1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $ 39 * 40 * This module implements a slab allocator drop-in replacement for the 41 * kernel malloc(). 42 * 43 * A slab allocator reserves a ZONE for each chunk size, then lays the 44 * chunks out in an array within the zone. Allocation and deallocation 45 * is nearly instantanious, and fragmentation/overhead losses are limited 46 * to a fixed worst-case amount. 47 * 48 * The downside of this slab implementation is in the chunk size 49 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 50 * In a kernel implementation all this memory will be physical so 51 * the zone size is adjusted downward on machines with less physical 52 * memory. The upside is that overhead is bounded... this is the *worst* 53 * case overhead. 54 * 55 * Slab management is done on a per-cpu basis and no locking or mutexes 56 * are required, only a critical section. When one cpu frees memory 57 * belonging to another cpu's slab manager an asynchronous IPI message 58 * will be queued to execute the operation. In addition, both the 59 * high level slab allocator and the low level zone allocator optimize 60 * M_ZERO requests, and the slab allocator does not have to pre initialize 61 * the linked list of chunks. 62 * 63 * XXX Balancing is needed between cpus. Balance will be handled through 64 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 65 * 66 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 67 * the new zone should be restricted to M_USE_RESERVE requests only. 68 * 69 * Alloc Size Chunking Number of zones 70 * 0-127 8 16 71 * 128-255 16 8 72 * 256-511 32 8 73 * 512-1023 64 8 74 * 1024-2047 128 8 75 * 2048-4095 256 8 76 * 4096-8191 512 8 77 * 8192-16383 1024 8 78 * 16384-32767 2048 8 79 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 80 * 81 * Allocations >= ZoneLimit go directly to kmem. 82 * 83 * API REQUIREMENTS AND SIDE EFFECTS 84 * 85 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 86 * have remained compatible with the following API requirements: 87 * 88 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 89 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 90 * + malloc(0) is allowed and returns non-NULL (ahc driver) 91 * + ability to allocate arbitrarily large chunks of memory 92 */ 93 94 #include "opt_vm.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/kernel.h> 99 #include <sys/slaballoc.h> 100 #include <sys/mbuf.h> 101 #include <sys/vmmeter.h> 102 #include <sys/lock.h> 103 #include <sys/thread.h> 104 #include <sys/globaldata.h> 105 #include <sys/sysctl.h> 106 #include <sys/ktr.h> 107 108 #include <vm/vm.h> 109 #include <vm/vm_param.h> 110 #include <vm/vm_kern.h> 111 #include <vm/vm_extern.h> 112 #include <vm/vm_object.h> 113 #include <vm/pmap.h> 114 #include <vm/vm_map.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 118 #include <machine/cpu.h> 119 120 #include <sys/thread2.h> 121 122 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 123 124 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x" 125 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \ 126 sizeof(int)) 127 128 #if !defined(KTR_MEMORY) 129 #define KTR_MEMORY KTR_ALL 130 #endif 131 KTR_INFO_MASTER(memory); 132 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0); 133 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE); 134 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE); 135 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE); 136 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE); 137 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE); 138 #ifdef SMP 139 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE); 140 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE); 141 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE); 142 #endif 143 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0); 144 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0); 145 146 #define logmemory(name, ptr, type, size, flags) \ 147 KTR_LOG(memory_ ## name, ptr, type, size, flags) 148 #define logmemory_quick(name) \ 149 KTR_LOG(memory_ ## name) 150 151 /* 152 * Fixed globals (not per-cpu) 153 */ 154 static int ZoneSize; 155 static int ZoneLimit; 156 static int ZonePageCount; 157 static uintptr_t ZoneMask; 158 static int ZoneBigAlloc; /* in KB */ 159 static int ZoneGenAlloc; /* in KB */ 160 struct malloc_type *kmemstatistics; /* exported to vmstat */ 161 static struct kmemusage *kmemusage; 162 static int32_t weirdary[16]; 163 164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 165 static void kmem_slab_free(void *ptr, vm_size_t bytes); 166 167 #if defined(INVARIANTS) 168 static void chunk_mark_allocated(SLZone *z, void *chunk); 169 static void chunk_mark_free(SLZone *z, void *chunk); 170 #else 171 #define chunk_mark_allocated(z, chunk) 172 #define chunk_mark_free(z, chunk) 173 #endif 174 175 /* 176 * Misc constants. Note that allocations that are exact multiples of 177 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 178 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 179 */ 180 #define MIN_CHUNK_SIZE 8 /* in bytes */ 181 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 182 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 183 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 