ku_pagecnt << PAGE_SHIFT; 865 kup->ku_pagecnt = 0; 866 #ifdef INVARIANTS 867 KKASSERT(sizeof(weirdary) <= size); 868 bcopy(weirdary, ptr, sizeof(weirdary)); 869 #endif 870 /* 871 * note: we always adjust our cpu's slot, not the originating 872 * cpu (kup->ku_cpuid). The statistics are in aggregate. 873 * 874 * note: XXX we have still inherited the interrupts-can't-block 875 * assumption. An interrupt thread does not bump 876 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 877 * primarily until we can fix softupdate's assumptions about free(). 878 */ 879 crit_enter(); 880 --type->ks_inuse[gd->gd_cpuid]; 881 type->ks_memuse[gd->gd_cpuid] -= size; 882 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) { 883 logmemory(free_ovsz_delayed, ptr, type, size, 0); 884 z = (SLZone *)ptr; 885 z->z_Magic = ZALLOC_OVSZ_MAGIC; 886 z->z_Next = slgd->FreeOvZones; 887 z->z_ChunkSize = size; 888 slgd->FreeOvZones = z; 889 crit_exit(); 890 } else { 891 crit_exit(); 892 logmemory(free_ovsz, ptr, type, size, 0); 893 kmem_slab_free(ptr, size); /* may block */ 894 } 895 logmemory_quick(free_end); 896 return; 897 } 898 } 899 900 /* 901 * Zone case. Figure out the zone based on the fact that it is 902 * ZoneSize aligned. 903 */ 904 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 905 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 906 907 /* 908 * If we do not own the zone then forward the request to the 909 * cpu that does. Since the timing is non-critical, a passive 910 * message is sent. 911 */ 912 if (z->z_CpuGd != gd) { 913 *(struct malloc_type **)ptr = type; 914 #ifdef SMP 915 logmemory(free_request, ptr, type, z->z_ChunkSize, 0); 916 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr); 917 #else 918 panic("Corrupt SLZone"); 919 #endif 920 logmemory_quick(free_end); 921 return; 922 } 923 924 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0); 925 926 if (type->ks_magic != M_MAGIC) 927 panic("free: malloc type lacks magic"); 928 929 crit_enter(); 930 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT; 931 chunk = ptr; 932 933 #ifdef INVARIANTS 934 /* 935 * Attempt to detect a double-free. To reduce overhead we only check 936 * if there appears to be link pointer at the base of the data. 937 */ 938 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) { 939 SLChunk *scan; 940 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) { 941 if (scan == chunk) 942 panic("Double free at %p", chunk); 943 } 944 } 945 chunk_mark_free(z, chunk); 946 #endif 947 948 /* 949 * Put weird data into the memory to detect modifications after freeing, 950 * illegal pointer use after freeing (we should fault on the odd address), 951 * and so forth. XXX needs more work, see the old malloc code. 952 */ 953 #ifdef INVARIANTS 954 if (z->z_ChunkSize < sizeof(weirdary)) 955 bcopy(weirdary, chunk, z->z_ChunkSize); 956 else 957 bcopy(weirdary, chunk, sizeof(weirdary)); 958 #endif 959 960 /* 961 * Add this free non-zero'd chunk to a linked list for reuse, adjust 962 * z_FirstFreePg. 963 */ 964 #ifdef INVARIANTS 965 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 966 panic("BADFREE %p", chunk); 967 #endif 968 chunk->c_Next = z->z_PageAry[pgno]; 969 z->z_PageAry[pgno] = chunk; 970 #ifdef INVARIANTS 971 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 972 panic("BADFREE2"); 973 #endif 974 if (z->z_FirstFreePg > pgno) 975 z->z_FirstFreePg = pgno; 976 977 /* 978 * Bump the number of free chunks. If it becomes non-zero the zone 979 * must be added back onto the appropriate list. 980 */ 981 if (z->z_NFree++ == 0) { 982 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 