xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision f7d9d915693932cf3ac4c7057b6547993063b297)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
121 
122 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
124 			sizeof(int))
125 
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY	KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE);
131 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 #ifdef SMP
136 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 #endif
139 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
140 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0);
141 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0);
142 
143 #define logmemory(name, ptr, type, size, flags)				\
144 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
145 #define logmemory_quick(name)						\
146 	KTR_LOG(memory_ ## name)
147 
148 /*
149  * Fixed globals (not per-cpu)
150  */
151 static int ZoneSize;
152 static int ZoneLimit;
153 static int ZonePageCount;
154 static int ZoneMask;
155 struct malloc_type *kmemstatistics;	/* exported to vmstat */
156 static struct kmemusage *kmemusage;
157 static int32_t weirdary[16];
158 
159 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
160 static void kmem_slab_free(void *ptr, vm_size_t bytes);
161 #if defined(INVARIANTS)
162 static void chunk_mark_allocated(SLZone *z, void *chunk);
163 static void chunk_mark_free(SLZone *z, void *chunk);
164 #endif
165 
166 /*
167  * Misc constants.  Note that allocations that are exact multiples of
168  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
169  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
170  */
171 #define MIN_CHUNK_SIZE		8		/* in bytes */
172 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
173 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
174 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
175 
176 /*
177  * The WEIRD_ADDR is used as known text to copy into free objects to
178  * try to create deterministic failure cases if the data is accessed after
179  * free.
180  */
181 #define WEIRD_ADDR      0xdeadc0de
182 #define MAX_COPY        sizeof(weirdary)
183 #define ZERO_LENGTH_PTR	((void *)-8)
184 
185 /*
186  * Misc global malloc buckets
187  */
188 
189 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
190 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
191 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
192 
193 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
194 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
195 
196 /*
197  * Initialize the slab memory allocator.  We have to choose a zone size based
198  * on available physical memory.  We choose a zone side which is approximately
199  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
200  * 128K.  The zone size is limited to the bounds set in slaballoc.h
201  * (typically 32K min, 128K max).
202  */
203 static void kmeminit(void *dummy);
204 
205 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
206 
207 #ifdef INVARIANTS
208 /*
209  * If enabled any memory allocated without M_ZERO is initialized to -1.
210  */
211 static int  use_malloc_pattern;
212 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
213 		&use_malloc_pattern, 0, "");
214 #endif
215 
216 static void
217 kmeminit(void *dummy)
218 {
219     vm_poff_t limsize;
220     int usesize;
221     int i;
222     vm_pindex_t npg;
223 
224     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
225     if (limsize > KvaSize)
226 	limsize = KvaSize;
227 
228     usesize = (int)(limsize / 1024);	/* convert to KB */
229 
230     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
231     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
232 	ZoneSize <<= 1;
233     ZoneLimit = ZoneSize / 4;
234     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
235 	ZoneLimit = ZALLOC_ZONE_LIMIT;
236     ZoneMask = ZoneSize - 1;
237     ZonePageCount = ZoneSize / PAGE_SIZE;
238 
239     npg = KvaSize / PAGE_SIZE;
240     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage),
241 				PAGE_SIZE, M_WAITOK|M_ZERO);
242 
243     for (i = 0; i < arysize(weirdary); ++i)
244 	weirdary[i] = WEIRD_ADDR;
245 
246     if (bootverbose)
247 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
248 }
249 
250 /*
251  * Initialize a malloc type tracking structure.
252  */
253 void
254 malloc_init(void *data)
255 {
256     struct malloc_type *type = data;
257     vm_poff_t limsize;
258 
259     if (type->ks_magic != M_MAGIC)
260 	panic("malloc type lacks magic");
261 
262     if (type->ks_limit != 0)
263 	return;
264 
265     if (vmstats.v_page_count == 0)
266 	panic("malloc_init not allowed before vm init");
267 
268     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
269     if (limsize > KvaSize)
270 	limsize = KvaSize;
271     type->ks_limit = limsize / 10;
272 
273     type->ks_next = kmemstatistics;
274     kmemstatistics = type;
275 }
276 
277 void
278 malloc_uninit(void *data)
279 {
280     struct malloc_type *type = data;
281     struct malloc_type *t;
282 #ifdef INVARIANTS
283     int i;
284     long ttl;
285 #endif
286 
287     if (type->ks_magic != M_MAGIC)
288 	panic("malloc type lacks magic");
289 
290     if (vmstats.v_page_count == 0)
291 	panic("malloc_uninit not allowed before vm init");
292 
293     if (type->ks_limit == 0)
294 	panic("malloc_uninit on uninitialized type");
295 
296 #ifdef SMP
297     /* Make sure that all pending kfree()s are finished. */
298     lwkt_synchronize_ipiqs("muninit");
299 #endif
300 
301 #ifdef INVARIANTS
302     /*
303      * memuse is only correct in aggregation.  Due to memory being allocated
304      * on one cpu and freed on another individual array entries may be
305      * negative or positive (canceling each other out).