184 185 /* 186 * The WEIRD_ADDR is used as known text to copy into free objects to 187 * try to create deterministic failure cases if the data is accessed after 188 * free. 189 */ 190 #define WEIRD_ADDR 0xdeadc0de 191 #define MAX_COPY sizeof(weirdary) 192 #define ZERO_LENGTH_PTR ((void *)-8) 193 194 /* 195 * Misc global malloc buckets 196 */ 197 198 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 199 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 200 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 201 202 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 203 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 204 205 /* 206 * Initialize the slab memory allocator. We have to choose a zone size based 207 * on available physical memory. We choose a zone side which is approximately 208 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 209 * 128K. The zone size is limited to the bounds set in slaballoc.h 210 * (typically 32K min, 128K max). 211 */ 212 static void kmeminit(void *dummy); 213 214 char *ZeroPage; 215 216 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 217 218 #ifdef INVARIANTS 219 /* 220 * If enabled any memory allocated without M_ZERO is initialized to -1. 221 */ 222 static int use_malloc_pattern; 223 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 224 &use_malloc_pattern, 0, ""); 225 #endif 226 227 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 228 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 229 230 static void 231 kmeminit(void *dummy) 232 { 233 size_t limsize; 234 int usesize; 235 int i; 236 vm_offset_t npg; 237 238 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 239 if (limsize > KvaSize) 240 limsize = KvaSize; 241 242 usesize = (int)(limsize / 1024); /* convert to KB */ 243 244 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 245 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 246 ZoneSize <<= 1; 247 ZoneLimit = ZoneSize / 4; 248 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 249 ZoneLimit = ZALLOC_ZONE_LIMIT; 250 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 251 ZonePageCount = ZoneSize / PAGE_SIZE; 252 253 npg = KvaSize / PAGE_SIZE; 254 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), 255 PAGE_SIZE, M_WAITOK|M_ZERO); 256 257 for (i = 0; i < arysize(weirdary); ++i) 258 weirdary[i] = WEIRD_ADDR; 259 260 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 261 262 if (bootverbose) 263 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 264 } 265 266 /* 267 * Initialize a malloc type tracking structure. 268 */ 269 void 270 malloc_init(void *data) 271 { 272 struct malloc_type *type = data; 273 size_t limsize; 274 275 if (type->ks_magic != M_MAGIC) 276 panic("malloc type lacks magic"); 277 278 if (type->ks_limit != 0) 279 return; 280 281 if (vmstats.v_page_count == 0) 282 panic("malloc_init not allowed before vm init"); 283 284 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 285 if (limsize > KvaSize) 286 limsize = KvaSize; 287 type->ks_limit = limsize / 10; 288 289 type->ks_next = kmemstatistics; 290 kmemstatistics = type; 291 } 292 293 void 294 malloc_uninit(void *data) 295 { 296 struct malloc_type *type = data; 297 struct malloc_type *t; 298 #ifdef INVARIANTS 299 int i; 300 long ttl; 301 #endif 302 303 if (type->ks_magic != M_MAGIC) 304 panic("malloc type lacks magic"); 305 306 if (vmstats.v_page_count == 0) 307 panic("malloc_uninit not allowed before vm init"); 308 309 if (type->ks_limit == 0) 310 panic("malloc_uninit on uninitialized type"); 311 312 #ifdef SMP 313 /* Make sure that all pending kfree()s are finished. */ 314 lwkt_synchronize_ipiqs("muninit"); 315 #endif 316 317 #ifdef INVARIANTS 318 /* 319 * memuse is only correct in aggregation. Due to memory being allocated 320 * on one cpu and freed on another individual array entries may be 321 * negative or positive (canceling each other out). 322 */ 323 for (i = ttl = 0; i < ncpus; ++i) 324 ttl += type->ks_memuse[i]; 325 if (ttl) { 326 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 327 ttl, type->ks_shortdesc, i); 328 } 329 #endif 330 if (type == kmemstatistics) { 331 kmemstatistics = type->ks_next; 332 } else { 333 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 334 if (t->ks_next == type) { 335 t->ks_next = type->ks_next; 336 break; 337 } 338 } 339 } 340 type->ks_next = NULL; 341 type->ks_limit = 0; 342 } 343 344 /* 345 * Increase the kmalloc pool limit for the specified pool. No changes 346 * are the made if the pool would shrink. 347 */ 348 void 349 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 350 { 351 if (type->ks_limit == 0) 352 malloc_init(type); 353 if (bytes == 0) 354 bytes = KvaSize; 355 if (type->ks_limit < bytes) 356 type->ks_limit = bytes; 357 } 358 359 /* 360 * Dynamically create a malloc pool. This function is a NOP if *typep is 361 * already non-NULL. 362 */ 363 void 364 kmalloc_create(struct malloc_type **typep, const char *descr) 365 { 366 struct malloc_type *type; 367 368 if (*typep == NULL) { 369 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 370 type->ks_magic = M_MAGIC; 371 type->ks_shortdesc = descr; 372 malloc_init(type); 373 *typep = type; 374 } 375 } 376 377 /* 378 * Destroy a dynamically created malloc pool. This function is a NOP if 379 * the pool has already been destroyed. 