xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision d9ea1be3e2886810aaa5c005106dfc90c64882e7)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $
39  *
40  * This module implements a slab allocator drop-in replacement for the
41  * kernel malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantanious, and fragmentation/overhead losses are limited
46  * to a fixed worst-case amount.
47  *
48  * The downside of this slab implementation is in the chunk size
49  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
50  * In a kernel implementation all this memory will be physical so
51  * the zone size is adjusted downward on machines with less physical
52  * memory.  The upside is that overhead is bounded... this is the *worst*
53  * case overhead.
54  *
55  * Slab management is done on a per-cpu basis and no locking or mutexes
56  * are required, only a critical section.  When one cpu frees memory
57  * belonging to another cpu's slab manager an asynchronous IPI message
58  * will be queued to execute the operation.   In addition, both the
59  * high level slab allocator and the low level zone allocator optimize
60  * M_ZERO requests, and the slab allocator does not have to pre initialize
61  * the linked list of chunks.
62  *
63  * XXX Balancing is needed between cpus.  Balance will be handled through
64  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
65  *
66  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
67  * the new zone should be restricted to M_USE_RESERVE requests only.
68  *
69  *	Alloc Size	Chunking        Number of zones
70  *	0-127		8		16
71  *	128-255		16		8
72  *	256-511		32		8
73  *	512-1023	64		8
74  *	1024-2047	128		8
75  *	2048-4095	256		8
76  *	4096-8191	512		8
77  *	8192-16383	1024		8
78  *	16384-32767	2048		8
79  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
80  *
81  *	Allocations >= ZoneLimit go directly to kmem.
82  *
83  *			API REQUIREMENTS AND SIDE EFFECTS
84  *
85  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
86  *    have remained compatible with the following API requirements:
87  *
88  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
89  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
90  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
91  *    + ability to allocate arbitrarily large chunks of memory
92  */
93 
94 #include "opt_vm.h"
95 
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/kernel.h>
99 #include <sys/slaballoc.h>
100 #include <sys/mbuf.h>
101 #include <sys/vmmeter.h>
102 #include <sys/lock.h>
103 #include <sys/thread.h>
104 #include <sys/globaldata.h>
105 #include <sys/sysctl.h>
106 #include <sys/ktr.h>
107 
108 #include <vm/vm.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_object.h>
113 #include <vm/pmap.h>
114 #include <vm/vm_map.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 
118 #include <machine/cpu.h>
119 
120 #include <sys/thread2.h>
121 
122 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
123 
124 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
125 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
126 			sizeof(int))
127 
128 #if !defined(KTR_MEMORY)
129 #define KTR_MEMORY	KTR_ALL
130 #endif
131 KTR_INFO_MASTER(memory);
132 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
133 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
136 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
138 #ifdef SMP
139 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
140 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
141 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
142 #endif
143 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
144 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
145 
146 #define logmemory(name, ptr, type, size, flags)				\
147 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
148 #define logmemory_quick(name)						\
149 	KTR_LOG(memory_ ## name)
150 
151 /*
152  * Fixed globals (not per-cpu)
153  */
154 static int ZoneSize;
155 static int ZoneLimit;
156 static int ZonePageCount;
157 static uintptr_t ZoneMask;
158 static int ZoneBigAlloc;		/* in KB */
159 static int ZoneGenAlloc;		/* in KB */
160 struct malloc_type *kmemstatistics;	/* exported to vmstat */
161 static struct kmemusage *kmemusage;
162 static int32_t weirdary[16];
163 
164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
166 
167 #if defined(INVARIANTS)
168 static void chunk_mark_allocated(SLZone *z, void *chunk);
169 static void chunk_mark_free(SLZone *z, void *chunk);
170 #else
171 #define chunk_mark_allocated(z, chunk)
172 #define chunk_mark_free(z, chunk)
173 #endif
174 
175 /*
176  * Misc constants.  Note that allocations that are exact multiples of
177  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
178  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
179  */
180 #define MIN_CHUNK_SIZE		8		/* in bytes */
181 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
182 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
183 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
184 
185 /*
186  * The WEIRD_ADDR is used as known text to copy into free objects to
187  * try to create deterministic failure cases if the data is accessed after
188  * free.