983 slgd->ZoneAry[z->z_ZoneIndex] = z; 984 } 985 986 --type->ks_inuse[z->z_Cpu]; 987 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 988 989 /* 990 * If the zone becomes totally free, and there are other zones we 991 * can allocate from, move this zone to the FreeZones list. Since 992 * this code can be called from an IPI callback, do *NOT* try to mess 993 * with kernel_map here. Hysteresis will be performed at malloc() time. 994 */ 995 if (z->z_NFree == z->z_NMax && 996 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 997 ) { 998 SLZone **pz; 999 1000 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 1001 ; 1002 *pz = z->z_Next; 1003 z->z_Magic = -1; 1004 z->z_Next = slgd->FreeZones; 1005 slgd->FreeZones = z; 1006 ++slgd->NFreeZones; 1007 } 1008 logmemory_quick(free_end); 1009 crit_exit(); 1010 } 1011 1012 #if defined(INVARIANTS) 1013 /* 1014 * Helper routines for sanity checks 1015 */ 1016 static 1017 void 1018 chunk_mark_allocated(SLZone *z, void *chunk) 1019 { 1020 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1021 __uint32_t *bitptr; 1022 1023 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1024 bitptr = &z->z_Bitmap[bitdex >> 5]; 1025 bitdex &= 31; 1026 KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk)); 1027 *bitptr |= 1 << bitdex; 1028 } 1029 1030 static 1031 void 1032 chunk_mark_free(SLZone *z, void *chunk) 1033 { 1034 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1035 __uint32_t *bitptr; 1036 1037 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1038 bitptr = &z->z_Bitmap[bitdex >> 5]; 1039 bitdex &= 31; 1040 KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk)); 1041 *bitptr &= ~(1 << bitdex); 1042 } 1043 1044 #endif 1045 1046 /* 1047 * kmem_slab_alloc() 1048 * 1049 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1050 * specified alignment. M_* flags are expected in the flags field. 1051 * 1052 * Alignment must be a multiple of PAGE_SIZE. 1053 * 1054 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1055 * but when we move zalloc() over to use this function as its backend 1056 * we will have to switch to kreserve/krelease and call reserve(0) 1057 * after the new space is made available. 1058 * 1059 * Interrupt code which has preempted other code is not allowed to 1060 * use PQ_CACHE pages. However, if an interrupt thread is run 1061 * non-preemptively or blocks and then runs non-preemptively, then 1062 * it is free to use PQ_CACHE pages. 1063 * 1064 * This routine will currently obtain the BGL. 1065 * 1066 * MPALMOSTSAFE - acquires mplock 1067 */ 1068 static void * 1069 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1070 { 1071 vm_size_t i; 1072 vm_offset_t addr; 1073 int count, vmflags, base_vmflags; 1074 thread_t td; 1075 1076 size = round_page(size); 1077 addr = vm_map_min(&kernel_map); 1078 1079 /* 1080 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 1081 * cannot block. 1082 */ 1083 if (flags & M_RNOWAIT) { 1084 if (try_mplock() == 0) 1085 return(NULL); 1086 } else { 1087 get_mplock(); 1088 } 1089 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1090 crit_enter(); 1091 vm_map_lock(&kernel_map); 1092 if (vm_map_findspace(&kernel_map, addr, size, align, &addr)) { 1093 vm_map_unlock(&kernel_map); 1094 if ((flags & M_NULLOK) == 0) 1095 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1096 crit_exit(); 1097 vm_map_entry_release(count); 1098 rel_mplock(); 1099 return(NULL); 1100 } 1101 1102 /* 1103 * kernel_object maps 1:1 to kernel_map. 1104 */ 1105 vm_object_reference(&kernel_object); 1106 vm_map_insert(&kernel_map, &count, 1107 &kernel_object, addr, addr, addr + size, 