380 */ 381 void 382 kmalloc_destroy(struct malloc_type **typep) 383 { 384 if (*typep != NULL) { 385 malloc_uninit(*typep); 386 kfree(*typep, M_TEMP); 387 *typep = NULL; 388 } 389 } 390 391 /* 392 * Calculate the zone index for the allocation request size and set the 393 * allocation request size to that particular zone's chunk size. 394 */ 395 static __inline int 396 zoneindex(unsigned long *bytes) 397 { 398 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 399 if (n < 128) { 400 *bytes = n = (n + 7) & ~7; 401 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 402 } 403 if (n < 256) { 404 *bytes = n = (n + 15) & ~15; 405 return(n / 16 + 7); 406 } 407 if (n < 8192) { 408 if (n < 512) { 409 *bytes = n = (n + 31) & ~31; 410 return(n / 32 + 15); 411 } 412 if (n < 1024) { 413 *bytes = n = (n + 63) & ~63; 414 return(n / 64 + 23); 415 } 416 if (n < 2048) { 417 *bytes = n = (n + 127) & ~127; 418 return(n / 128 + 31); 419 } 420 if (n < 4096) { 421 *bytes = n = (n + 255) & ~255; 422 return(n / 256 + 39); 423 } 424 *bytes = n = (n + 511) & ~511; 425 return(n / 512 + 47); 426 } 427 #if ZALLOC_ZONE_LIMIT > 8192 428 if (n < 16384) { 429 *bytes = n = (n + 1023) & ~1023; 430 return(n / 1024 + 55); 431 } 432 #endif 433 #if ZALLOC_ZONE_LIMIT > 16384 434 if (n < 32768) { 435 *bytes = n = (n + 2047) & ~2047; 436 return(n / 2048 + 63); 437 } 438 #endif 439 panic("Unexpected byte count %d", n); 440 return(0); 441 } 442 443 /* 444 * kmalloc() (SLAB ALLOCATOR) 445 * 446 * Allocate memory via the slab allocator. If the request is too large, 447 * or if it page-aligned beyond a certain size, we fall back to the 448 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 449 * &SlabMisc if you don't care. 450 * 451 * M_RNOWAIT - don't block. 452 * M_NULLOK - return NULL instead of blocking. 453 * M_ZERO - zero the returned memory. 454 * M_USE_RESERVE - allow greater drawdown of the free list 455 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 456 * 457 * MPSAFE 458 */ 459 void * 460 kmalloc(unsigned long size, struct malloc_type *type, int flags) 461 { 462 SLZone *z; 463 SLChunk *chunk; 464 SLChunk *bchunk; 465 SLGlobalData *slgd; 466 struct globaldata *gd; 467 int zi; 468 #ifdef INVARIANTS 469 int i; 470 #endif 471 472 logmemory_quick(malloc_beg); 473 gd = mycpu; 474 slgd = &gd->gd_slab; 475 476 /* 477 * XXX silly to have this in the critical path. 478 */ 479 if (type->ks_limit == 0) { 480 crit_enter(); 481 if (type->ks_limit == 0) 482 malloc_init(type); 483 crit_exit(); 484 } 485 ++type->ks_calls; 486 487 /* 488 * Handle the case where the limit is reached. Panic if we can't return 489 * NULL. The original malloc code looped, but this tended to 490 * simply deadlock the computer. 491 * 492 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 493 * to determine if a more complete limit check should be done. The 494 * actual memory use is tracked via ks_memuse[cpu]. 495 */ 496 while (type->ks_loosememuse >= type->ks_limit) { 497 int i; 498 long ttl; 499 500 for (i = ttl = 0; i < ncpus; ++i) 501 ttl += type->ks_memuse[i]; 502 type->ks_loosememuse = ttl; /* not MP synchronized */ 503 if (ttl >= type->ks_limit) { 504 if (flags & M_NULLOK) { 505 logmemory(malloc_end, NULL, type, size, flags); 506 return(NULL); 507 } 508 panic("%s: malloc limit exceeded", type->ks_shortdesc); 509 } 510 } 511 512 /* 513 * Handle the degenerate size == 0 case. Yes, this does happen. 514 * Return a special pointer. This is to maintain compatibility with 515 * the original malloc implementation. Certain devices, such as the 516 * adaptec driver, not only allocate 0 bytes, they check for NULL and 517 * also realloc() later on. Joy. 518 */ 519 if (size == 0) { 520 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 521 return(ZERO_LENGTH_PTR); 522 } 523 524 /* 525 * Handle hysteresis from prior frees here in malloc(). We cannot 526 * safely manipulate the kernel_map in free() due to free() possibly 527 * being called via an IPI message or from sensitive interrupt code. 528 * 529 * NOTE: ku_pagecnt must be cleared before we free the slab or we 530 * might race another cpu allocating the kva and setting 531 * ku_pagecnt. 532 */ 533 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 534 crit_enter(); 535 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 536 struct kmemusage *kup; 537 538 z = slgd->FreeZones; 539 slgd->FreeZones = z->z_Next; 540 --slgd->NFreeZones; 541 kup = btokup(z); 542 kup->ku_pagecnt = 0; 543 kmem_slab_free(z, ZoneSize); /* may block */ 544 atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024); 545 } 546 crit_exit(); 547 } 548 549 /* 550 * XXX handle oversized frees that were queued from kfree(). 551 */ 552 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 553 crit_enter(); 554 if ((z = slgd->FreeOvZones) != NULL) { 555 vm_size_t tsize; 556 557 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 558 slgd->FreeOvZones = z->z_Next; 559 tsize = z->z_ChunkSize; 560 kmem_slab_free(z, tsize); /* may block */ 561 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 562 } 563 crit_exit(); 564 } 565 566 /* 567 * Handle large allocations directly. There should not be very many of 568 * these so performance is not a big issue. 