306      */
307     for (i = ttl = 0; i < ncpus; ++i)
308 	ttl += type->ks_memuse[i];
309     if (ttl) {
310 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
311 	    ttl, type->ks_shortdesc, i);
312     }
313 #endif
314     if (type == kmemstatistics) {
315 	kmemstatistics = type->ks_next;
316     } else {
317 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
318 	    if (t->ks_next == type) {
319 		t->ks_next = type->ks_next;
320 		break;
321 	    }
322 	}
323     }
324     type->ks_next = NULL;
325     type->ks_limit = 0;
326 }
327 
328 /*
329  * Increase the kmalloc pool limit for the specified pool.  No changes
330  * are the made if the pool would shrink.
331  */
332 void
333 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
334 {
335     if (type->ks_limit == 0)
336 	malloc_init(type);
337     if (type->ks_limit < bytes)
338 	type->ks_limit = bytes;
339 }
340 
341 /*
342  * Calculate the zone index for the allocation request size and set the
343  * allocation request size to that particular zone's chunk size.
344  */
345 static __inline int
346 zoneindex(unsigned long *bytes)
347 {
348     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
349     if (n < 128) {
350 	*bytes = n = (n + 7) & ~7;
351 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
352     }
353     if (n < 256) {
354 	*bytes = n = (n + 15) & ~15;
355 	return(n / 16 + 7);
356     }
357     if (n < 8192) {
358 	if (n < 512) {
359 	    *bytes = n = (n + 31) & ~31;
360 	    return(n / 32 + 15);
361 	}
362 	if (n < 1024) {
363 	    *bytes = n = (n + 63) & ~63;
364 	    return(n / 64 + 23);
365 	}
366 	if (n < 2048) {
367 	    *bytes = n = (n + 127) & ~127;
368 	    return(n / 128 + 31);
369 	}
370 	if (n < 4096) {
371 	    *bytes = n = (n + 255) & ~255;
372 	    return(n / 256 + 39);
373 	}
374 	*bytes = n = (n + 511) & ~511;
375 	return(n / 512 + 47);
376     }
377 #if ZALLOC_ZONE_LIMIT > 8192
378     if (n < 16384) {
379 	*bytes = n = (n + 1023) & ~1023;
380 	return(n / 1024 + 55);
381     }
382 #endif
383 #if ZALLOC_ZONE_LIMIT > 16384
384     if (n < 32768) {
385 	*bytes = n = (n + 2047) & ~2047;
386 	return(n / 2048 + 63);
387     }
388 #endif
389     panic("Unexpected byte count %d", n);
390     return(0);
391 }
392 
393 /*
394  * malloc()	(SLAB ALLOCATOR)
395  *
396  *	Allocate memory via the slab allocator.  If the request is too large,
397  *	or if it page-aligned beyond a certain size, we fall back to the
398  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
399  *	&SlabMisc if you don't care.
400  *
401  *	M_RNOWAIT	- don't block.
402  *	M_NULLOK	- return NULL instead of blocking.
403  *	M_ZERO		- zero the returned memory.
404  *	M_USE_RESERVE	- allow greater drawdown of the free list
405  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
406  *
407  * MPSAFE
408  */
409 
410 void *
411 kmalloc(unsigned long size, struct malloc_type *type, int flags)
412 {
413     SLZone *z;
414     SLChunk *chunk;
415     SLGlobalData *slgd;
416     struct globaldata *gd;
417     int zi;
418 #ifdef INVARIANTS
419     int i;
420 #endif
421 
422     logmemory_quick(malloc_beg);
423     gd = mycpu;
424     slgd = &gd->gd_slab;
425 
426     /*
427      * XXX silly to have this in the critical path.