189  */
190 #define WEIRD_ADDR      0xdeadc0de
191 #define MAX_COPY        sizeof(weirdary)
192 #define ZERO_LENGTH_PTR	((void *)-8)
193 
194 /*
195  * Misc global malloc buckets
196  */
197 
198 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
199 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
200 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
201 
202 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
203 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
204 
205 /*
206  * Initialize the slab memory allocator.  We have to choose a zone size based
207  * on available physical memory.  We choose a zone side which is approximately
208  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
209  * 128K.  The zone size is limited to the bounds set in slaballoc.h
210  * (typically 32K min, 128K max).
211  */
212 static void kmeminit(void *dummy);
213 
214 char *ZeroPage;
215 
216 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
217 
218 #ifdef INVARIANTS
219 /*
220  * If enabled any memory allocated without M_ZERO is initialized to -1.
221  */
222 static int  use_malloc_pattern;
223 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
224 		&use_malloc_pattern, 0, "");
225 #endif
226 
227 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
228 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
229 
230 static void
231 kmeminit(void *dummy)
232 {
233     size_t limsize;
234     int usesize;
235     int i;
236     vm_offset_t npg;
237 
238     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
239     if (limsize > KvaSize)
240 	limsize = KvaSize;
241 
242     usesize = (int)(limsize / 1024);	/* convert to KB */
243 
244     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
245     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
246 	ZoneSize <<= 1;
247     ZoneLimit = ZoneSize / 4;
248     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
249 	ZoneLimit = ZALLOC_ZONE_LIMIT;
250     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
251     ZonePageCount = ZoneSize / PAGE_SIZE;
252 
253     npg = KvaSize / PAGE_SIZE;
254     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage),
255 				PAGE_SIZE, M_WAITOK|M_ZERO);
256 
257     for (i = 0; i < arysize(weirdary); ++i)
258 	weirdary[i] = WEIRD_ADDR;
259 
260     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
261 
262     if (bootverbose)
263 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
264 }
265 
266 /*
267  * Initialize a malloc type tracking structure.
268  */
269 void
270 malloc_init(void *data)
271 {
272     struct malloc_type *type = data;
273     size_t limsize;
274 
275     if (type->ks_magic != M_MAGIC)
276 	panic("malloc type lacks magic");
277 
278     if (type->ks_limit != 0)
279 	return;
280 
281     if (vmstats.v_page_count == 0)
282 	panic("malloc_init not allowed before vm init");
283 
284     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
285     if (limsize > KvaSize)
286 	limsize = KvaSize;
287     type->ks_limit = limsize / 10;
288 
289     type->ks_next = kmemstatistics;
290     kmemstatistics = type;
291 }
292 
293 void
294 malloc_uninit(void *data)
295 {
296     struct malloc_type *type = data;
297     struct malloc_type *t;
298 #ifdef INVARIANTS
299     int i;
300     long ttl;
301 #endif
302 
303     if (type->ks_magic != M_MAGIC)
304 	panic("malloc type lacks magic");
305 
306     if (vmstats.v_page_count == 0)
307 	panic("malloc_uninit not allowed before vm init");
308 
309     if (type->ks_limit == 0)
310 	panic("malloc_uninit on uninitialized type");
311 
312 #ifdef SMP
313     /* Make sure that all pending kfree()s are finished. */
314     lwkt_synchronize_ipiqs("muninit");
315 #endif
316 
317 #ifdef INVARIANTS
318     /*
319      * memuse is only correct in aggregation.  Due to memory being allocated
320      * on one cpu and freed on another individual array entries may be
321      * negative or positive (canceling each other out).
322      */
323     for (i = ttl = 0; i < ncpus; ++i)
324 	ttl += type->ks_memuse[i];
325     if (ttl) {
326 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
327 	    ttl, type->ks_shortdesc, i);
328     }
329 #endif
330     if (type == kmemstatistics) {
331 	kmemstatistics = type->ks_next;
332     } else {
333 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
334 	    if (t->ks_next == type) {
335 		t->ks_next = type->ks_next;
336 		break;
337 	    }
338 	}
339     }
340     type->ks_next = NULL;
341     type->ks_limit = 0;
342 }
343 
344 /*
345  * Increase the kmalloc pool limit for the specified pool.  No changes
346  * are the made if the pool would shrink.