569 * 570 * The backend allocator is pretty nasty on a SMP system. Use the 571 * slab allocator for one and two page-sized chunks even though we lose 572 * some efficiency. XXX maybe fix mmio and the elf loader instead. 573 */ 574 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 575 struct kmemusage *kup; 576 577 size = round_page(size); 578 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 579 if (chunk == NULL) { 580 logmemory(malloc_end, NULL, type, size, flags); 581 return(NULL); 582 } 583 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 584 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 585 flags |= M_PASSIVE_ZERO; 586 kup = btokup(chunk); 587 kup->ku_pagecnt = size / PAGE_SIZE; 588 crit_enter(); 589 goto done; 590 } 591 592 /* 593 * Attempt to allocate out of an existing zone. First try the free list, 594 * then allocate out of unallocated space. If we find a good zone move 595 * it to the head of the list so later allocations find it quickly 596 * (we might have thousands of zones in the list). 597 * 598 * Note: zoneindex() will panic of size is too large. 599 */ 600 zi = zoneindex(&size); 601 KKASSERT(zi < NZONES); 602 crit_enter(); 603 604 if ((z = slgd->ZoneAry[zi]) != NULL) { 605 /* 606 * Locate a chunk - we have to have at least one. If this is the 607 * last chunk go ahead and do the work to retrieve chunks freed 608 * from remote cpus, and if the zone is still empty move it off 609 * the ZoneAry. 610 */ 611 if (--z->z_NFree <= 0) { 612 KKASSERT(z->z_NFree == 0); 613 614 #ifdef SMP 615 /* 616 * WARNING! This code competes with other cpus. It is ok 617 * for us to not drain RChunks here but we might as well, and 618 * it is ok if more accumulate after we're done. 619 * 620 * Set RSignal before pulling rchunks off, indicating that we 621 * will be moving ourselves off of the ZoneAry. Remote ends will 622 * read RSignal before putting rchunks on thus interlocking 623 * their IPI signaling. 624 */ 625 if (z->z_RChunks == NULL) 626 atomic_swap_int(&z->z_RSignal, 1); 627 628 while ((bchunk = z->z_RChunks) != NULL) { 629 cpu_ccfence(); 630 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 631 *z->z_LChunksp = bchunk; 632 while (bchunk) { 633 chunk_mark_free(z, bchunk); 634 z->z_LChunksp = &bchunk->c_Next; 635 bchunk = bchunk->c_Next; 636 ++z->z_NFree; 637 } 638 break; 639 } 640 } 641 #endif 642 /* 643 * Remove from the zone list if no free chunks remain. 644 * Clear RSignal 645 */ 646 if (z->z_NFree == 0) { 647 slgd->ZoneAry[zi] = z->z_Next; 648 z->z_Next = NULL; 649 } else { 650 z->z_RSignal = 0; 651 } 652 } 653 654 /* 655 * Fast path, we have chunks available in z_LChunks. 656 */ 657 chunk = z->z_LChunks; 658 if (chunk) { 659 chunk_mark_allocated(z, chunk); 660 z->z_LChunks = chunk->c_Next; 661 if (z->z_LChunks == NULL) 662 z->z_LChunksp = &z->z_LChunks; 663 goto done; 664 } 665 666 /* 667 * No chunks are available in LChunks, the free chunk MUST be 668 * in the never-before-used memory area, controlled by UIndex. 669 * 670 * The consequences are very serious if our zone got corrupted so 671 * we use an explicit panic rather than a KASSERT. 672 */ 673 if (z->z_UIndex + 1 != z->z_NMax) 674 ++z->z_UIndex; 675 else 676 z->z_UIndex = 0; 677 678 if (z->z_UIndex == z->z_UEndIndex) 679 panic("slaballoc: corrupted zone"); 680 681 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 682 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 683 flags &= ~M_ZERO; 684 flags |= M_PASSIVE_ZERO; 685 } 686 chunk_mark_allocated(z, chunk); 687 goto done; 688 } 689 690 /* 691 * If all zones are exhausted we need to allocate a new zone for this 692 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 693 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 694 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 695 * we do not pre-zero it because we do not want to mess up the L1 cache. 696 * 697 * At least one subsystem, the tty code (see CROUND) expects power-of-2 698 * allocations to be power-of-2 aligned. We maintain compatibility by 699 * adjusting the base offset below. 700 */ 701 { 702 int off; 703 struct kmemusage *kup; 704 705 if ((z = slgd->FreeZones) != NULL) { 706 slgd->FreeZones = z->z_Next; 707 --slgd->NFreeZones; 708 bzero(z, sizeof(SLZone)); 709 z->z_Flags |= SLZF_UNOTZEROD; 710 } else { 711 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 712 if (z == NULL) 713 goto fail; 714 atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024); 715 } 716 717 /* 718 * How big is the base structure? 719 */ 720 #if defined(INVARIANTS) 721 /* 722 * Make room for z_Bitmap. An exact calculation is somewhat more 723 * complicated so don't make an exact calculation. 