428      */
429     if (type->ks_limit == 0) {
430 	crit_enter();
431 	if (type->ks_limit == 0)
432 	    malloc_init(type);
433 	crit_exit();
434     }
435     ++type->ks_calls;
436 
437     /*
438      * Handle the case where the limit is reached.  Panic if we can't return
439      * NULL.  The original malloc code looped, but this tended to
440      * simply deadlock the computer.
441      *
442      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
443      * to determine if a more complete limit check should be done.  The
444      * actual memory use is tracked via ks_memuse[cpu].
445      */
446     while (type->ks_loosememuse >= type->ks_limit) {
447 	int i;
448 	long ttl;
449 
450 	for (i = ttl = 0; i < ncpus; ++i)
451 	    ttl += type->ks_memuse[i];
452 	type->ks_loosememuse = ttl;	/* not MP synchronized */
453 	if (ttl >= type->ks_limit) {
454 	    if (flags & M_NULLOK) {
455 		logmemory(malloc, NULL, type, size, flags);
456 		return(NULL);
457 	    }
458 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
459 	}
460     }
461 
462     /*
463      * Handle the degenerate size == 0 case.  Yes, this does happen.
464      * Return a special pointer.  This is to maintain compatibility with
465      * the original malloc implementation.  Certain devices, such as the
466      * adaptec driver, not only allocate 0 bytes, they check for NULL and
467      * also realloc() later on.  Joy.
468      */
469     if (size == 0) {
470 	logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags);
471 	return(ZERO_LENGTH_PTR);
472     }
473 
474     /*
475      * Handle hysteresis from prior frees here in malloc().  We cannot
476      * safely manipulate the kernel_map in free() due to free() possibly
477      * being called via an IPI message or from sensitive interrupt code.
478      */
479     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
480 	crit_enter();
481 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
482 	    z = slgd->FreeZones;
483 	    slgd->FreeZones = z->z_Next;
484 	    --slgd->NFreeZones;
485 	    kmem_slab_free(z, ZoneSize);	/* may block */
486 	}
487 	crit_exit();
488     }
489     /*
490      * XXX handle oversized frees that were queued from free().
491      */
492     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
493 	crit_enter();
494 	if ((z = slgd->FreeOvZones) != NULL) {
495 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
496 	    slgd->FreeOvZones = z->z_Next;
497 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
498 	}
499 	crit_exit();
500     }
501 
502     /*
503      * Handle large allocations directly.  There should not be very many of
504      * these so performance is not a big issue.
505      *
506      * The backend allocator is pretty nasty on a SMP system.   Use the
507      * slab allocator for one and two page-sized chunks even though we lose
508      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
509      */
510     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
511 	struct kmemusage *kup;
512 
513 	size = round_page(size);
514 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
515 	if (chunk == NULL) {
516 	    logmemory(malloc, NULL, type, size, flags);
517 	    return(NULL);
518 	}
519 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
520 	flags |= M_PASSIVE_ZERO;
521 	kup = btokup(chunk);
522 	kup->ku_pagecnt = size / PAGE_SIZE;
523 	kup->ku_cpu = gd->gd_cpuid;
524 	crit_enter();
525 	goto done;
526     }
527 
528     /*
529      * Attempt to allocate out of an existing zone.  First try the free list,
530      * then allocate out of unallocated space.  If we find a good zone move
531      * it to the head of the list so later allocations find it quickly
532      * (we might have thousands of zones in the list).
533      *
534      * Note: zoneindex() will panic of size is too large.
535      */
536     zi = zoneindex(&size);
537     KKASSERT(zi < NZONES);
538     crit_enter();
539     if ((z = slgd->ZoneAry[zi]) != NULL) {
540 	KKASSERT(z->z_NFree > 0);
541 
542 	/*
543 	 * Remove us from the ZoneAry[] when we become empty
544 	 */
545 	if (--z->z_NFree == 0) {
546 	    slgd->ZoneAry[zi] = z->z_Next;
547 	    z->z_Next = NULL;
548 	}
549 
550 	/*
551 	 * Locate a chunk in a free page.  This attempts to localize
552 	 * reallocations into earlier pages without us having to sort
553 	 * the chunk list.  A chunk may still overlap a page boundary.