1108 VM_MAPTYPE_NORMAL, 1109 VM_PROT_ALL, VM_PROT_ALL, 1110 0); 1111 1112 td = curthread; 1113 1114 base_vmflags = 0; 1115 if (flags & M_ZERO) 1116 base_vmflags |= VM_ALLOC_ZERO; 1117 if (flags & M_USE_RESERVE) 1118 base_vmflags |= VM_ALLOC_SYSTEM; 1119 if (flags & M_USE_INTERRUPT_RESERVE) 1120 base_vmflags |= VM_ALLOC_INTERRUPT; 1121 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) 1122 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]); 1123 1124 1125 /* 1126 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 1127 */ 1128 for (i = 0; i < size; i += PAGE_SIZE) { 1129 vm_page_t m; 1130 1131 /* 1132 * VM_ALLOC_NORMAL can only be set if we are not preempting. 1133 * 1134 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1135 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1136 * implied in this case), though I'm not sure if we really need to 1137 * do that. 1138 */ 1139 vmflags = base_vmflags; 1140 if (flags & M_WAITOK) { 1141 if (td->td_preempted) 1142 vmflags |= VM_ALLOC_SYSTEM; 1143 else 1144 vmflags |= VM_ALLOC_NORMAL; 1145 } 1146 1147 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1148 1149 /* 1150 * If the allocation failed we either return NULL or we retry. 1151 * 1152 * If M_WAITOK is specified we wait for more memory and retry. 1153 * If M_WAITOK is specified from a preemption we yield instead of 1154 * wait. Livelock will not occur because the interrupt thread 1155 * will not be preempting anyone the second time around after the 1156 * yield. 1157 */ 1158 if (m == NULL) { 1159 if (flags & M_WAITOK) { 1160 if (td->td_preempted) { 1161 vm_map_unlock(&kernel_map); 1162 lwkt_yield(); 1163 vm_map_lock(&kernel_map); 1164 } else { 1165 vm_map_unlock(&kernel_map); 1166 vm_wait(0); 1167 vm_map_lock(&kernel_map); 1168 } 1169 i -= PAGE_SIZE; /* retry */ 1170 continue; 1171 } 1172 1173 /* 1174 * We were unable to recover, cleanup and return NULL 1175 */ 1176 while (i != 0) { 1177 i -= PAGE_SIZE; 1178 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1179 /* page should already be busy */ 1180 vm_page_free(m); 1181 } 1182 vm_map_delete(&kernel_map, addr, addr + size, &count); 1183 vm_map_unlock(&kernel_map); 1184 crit_exit(); 1185 vm_map_entry_release(count); 1186 rel_mplock(); 1187 return(NULL); 1188 } 1189 } 1190 1191 /* 1192 * Success! 1193 * 1194 * Mark the map entry as non-pageable using a routine that allows us to 1195 * populate the underlying pages. 1196 * 1197 * The pages were busied by the allocations above. 1198 */ 1199 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1200 crit_exit(); 1201 1202 /* 1203 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1204 */ 1205 for (i = 0; i < size; i += PAGE_SIZE) { 1206 vm_page_t m; 1207 1208 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1209 m->valid = VM_PAGE_BITS_ALL; 1210 /* page should already be busy */ 1211 vm_page_wire(m); 1212 vm_page_wakeup(m); 1213 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1214 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1215 bzero((char *)addr + i, PAGE_SIZE); 1216 vm_page_flag_clear(m, PG_ZERO); 1217 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1218 vm_page_flag_set(m, PG_REFERENCED); 1219 } 1220 vm_map_unlock(&kernel_map); 1221 vm_map_entry_release(count); 1222 rel_mplock(); 1223 return((void *)addr); 1224 } 1225 1226 /* 1227 * kmem_slab_free() 1228 * 1229 * MPALMOSTSAFE - acquires mplock 1230 */ 1231 static void 1232 kmem_slab_free(void *ptr, vm_size_t size) 1233 { 1234 get_mplock(); 1235 crit_enter(); 1236 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1237 crit_exit(); 1238 rel_mplock(); 1239 } 1240 1241