724 */ 725 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 726 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 727 #else 728 off = sizeof(SLZone); 729 #endif 730 731 /* 732 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 733 * Otherwise just 8-byte align the data. 734 */ 735 if ((size | (size - 1)) + 1 == (size << 1)) 736 off = (off + size - 1) & ~(size - 1); 737 else 738 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 739 z->z_Magic = ZALLOC_SLAB_MAGIC; 740 z->z_ZoneIndex = zi; 741 z->z_NMax = (ZoneSize - off) / size; 742 z->z_NFree = z->z_NMax - 1; 743 z->z_BasePtr = (char *)z + off; 744 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 745 z->z_ChunkSize = size; 746 z->z_CpuGd = gd; 747 z->z_Cpu = gd->gd_cpuid; 748 z->z_LChunksp = &z->z_LChunks; 749 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 750 z->z_Next = slgd->ZoneAry[zi]; 751 slgd->ZoneAry[zi] = z; 752 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 753 flags &= ~M_ZERO; /* already zero'd */ 754 flags |= M_PASSIVE_ZERO; 755 } 756 kup = btokup(z); 757 kup->ku_pagecnt = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 758 chunk_mark_allocated(z, chunk); 759 760 /* 761 * Slide the base index for initial allocations out of the next 762 * zone we create so we do not over-weight the lower part of the 763 * cpu memory caches. 764 */ 765 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 766 & (ZALLOC_MAX_ZONE_SIZE - 1); 767 } 768 769 done: 770 ++type->ks_inuse[gd->gd_cpuid]; 771 type->ks_memuse[gd->gd_cpuid] += size; 772 type->ks_loosememuse += size; /* not MP synchronized */ 773 crit_exit(); 774 775 if (flags & M_ZERO) 776 bzero(chunk, size); 777 #ifdef INVARIANTS 778 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 779 if (use_malloc_pattern) { 780 for (i = 0; i < size; i += sizeof(int)) { 781 *(int *)((char *)chunk + i) = -1; 782 } 783 } 784 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 785 } 786 #endif 787 logmemory(malloc_end, chunk, type, size, flags); 788 return(chunk); 789 fail: 790 crit_exit(); 791 logmemory(malloc_end, NULL, type, size, flags); 792 return(NULL); 793 } 794 795 /* 796 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 797 * 798 * Generally speaking this routine is not called very often and we do 799 * not attempt to optimize it beyond reusing the same pointer if the 800 * new size fits within the chunking of the old pointer's zone. 801 */ 802 void * 803 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 804 { 805 struct kmemusage *kup; 806 SLZone *z; 807 void *nptr; 808 unsigned long osize; 809 810 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 811 812 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 813 return(kmalloc(size, type, flags)); 814 if (size == 0) { 815 kfree(ptr, type); 816 return(NULL); 817 } 818 819 /* 820 * Handle oversized allocations. XXX we really should require that a 821 * size be passed to free() instead of this nonsense. 822 */ 823 kup = btokup(ptr); 824 if (kup->ku_pagecnt > 0) { 825 osize = kup->ku_pagecnt << PAGE_SHIFT; 826 if (osize == round_page(size)) 827 return(ptr); 828 if ((nptr = kmalloc(size, type, flags)) == NULL) 829 return(NULL); 830 bcopy(ptr, nptr, min(size, osize)); 831 kfree(ptr, type); 832 return(nptr); 833 } 834 835 /* 836 * Get the original allocation's zone. If the new request winds up 837 * using the same chunk size we do not have to do anything. 838 */ 839 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 840 kup = btokup(z); 841 KKASSERT(kup->ku_pagecnt < 0); 842 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 843 844 /* 845 * Allocate memory for the new request size. Note that zoneindex has 846 * already adjusted the request size to the appropriate chunk size, which 847 * should optimize our bcopy(). Then copy and return the new pointer. 848 * 849 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 850 * necessary align the result. 851 * 852 * We can only zoneindex (to align size to the chunk size) if the new 853 * size is not too large. 854 */ 855 if (size < ZoneLimit) { 856 zoneindex(&size); 857 if (z->z_ChunkSize == size) 858 return(ptr); 859 } 860 if ((nptr = kmalloc(size, type, flags)) == NULL) 861 return(NULL); 862 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 863 kfree(ptr, type); 864 return(nptr); 865 } 866 867 /* 868 * Return the kmalloc limit for this type, in bytes. 869 */ 870 long 871 kmalloc_limit(struct malloc_type *type) 872 { 873 if (type->ks_limit == 0) { 874 crit_enter(); 875 if (type->ks_limit == 0) 876 malloc_init(type); 877 crit_exit(); 878 } 879 return(type->ks_limit); 880 } 881 882 /* 883 * Allocate a copy of the specified string. 884 * 885 * (MP SAFE) (MAY BLOCK) 886 */ 887 char * 888 kstrdup(const char *str, struct malloc_type *type) 889 { 890 int zlen; /* length inclusive of terminating NUL */ 891 char *nstr; 892 893 if (str == NULL) 894 return(NULL); 895 zlen = strlen(str) + 1; 896 nstr = kmalloc(zlen, type, M_WAITOK); 897 bcopy(str, nstr, zlen); 898 return(nstr); 899 } 900 901 #ifdef SMP 902 /* 903 * Notify our cpu that a remote cpu has freed some chunks in a zone that 904 * we own. Due to MP races we might no longer own the zone, use the 905 * kmemusage array to check. 906 */ 907 static 908 void 909 kfree_remote(void *ptr) 910 { 911 struct kmemusage *kup; 912 SLGlobalData *slgd; 913 SLChunk *bchunk; 914 SLZone *z; 915 int nfree; 916 917 /* 918 * Do not dereference (z) until we validate that its storage is 919 * still around. 920 */ 921 slgd = &mycpu->gd_slab; 922 z = ptr; 923 kup = btokup(z); 924 925 if (kup->ku_pagecnt == -((int)mycpuid + 1)) { /* -1 to -(N+1) */ 926 logmemory(free_rem_beg, z, NULL, 0, 0); 927 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 928 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 929 nfree = z->z_NFree; 930 931 /* 932 * Indicate that we will no longer be off of the ZoneAry by 933 * clearing RSignal. 