554 	 */
555 	while (z->z_FirstFreePg < ZonePageCount) {
556 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
557 #ifdef DIAGNOSTIC
558 		/*
559 		 * Diagnostic: c_Next is not total garbage.
560 		 */
561 		KKASSERT(chunk->c_Next == NULL ||
562 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
563 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
564 #endif
565 #ifdef INVARIANTS
566 		if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
567 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
568 		if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
569 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
570 		chunk_mark_allocated(z, chunk);
571 #endif
572 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
573 		goto done;
574 	    }
575 	    ++z->z_FirstFreePg;
576 	}
577 
578 	/*
579 	 * No chunks are available but NFree said we had some memory, so
580 	 * it must be available in the never-before-used-memory area
581 	 * governed by UIndex.  The consequences are very serious if our zone
582 	 * got corrupted so we use an explicit panic rather then a KASSERT.
583 	 */
584 	if (z->z_UIndex + 1 != z->z_NMax)
585 	    z->z_UIndex = z->z_UIndex + 1;
586 	else
587 	    z->z_UIndex = 0;
588 	if (z->z_UIndex == z->z_UEndIndex)
589 	    panic("slaballoc: corrupted zone");
590 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
591 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
592 	    flags &= ~M_ZERO;
593 	    flags |= M_PASSIVE_ZERO;
594 	}
595 #if defined(INVARIANTS)
596 	chunk_mark_allocated(z, chunk);
597 #endif
598 	goto done;
599     }
600 
601     /*
602      * If all zones are exhausted we need to allocate a new zone for this
603      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
604      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
605      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
606      * we do not pre-zero it because we do not want to mess up the L1 cache.
607      *
608      * At least one subsystem, the tty code (see CROUND) expects power-of-2
609      * allocations to be power-of-2 aligned.  We maintain compatibility by
610      * adjusting the base offset below.
611      */
612     {
613 	int off;
614 
615 	if ((z = slgd->FreeZones) != NULL) {
616 	    slgd->FreeZones = z->z_Next;
617 	    --slgd->NFreeZones;
618 	    bzero(z, sizeof(SLZone));
619 	    z->z_Flags |= SLZF_UNOTZEROD;
620 	} else {
621 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
622 	    if (z == NULL)
623 		goto fail;
624 	}
625 
626 	/*
627 	 * How big is the base structure?
628 	 */
629 #if defined(INVARIANTS)
630 	/*
631 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
632 	 * complicated so don't make an exact calculation.
633 	 */
634 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
635 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
636 #else
637 	off = sizeof(SLZone);
638 #endif
639 
640 	/*
641 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
642 	 * Otherwise just 8-byte align the data.
643 	 */
644 	if ((size | (size - 1)) + 1 == (size << 1))
645 	    off = (off + size - 1) & ~(size - 1);
646 	else
647 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
648 	z->z_Magic = ZALLOC_SLAB_MAGIC;
649 	z->z_ZoneIndex = zi;
650 	z->z_NMax = (ZoneSize - off) / size;
651 	z->z_NFree = z->z_NMax - 1;
652 	z->z_BasePtr = (char *)z + off;
653 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
654 	z->z_ChunkSize = size;
655 	z->z_FirstFreePg = ZonePageCount;
656 	z->z_CpuGd = gd;
657 	z->z_Cpu = gd->gd_cpuid;
658 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
659 	z->z_Next = slgd->ZoneAry[zi];
660 	slgd->ZoneAry[zi] = z;
661 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
662 	    flags &= ~M_ZERO;	/* already zero'd */
663 	    flags |= M_PASSIVE_ZERO;
664 	}
665 #if defined(INVARIANTS)
666 	chunk_mark_allocated(z, chunk);
667 #endif
668 
669 	/*
670 	 * Slide the base index for initial allocations out of the next
671 	 * zone we create so we do not over-weight the lower part of the
672 	 * cpu memory caches.