934 */ 935 if (z->z_RChunks) 936 z->z_RSignal = 0; 937 938 /* 939 * Atomically extract the bchunks list and then process it back 940 * into the lchunks list. We want to append our bchunks to the 941 * lchunks list and not prepend since we likely do not have 942 * cache mastership of the related data (not that it helps since 943 * we are using c_Next). 944 */ 945 while ((bchunk = z->z_RChunks) != NULL) { 946 cpu_ccfence(); 947 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 948 *z->z_LChunksp = bchunk; 949 while (bchunk) { 950 chunk_mark_free(z, bchunk); 951 z->z_LChunksp = &bchunk->c_Next; 952 bchunk = bchunk->c_Next; 953 ++z->z_NFree; 954 } 955 break; 956 } 957 } 958 if (z->z_NFree && nfree == 0) { 959 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 960 slgd->ZoneAry[z->z_ZoneIndex] = z; 961 } 962 963 /* 964 * If the zone becomes totally free, and there are other zones we 965 * can allocate from, move this zone to the FreeZones list. Since 966 * this code can be called from an IPI callback, do *NOT* try to mess 967 * with kernel_map here. Hysteresis will be performed at malloc() time. 968 */ 969 if (z->z_NFree == z->z_NMax && 970 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 971 ) { 972 struct kmemusage *kup; 973 SLZone **pz; 974 975 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; 976 z != *pz; 977 pz = &(*pz)->z_Next) { 978 ; 979 } 980 *pz = z->z_Next; 981 z->z_Magic = -1; 982 z->z_Next = slgd->FreeZones; 983 slgd->FreeZones = z; 984 ++slgd->NFreeZones; 985 kup = btokup(z); 986 kup->ku_pagecnt = 0; 987 } 988 logmemory(free_rem_end, z, bchunk, 0, 0); 989 } 990 } 991 992 #endif 993 994 /* 995 * free (SLAB ALLOCATOR) 996 * 997 * Free a memory block previously allocated by malloc. Note that we do not 998 * attempt to update ks_loosememuse as MP races could prevent us from 999 * checking memory limits in malloc. 1000 * 1001 * MPSAFE 1002 */ 1003 void 1004 kfree(void *ptr, struct malloc_type *type) 1005 { 1006 SLZone *z; 1007 SLChunk *chunk; 1008 SLChunk *bchunk; 1009 SLGlobalData *slgd; 1010 struct globaldata *gd; 1011 struct kmemusage *kup; 1012 unsigned long size; 1013 int rsignal; 1014 1015 logmemory_quick(free_beg); 1016 gd = mycpu; 1017 slgd = &gd->gd_slab; 1018 1019 if (ptr == NULL) 1020 panic("trying to free NULL pointer"); 1021 1022 /* 1023 * Handle special 0-byte allocations 1024 */ 1025 if (ptr == ZERO_LENGTH_PTR) { 1026 logmemory(free_zero, ptr, type, -1, 0); 1027 logmemory_quick(free_end); 1028 return; 1029 } 1030 1031 /* 1032 * Panic on bad malloc type 1033 */ 1034 if (type->ks_magic != M_MAGIC) 1035 panic("free: malloc type lacks magic"); 1036 1037 /* 1038 * Handle oversized allocations. XXX we really should require that a 1039 * size be passed to free() instead of this nonsense. 1040 * 1041 * This code is never called via an ipi. 1042 */ 1043 kup = btokup(ptr); 1044 if (kup->ku_pagecnt > 0) { 1045 size = kup->ku_pagecnt << PAGE_SHIFT; 1046 kup->ku_pagecnt = 0; 1047 #ifdef INVARIANTS 1048 KKASSERT(sizeof(weirdary) <= size); 1049 bcopy(weirdary, ptr, sizeof(weirdary)); 1050 #endif 1051 /* 1052 * NOTE: For oversized allocations we do not record the 1053 * originating cpu. It gets freed on the cpu calling 1054 * kfree(). The statistics are in aggregate. 1055 * 1056 * note: XXX we have still inherited the interrupts-can't-block 1057 * assumption. An interrupt thread does not bump 1058 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1059 * primarily until we can fix softupdate's assumptions about free(). 1060 */ 1061 crit_enter(); 1062 --type->ks_inuse[gd->gd_cpuid]; 1063 type->ks_memuse[gd->gd_cpuid] -= size; 1064 if (mycpu->gd_intr_nesting_level || 1065 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) 1066 { 1067 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1068 z = (SLZone *)ptr; 1069 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1070 z->z_Next = slgd->FreeOvZones; 1071 z->z_ChunkSize = size; 1072 slgd->FreeOvZones = z; 1073 crit_exit(); 1074 } else { 1075 crit_exit(); 1076 logmemory(free_ovsz, ptr, type, size, 0); 1077 kmem_slab_free(ptr, size); /* may block */ 1078 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1079 } 1080 logmemory_quick(free_end); 1081 return; 1082 } 1083 1084 /* 1085 * Zone case. Figure out the zone based on the fact that it is 1086 * ZoneSize aligned. 1087 */ 1088 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1089 kup = btokup(z); 1090 KKASSERT(kup->ku_pagecnt < 0); 1091 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1092 1093 /* 1094 * If we do not own the zone then use atomic ops to free to the 1095 * remote cpu linked list and notify the target zone using a 1096 * passive message. 1097 * 1098 * The target zone cannot be deallocated while we own a chunk of it, 1099 * so the zone header's storage is stable until the very moment 1100 * we adjust z_RChunks. After that we cannot safely dereference (z). 