673 	 */
674 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
675 				& (ZALLOC_MAX_ZONE_SIZE - 1);
676     }
677 done:
678     ++type->ks_inuse[gd->gd_cpuid];
679     type->ks_memuse[gd->gd_cpuid] += size;
680     type->ks_loosememuse += size;	/* not MP synchronized */
681     crit_exit();
682     if (flags & M_ZERO)
683 	bzero(chunk, size);
684 #ifdef INVARIANTS
685     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
686 	if (use_malloc_pattern) {
687 	    for (i = 0; i < size; i += sizeof(int)) {
688 		*(int *)((char *)chunk + i) = -1;
689 	    }
690 	}
691 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
692     }
693 #endif
694     logmemory(malloc, chunk, type, size, flags);
695     return(chunk);
696 fail:
697     crit_exit();
698     logmemory(malloc, NULL, type, size, flags);
699     return(NULL);
700 }
701 
702 /*
703  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
704  *
705  * Generally speaking this routine is not called very often and we do
706  * not attempt to optimize it beyond reusing the same pointer if the
707  * new size fits within the chunking of the old pointer's zone.
708  */
709 void *
710 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
711 {
712     SLZone *z;
713     void *nptr;
714     unsigned long osize;
715 
716     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
717 
718     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
719 	return(kmalloc(size, type, flags));
720     if (size == 0) {
721 	kfree(ptr, type);
722 	return(NULL);
723     }
724 
725     /*
726      * Handle oversized allocations.  XXX we really should require that a
727      * size be passed to free() instead of this nonsense.
728      */
729     {
730 	struct kmemusage *kup;
731 
732 	kup = btokup(ptr);
733 	if (kup->ku_pagecnt) {
734 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
735 	    if (osize == round_page(size))
736 		return(ptr);
737 	    if ((nptr = kmalloc(size, type, flags)) == NULL)
738 		return(NULL);
739 	    bcopy(ptr, nptr, min(size, osize));
740 	    kfree(ptr, type);
741 	    return(nptr);
742 	}
743     }
744 
745     /*
746      * Get the original allocation's zone.  If the new request winds up
747      * using the same chunk size we do not have to do anything.
748      */
749     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
750     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
751 
752     zoneindex(&size);
753     if (z->z_ChunkSize == size)
754 	return(ptr);
755 
756     /*
757      * Allocate memory for the new request size.  Note that zoneindex has
758      * already adjusted the request size to the appropriate chunk size, which
759      * should optimize our bcopy().  Then copy and return the new pointer.
760      */
761     if ((nptr = kmalloc(size, type, flags)) == NULL)
762 	return(NULL);
763     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
764     kfree(ptr, type);
765     return(nptr);
766 }
767 
768 /*
769  * Return the kmalloc limit for this type, in bytes.
770  */
771 long
772 kmalloc_limit(struct malloc_type *type)
773 {
774     if (type->ks_limit == 0) {
775 	crit_enter();
776 	if (type->ks_limit == 0)
777 	    malloc_init(type);
778 	crit_exit();
779     }
780     return(type->ks_limit);
781 }
782 
783 /*
784  * Allocate a copy of the specified string.
785  *
786  * (MP SAFE) (MAY BLOCK)
787  */
788 char *
789 kstrdup(const char *str, struct malloc_type *type)
790 {
791     int zlen;	/* length inclusive of terminating NUL */
792     char *nstr;
793 
794     if (str == NULL)
795 	return(NULL);
796     zlen = strlen(str) + 1;
797     nstr = kmalloc(zlen, type, M_WAITOK);
798     bcopy(str, nstr, zlen);
799     return(nstr);
800 }
801 
802 #ifdef SMP
803 /*
804  * free()	(SLAB ALLOCATOR)
805  *
806  *	Free the specified chunk of memory.
807  */
808 static
809 void
810 free_remote(void *ptr)
811 {
812     logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0);
813     kfree(ptr, *(struct malloc_type **)ptr);
814 }
815 
816 #endif
817 
818 /*
819  * free (SLAB ALLOCATOR)
820  *
821  * Free a memory block previously allocated by malloc.  Note that we do not
822  * attempt to uplodate ks_loosememuse as MP races could prevent us from
823  * checking memory limits in malloc.
824  *
825  * MPSAFE
826  */
827 void
828 kfree(void *ptr, struct malloc_type *type)
829 {
830     SLZone *z;
831     SLChunk *chunk;
832     SLGlobalData *slgd;
833     struct globaldata *gd;
834     int pgno;
835 
836     logmemory_quick(free_beg);
837     gd = mycpu;
838     slgd = &gd->gd_slab;
839 
840     if (ptr == NULL)
841 	panic("trying to free NULL pointer");
842 
843     /*
844      * Handle special 0-byte allocations
845      */
846     if (ptr == ZERO_LENGTH_PTR) {
847 	logmemory(free_zero, ptr, type, -1, 0);
848 	logmemory_quick(free_end);
849 	return;
850     }
851 
852     /*
853      * Handle oversized allocations.  XXX we really should require that a
854      * size be passed to free() instead of this nonsense.
855      *
856      * This code is never called via an ipi.
857      */
858     {
859 	struct kmemusage *kup;
860 	unsigned long size;
861 
862 	kup = btokup(ptr);
863 	if (kup->ku_pagecnt) {
864 	    size = kup->ku_pagecnt << PAGE_SHIFT;
865 	    kup->ku_pagecnt = 0;
866 #ifdef INVARIANTS
867 	    KKASSERT(sizeof(weirdary) <= size);
868 	    bcopy(weirdary, ptr, sizeof(weirdary));
869 #endif
870 	    /*
871 	     * note: we always adjust our cpu's slot, not the originating
872 	     * cpu (kup->ku_cpuid).  The statistics are in aggregate.
873 	     *
874 	     * note: XXX we have still inherited the interrupts-can't-block
875 	     * assumption.  An interrupt thread does not bump
876 	     * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
877 	     * primarily until we can fix softupdate's assumptions about free().
878 	     */
879 	    crit_enter();
880 	    --type->ks_inuse[gd->gd_cpuid];
881 	    type->ks_memuse[gd->gd_cpuid] -= size;
882 	    if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
883 		logmemory(free_ovsz_delayed, ptr, type, size, 0);
884 		z = (SLZone *)ptr;
885 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
886 		z->z_Next = slgd->FreeOvZones;
887 		z->z_ChunkSize = size;
888 		slgd->FreeOvZones = z;
889 		crit_exit();
890 	    } else {
891 		crit_exit();
892 		logmemory(free_ovsz, ptr, type, size, 0);
893 		kmem_slab_free(ptr, size);	/* may block */
894 	    }
895 	    logmemory_quick(free_end);
896 	    return;
897 	}
898     }
899 
900     /*
901      * Zone case.  Figure out the zone based on the fact that it is
902      * ZoneSize aligned.
903      */
904     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
905     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
906 
907     /*
908      * If we do not own the zone then forward the request to the
909      * cpu that does.  Since the timing is non-critical, a passive
910      * message is sent.
911      */
912     if (z->z_CpuGd != gd) {
913 	*(struct malloc_type **)ptr = type;
914 #ifdef SMP
915 	logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
916 	lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr);
917 #else
918 	panic("Corrupt SLZone");
919 #endif
920 	logmemory_quick(free_end);
921 	return;
922     }
923 
924     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
925 
926     if (type->ks_magic != M_MAGIC)
927 	panic("free: malloc type lacks magic");
928 
929     crit_enter();
930     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
931     chunk = ptr;
932 
933 #ifdef INVARIANTS
934     /*
935      * Attempt to detect a double-free.  To reduce overhead we only check
936      * if there appears to be link pointer at the base of the data.
937      */
938     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
939 	SLChunk *scan;
940 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
941 	    if (scan == chunk)
942 		panic("Double free at %p", chunk);
943 	}
944     }
945     chunk_mark_free(z, chunk);
946 #endif
947 
948     /*
949      * Put weird data into the memory to detect modifications after freeing,
950      * illegal pointer use after freeing (we should fault on the odd address),
951      * and so forth.  XXX needs more work, see the old malloc code.
952      */
953 #ifdef INVARIANTS
954     if (z->z_ChunkSize < sizeof(weirdary))
955 	bcopy(weirdary, chunk, z->z_ChunkSize);
956     else
957 	bcopy(weirdary, chunk, sizeof(weirdary));
958 #endif
959 
960     /*
961      * Add this free non-zero'd chunk to a linked list for reuse, adjust
962      * z_FirstFreePg.