1101 * 1102 * (no critical section needed) 1103 */ 1104 if (z->z_CpuGd != gd) { 1105 #ifdef SMP 1106 /* 1107 * Making these adjustments now allow us to avoid passing (type) 1108 * to the remote cpu. Note that ks_inuse/ks_memuse is being 1109 * adjusted on a different cpu, but it should all still sum up 1110 * properly and cancel out. 1111 */ 1112 --type->ks_inuse[z->z_Cpu]; 1113 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1114 1115 /* 1116 * WARNING! This code competes with other cpus. Once we 1117 * successfully link the chunk to RChunks the remote 1118 * cpu can rip z's storage out from under us. 1119 */ 1120 rsignal = z->z_RSignal; 1121 cpu_lfence(); 1122 1123 chunk = ptr; 1124 for (;;) { 1125 bchunk = z->z_RChunks; 1126 cpu_ccfence(); 1127 chunk->c_Next = bchunk; 1128 cpu_sfence(); 1129 1130 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1131 break; 1132 } 1133 /* z cannot be dereferenced now */ 1134 1135 /* 1136 * We have to signal the remote cpu if our actions will cause 1137 * the remote zone to be placed back on ZoneAry so it can 1138 * move the zone back on. 1139 * 1140 * We only need to deal with NULL->non-NULL RChunk transitions 1141 * and only if z_RSignal is set. We interlock by reading rsignal 1142 * before adding our chunk to RChunks. This should result in 1143 * virtually no IPI traffic. 1144 * 1145 * We can use a passive IPI to reduce overhead even further. 1146 */ 1147 if (bchunk == NULL && rsignal) { 1148 logmemory(free_request, ptr, type, z->z_ChunkSize, 0); 1149 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1150 } 1151 #else 1152 panic("Corrupt SLZone"); 1153 #endif 1154 logmemory_quick(free_end); 1155 return; 1156 } 1157 1158 /* 1159 * kfree locally 1160 */ 1161 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0); 1162 1163 crit_enter(); 1164 chunk = ptr; 1165 chunk_mark_free(z, chunk); 1166 1167 /* 1168 * Put weird data into the memory to detect modifications after freeing, 1169 * illegal pointer use after freeing (we should fault on the odd address), 1170 * and so forth. XXX needs more work, see the old malloc code. 1171 */ 1172 #ifdef INVARIANTS 1173 if (z->z_ChunkSize < sizeof(weirdary)) 1174 bcopy(weirdary, chunk, z->z_ChunkSize); 1175 else 1176 bcopy(weirdary, chunk, sizeof(weirdary)); 1177 #endif 1178 1179 /* 1180 * Add this free non-zero'd chunk to a linked list for reuse. Add 1181 * to the front of the linked list so it is more likely to be 1182 * reallocated, since it is already in our L1 cache. 1183 */ 1184 #ifdef INVARIANTS 1185 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1186 panic("BADFREE %p", chunk); 1187 #endif 1188 chunk->c_Next = z->z_LChunks; 1189 z->z_LChunks = chunk; 1190 if (chunk->c_Next == NULL) 1191 z->z_LChunksp = &chunk->c_Next; 1192 1193 #ifdef INVARIANTS 1194 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1195 panic("BADFREE2"); 1196 #endif 1197 1198 /* 1199 * Bump the number of free chunks. If it becomes non-zero the zone 1200 * must be added back onto the appropriate list. 1201 */ 1202 if (z->z_NFree++ == 0) { 1203 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1204 slgd->ZoneAry[z->z_ZoneIndex] = z; 1205 } 1206 1207 --type->ks_inuse[z->z_Cpu]; 1208 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1209 1210 /* 1211 * If the zone becomes totally free, and there are other zones we 1212 * can allocate from, move this zone to the FreeZones list. Since 1213 * this code can be called from an IPI callback, do *NOT* try to mess 1214 * with kernel_map here. Hysteresis will be performed at malloc() time. 1215 */ 1216 if (z->z_NFree == z->z_NMax && 1217 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 1218 ) { 1219 SLZone **pz; 1220 struct kmemusage *kup; 1221 1222 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 1223 ; 1224 *pz = z->z_Next; 1225 z->z_Magic = -1; 1226 z->z_Next = slgd->FreeZones; 1227 slgd->FreeZones = z; 1228 ++slgd->NFreeZones; 1229 kup = btokup(z); 1230 kup->ku_pagecnt = 0; 1231 } 1232 logmemory_quick(free_end); 1233 crit_exit(); 1234 } 1235 1236 #if defined(INVARIANTS) 1237 1238 /* 1239 * Helper routines for sanity checks 1240 */ 1241 static 1242 void 1243 chunk_mark_allocated(SLZone *z, void *chunk) 1244 { 1245 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1246 __uint32_t *bitptr; 1247 1248 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1249 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1250 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1251 bitptr = &z->z_Bitmap[bitdex >> 5]; 1252 bitdex &= 31; 1253 KASSERT((*bitptr & (1 << bitdex)) == 0, 1254 ("memory chunk %p is already allocated!", chunk)); 1255 *bitptr |= 1 << bitdex; 1256 } 1257 1258 static 1259 void 1260 chunk_mark_free(SLZone *z, void *chunk) 1261 { 1262 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1263 __uint32_t *bitptr; 1264 1265 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1266 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1267 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1268 bitptr = &z->z_Bitmap[bitdex >> 5]; 1269 bitdex &= 31; 1270 KASSERT((*bitptr & (1 << bitdex)) != 0, 1271 ("memory chunk %p is already free!", chunk)); 1272 *bitptr &= ~(1 << bitdex); 1273 } 1274 1275 #endif 1276 1277 /* 1278 * kmem_slab_alloc() 1279 * 1280 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1281 * specified alignment. M_* flags are expected in the flags field. 1282 * 1283 * Alignment must be a multiple of PAGE_SIZE. 1284 * 1285 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1286 * but when we move zalloc() over to use this function as its backend 1287 * we will have to switch to kreserve/krelease and call reserve(0) 1288 * after the new space is made available. 