963      */
964 #ifdef INVARIANTS
965     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
966 	panic("BADFREE %p", chunk);
967 #endif
968     chunk->c_Next = z->z_PageAry[pgno];
969     z->z_PageAry[pgno] = chunk;
970 #ifdef INVARIANTS
971     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
972 	panic("BADFREE2");
973 #endif
974     if (z->z_FirstFreePg > pgno)
975 	z->z_FirstFreePg = pgno;
976 
977     /*
978      * Bump the number of free chunks.  If it becomes non-zero the zone
979      * must be added back onto the appropriate list.
980      */
981     if (z->z_NFree++ == 0) {
982 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
983 	slgd->ZoneAry[z->z_ZoneIndex] = z;
984     }
985 
986     --type->ks_inuse[z->z_Cpu];
987     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
988 
989     /*
990      * If the zone becomes totally free, and there are other zones we
991      * can allocate from, move this zone to the FreeZones list.  Since
992      * this code can be called from an IPI callback, do *NOT* try to mess
993      * with kernel_map here.  Hysteresis will be performed at malloc() time.
994      */
995     if (z->z_NFree == z->z_NMax &&
996 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
997     ) {
998 	SLZone **pz;
999 
1000 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1001 	    ;
1002 	*pz = z->z_Next;
1003 	z->z_Magic = -1;
1004 	z->z_Next = slgd->FreeZones;
1005 	slgd->FreeZones = z;
1006 	++slgd->NFreeZones;
1007     }
1008     logmemory_quick(free_end);
1009     crit_exit();
1010 }
1011 
1012 #if defined(INVARIANTS)
1013 /*
1014  * Helper routines for sanity checks
1015  */
1016 static
1017 void
1018 chunk_mark_allocated(SLZone *z, void *chunk)
1019 {
1020     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1021     __uint32_t *bitptr;
1022 
1023     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1024     bitptr = &z->z_Bitmap[bitdex >> 5];
1025     bitdex &= 31;
1026     KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk));
1027     *bitptr |= 1 << bitdex;
1028 }
1029 
1030 static
1031 void
1032 chunk_mark_free(SLZone *z, void *chunk)
1033 {
1034     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1035     __uint32_t *bitptr;
1036 
1037     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1038     bitptr = &z->z_Bitmap[bitdex >> 5];
1039     bitdex &= 31;
1040     KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk));
1041     *bitptr &= ~(1 << bitdex);
1042 }
1043 
1044 #endif
1045 
1046 /*
1047  * kmem_slab_alloc()
1048  *
1049  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1050  *	specified alignment.  M_* flags are expected in the flags field.
1051  *
1052  *	Alignment must be a multiple of PAGE_SIZE.
1053  *
1054  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1055  *	but when we move zalloc() over to use this function as its backend
1056  *	we will have to switch to kreserve/krelease and call reserve(0)
1057  *	after the new space is made available.
1058  *
1059  *	Interrupt code which has preempted other code is not allowed to
1060  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1061  *	non-preemptively or blocks and then runs non-preemptively, then
1062  *	it is free to use PQ_CACHE pages.
1063  *
1064  *	This routine will currently obtain the BGL.
1065  *
1066  * MPALMOSTSAFE - acquires mplock
1067  */
1068 static void *
1069 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1070 {
1071     vm_size_t i;
1072     vm_offset_t addr;
1073     int count, vmflags, base_vmflags;
1074     thread_t td;
1075 
1076     size = round_page(size);
1077     addr = vm_map_min(&kernel_map);
1078 
1079     /*
1080      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1081      * cannot block.
1082      */
1083     if (flags & M_RNOWAIT) {
1084 	if (try_mplock() == 0)
1085 	    return(NULL);
1086     } else {
1087 	get_mplock();
1088     }
1089     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1090     crit_enter();
1091     vm_map_lock(&kernel_map);
1092     if (vm_map_findspace(&kernel_map, addr, size, align, &addr)) {
1093 	vm_map_unlock(&kernel_map);
1094 	if ((flags & M_NULLOK) == 0)
1095 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1096 	crit_exit();
1097 	vm_map_entry_release(count);
1098 	rel_mplock();
1099 	return(NULL);
1100     }
1101 
1102     /*
1103      * kernel_object maps 1:1 to kernel_map.
1104      */
1105     vm_object_reference(&kernel_object);
1106     vm_map_insert(&kernel_map, &count,
1107 		    &kernel_object, addr, addr, addr + size,
1108 		    VM_MAPTYPE_NORMAL,
1109 		    VM_PROT_ALL, VM_PROT_ALL,
1110 		    0);
1111 
1112     td = curthread;
1113 
1114     base_vmflags = 0;
1115     if (flags & M_ZERO)
1116         base_vmflags |= VM_ALLOC_ZERO;
1117     if (flags & M_USE_RESERVE)
1118 	base_vmflags |= VM_ALLOC_SYSTEM;
1119     if (flags & M_USE_INTERRUPT_RESERVE)
1120         base_vmflags |= VM_ALLOC_INTERRUPT;
1121     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
1122     	panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
1123 
1124 
1125     /*
1126      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1127      */
1128     for (i = 0; i < size; i += PAGE_SIZE) {
1129 	vm_page_t m;
1130 
1131 	/*
1132 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1133 	 *
1134 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1135 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1136 	 * implied in this case), though I'm not sure if we really need to
1137 	 * do that.
1138 	 */
1139 	vmflags = base_vmflags;
1140 	if (flags & M_WAITOK) {
1141 	    if (td->td_preempted)
1142 		vmflags |= VM_ALLOC_SYSTEM;
1143 	    else
1144 		vmflags |= VM_ALLOC_NORMAL;
1145 	}
1146 
1147 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1148 
1149 	/*
1150 	 * If the allocation failed we either return NULL or we retry.
1151 	 *
1152 	 * If M_WAITOK is specified we wait for more memory and retry.
1153 	 * If M_WAITOK is specified from a preemption we yield instead of
1154 	 * wait.  Livelock will not occur because the interrupt thread
1155 	 * will not be preempting anyone the second time around after the
1156 	 * yield.
1157 	 */
1158 	if (m == NULL) {
1159 	    if (flags & M_WAITOK) {
1160 		if (td->td_preempted) {
1161 		    vm_map_unlock(&kernel_map);
1162 		    lwkt_yield();
1163 		    vm_map_lock(&kernel_map);
1164 		} else {
1165 		    vm_map_unlock(&kernel_map);
1166 		    vm_wait(0);
1167 		    vm_map_lock(&kernel_map);
1168 		}
1169 		i -= PAGE_SIZE;	/* retry */
1170 		continue;
1171 	    }
1172 
1173 	    /*
1174 	     * We were unable to recover, cleanup and return NULL
1175 	     */
1176 	    while (i != 0) {
1177 		i -= PAGE_SIZE;
1178 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1179 		/* page should already be busy */
1180 		vm_page_free(m);
1181 	    }
1182 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1183 	    vm_map_unlock(&kernel_map);
1184 	    crit_exit();
1185 	    vm_map_entry_release(count);
1186 	    rel_mplock();
1187 	    return(NULL);
1188 	}
1189     }
1190 
1191     /*
1192      * Success!
1193      *
1194      * Mark the map entry as non-pageable using a routine that allows us to
1195      * populate the underlying pages.
1196      *
1197      * The pages were busied by the allocations above.
1198      */
1199     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1200     crit_exit();
1201 
1202     /*
1203      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1204      */
1205     for (i = 0; i < size; i += PAGE_SIZE) {
1206 	vm_page_t m;
1207 
1208 	m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1209 	m->valid = VM_PAGE_BITS_ALL;
1210 	/* page should already be busy */
1211 	vm_page_wire(m);
1212 	vm_page_wakeup(m);
1213 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1214 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1215 	    bzero((char *)addr + i, PAGE_SIZE);
1216 	vm_page_flag_clear(m, PG_ZERO);
1217 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1218 	vm_page_flag_set(m, PG_REFERENCED);
1219     }
1220     vm_map_unlock(&kernel_map);
1221     vm_map_entry_release(count);
1222     rel_mplock();
1223     return((void *)addr);
1224 }
1225 
1226 /*
1227  * kmem_slab_free()
1228  *
1229  * MPALMOSTSAFE - acquires mplock
1230  */
1231 static void
1232 kmem_slab_free(void *ptr, vm_size_t size)
1233 {
1234     get_mplock();
1235     crit_enter();
1236     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1237     crit_exit();
1238     rel_mplock();
1239 }
1240 
1241