1289 * 1290 * Interrupt code which has preempted other code is not allowed to 1291 * use PQ_CACHE pages. However, if an interrupt thread is run 1292 * non-preemptively or blocks and then runs non-preemptively, then 1293 * it is free to use PQ_CACHE pages. 1294 */ 1295 static void * 1296 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1297 { 1298 vm_size_t i; 1299 vm_offset_t addr; 1300 int count, vmflags, base_vmflags; 1301 thread_t td; 1302 1303 size = round_page(size); 1304 addr = vm_map_min(&kernel_map); 1305 1306 /* 1307 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 1308 * cannot block. 1309 */ 1310 if (flags & M_RNOWAIT) { 1311 if (lwkt_trytoken(&vm_token) == 0) 1312 return(NULL); 1313 } else { 1314 lwkt_gettoken(&vm_token); 1315 } 1316 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1317 crit_enter(); 1318 vm_map_lock(&kernel_map); 1319 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1320 vm_map_unlock(&kernel_map); 1321 if ((flags & M_NULLOK) == 0) 1322 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1323 vm_map_entry_release(count); 1324 crit_exit(); 1325 lwkt_reltoken(&vm_token); 1326 return(NULL); 1327 } 1328 1329 /* 1330 * kernel_object maps 1:1 to kernel_map. 1331 */ 1332 vm_object_reference(&kernel_object); 1333 vm_map_insert(&kernel_map, &count, 1334 &kernel_object, addr, addr, addr + size, 1335 VM_MAPTYPE_NORMAL, 1336 VM_PROT_ALL, VM_PROT_ALL, 1337 0); 1338 1339 td = curthread; 1340 1341 base_vmflags = 0; 1342 if (flags & M_ZERO) 1343 base_vmflags |= VM_ALLOC_ZERO; 1344 if (flags & M_USE_RESERVE) 1345 base_vmflags |= VM_ALLOC_SYSTEM; 1346 if (flags & M_USE_INTERRUPT_RESERVE) 1347 base_vmflags |= VM_ALLOC_INTERRUPT; 1348 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1349 panic("kmem_slab_alloc: bad flags %08x (%p)", 1350 flags, ((int **)&size)[-1]); 1351 } 1352 1353 1354 /* 1355 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 1356 */ 1357 for (i = 0; i < size; i += PAGE_SIZE) { 1358 vm_page_t m; 1359 1360 /* 1361 * VM_ALLOC_NORMAL can only be set if we are not preempting. 1362 * 1363 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1364 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1365 * implied in this case), though I'm not sure if we really need to 1366 * do that. 1367 */ 1368 vmflags = base_vmflags; 1369 if (flags & M_WAITOK) { 1370 if (td->td_preempted) 1371 vmflags |= VM_ALLOC_SYSTEM; 1372 else 1373 vmflags |= VM_ALLOC_NORMAL; 1374 } 1375 1376 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1377 1378 /* 1379 * If the allocation failed we either return NULL or we retry. 1380 * 1381 * If M_WAITOK is specified we wait for more memory and retry. 1382 * If M_WAITOK is specified from a preemption we yield instead of 1383 * wait. Livelock will not occur because the interrupt thread 1384 * will not be preempting anyone the second time around after the 1385 * yield. 1386 */ 1387 if (m == NULL) { 1388 if (flags & M_WAITOK) { 1389 if (td->td_preempted) { 1390 vm_map_unlock(&kernel_map); 1391 lwkt_switch(); 1392 vm_map_lock(&kernel_map); 1393 } else { 1394 vm_map_unlock(&kernel_map); 1395 vm_wait(0); 1396 vm_map_lock(&kernel_map); 1397 } 1398 i -= PAGE_SIZE; /* retry */ 1399 continue; 1400 } 1401 1402 /* 1403 * We were unable to recover, cleanup and return NULL 1404 * 1405 * (vm_token already held) 1406 */ 1407 while (i != 0) { 1408 i -= PAGE_SIZE; 1409 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1410 /* page should already be busy */ 1411 vm_page_free(m); 1412 } 1413 vm_map_delete(&kernel_map, addr, addr + size, &count); 1414 vm_map_unlock(&kernel_map); 1415 vm_map_entry_release(count); 1416 crit_exit(); 1417 lwkt_reltoken(&vm_token); 1418 return(NULL); 1419 } 1420 } 1421 1422 /* 1423 * Success! 1424 * 1425 * Mark the map entry as non-pageable using a routine that allows us to 1426 * populate the underlying pages. 1427 * 1428 * The pages were busied by the allocations above. 1429 */ 1430 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1431 crit_exit(); 1432 1433 /* 1434 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1435 */ 1436 lwkt_gettoken(&vm_token); 1437 for (i = 0; i < size; i += PAGE_SIZE) { 1438 vm_page_t m; 1439 1440 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1441 m->valid = VM_PAGE_BITS_ALL; 1442 /* page should already be busy */ 1443 vm_page_wire(m); 1444 vm_page_wakeup(m); 1445 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1446 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1447 bzero((char *)addr + i, PAGE_SIZE); 1448 vm_page_flag_clear(m, PG_ZERO); 1449 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1450 vm_page_flag_set(m, PG_REFERENCED); 1451 } 1452 lwkt_reltoken(&vm_token); 1453 vm_map_unlock(&kernel_map); 1454 vm_map_entry_release(count); 1455 lwkt_reltoken(&vm_token); 1456 return((void *)addr); 1457 } 1458 1459 /* 1460 * kmem_slab_free() 1461 */ 1462 static void 1463 kmem_slab_free(void *ptr, vm_size_t size) 1464 { 1465 crit_enter(); 1466 lwkt_gettoken(&vm_token); 1467 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1468 lwkt_reltoken(&vm_token); 1469 crit_exit(); 1470 } 1471 1472