347  */
348 void
349 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
350 {
351     if (type->ks_limit == 0)
352 	malloc_init(type);
353     if (bytes == 0)
354 	bytes = KvaSize;
355     if (type->ks_limit < bytes)
356 	type->ks_limit = bytes;
357 }
358 
359 /*
360  * Dynamically create a malloc pool.  This function is a NOP if *typep is
361  * already non-NULL.
362  */
363 void
364 kmalloc_create(struct malloc_type **typep, const char *descr)
365 {
366 	struct malloc_type *type;
367 
368 	if (*typep == NULL) {
369 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
370 		type->ks_magic = M_MAGIC;
371 		type->ks_shortdesc = descr;
372 		malloc_init(type);
373 		*typep = type;
374 	}
375 }
376 
377 /*
378  * Destroy a dynamically created malloc pool.  This function is a NOP if
379  * the pool has already been destroyed.
380  */
381 void
382 kmalloc_destroy(struct malloc_type **typep)
383 {
384 	if (*typep != NULL) {
385 		malloc_uninit(*typep);
386 		kfree(*typep, M_TEMP);
387 		*typep = NULL;
388 	}
389 }
390 
391 /*
392  * Calculate the zone index for the allocation request size and set the
393  * allocation request size to that particular zone's chunk size.
394  */
395 static __inline int
396 zoneindex(unsigned long *bytes)
397 {
398     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
399     if (n < 128) {
400 	*bytes = n = (n + 7) & ~7;
401 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
402     }
403     if (n < 256) {
404 	*bytes = n = (n + 15) & ~15;
405 	return(n / 16 + 7);
406     }
407     if (n < 8192) {
408 	if (n < 512) {
409 	    *bytes = n = (n + 31) & ~31;
410 	    return(n / 32 + 15);
411 	}
412 	if (n < 1024) {
413 	    *bytes = n = (n + 63) & ~63;
414 	    return(n / 64 + 23);
415 	}
416 	if (n < 2048) {
417 	    *bytes = n = (n + 127) & ~127;
418 	    return(n / 128 + 31);
419 	}
420 	if (n < 4096) {
421 	    *bytes = n = (n + 255) & ~255;
422 	    return(n / 256 + 39);
423 	}
424 	*bytes = n = (n + 511) & ~511;
425 	return(n / 512 + 47);
426     }
427 #if ZALLOC_ZONE_LIMIT > 8192
428     if (n < 16384) {
429 	*bytes = n = (n + 1023) & ~1023;
430 	return(n / 1024 + 55);
431     }
432 #endif
433 #if ZALLOC_ZONE_LIMIT > 16384
434     if (n < 32768) {
435 	*bytes = n = (n + 2047) & ~2047;
436 	return(n / 2048 + 63);
437     }
438 #endif
439     panic("Unexpected byte count %d", n);
440     return(0);
441 }
442 
443 /*
444  * kmalloc()	(SLAB ALLOCATOR)
445  *
446  *	Allocate memory via the slab allocator.  If the request is too large,
447  *	or if it page-aligned beyond a certain size, we fall back to the
448  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
449  *	&SlabMisc if you don't care.
450  *
451  *	M_RNOWAIT	- don't block.
452  *	M_NULLOK	- return NULL instead of blocking.
453  *	M_ZERO		- zero the returned memory.
454  *	M_USE_RESERVE	- allow greater drawdown of the free list
455  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
456  *
457  * MPSAFE
458  */
459 void *
460 kmalloc(unsigned long size, struct malloc_type *type, int flags)
461 {
462     SLZone *z;
463     SLChunk *chunk;
464     SLChunk *bchunk;
465     SLGlobalData *slgd;
466     struct globaldata *gd;
467     int zi;
468 #ifdef INVARIANTS
469     int i;
470 #endif
471 
472     logmemory_quick(malloc_beg);
473     gd = mycpu;
474     slgd = &gd->gd_slab;
475 
476     /*
477      * XXX silly to have this in the critical path.
478      */
479     if (type->ks_limit == 0) {
480 	crit_enter();
481 	if (type->ks_limit == 0)
482 	    malloc_init(type);
483 	crit_exit();
484     }
485     ++type->ks_calls;
486 
487     /*
488      * Handle the case where the limit is reached.  Panic if we can't return
489      * NULL.  The original malloc code looped, but this tended to
490      * simply deadlock the computer.
491      *
492      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
493      * to determine if a more complete limit check should be done.  The
494      * actual memory use is tracked via ks_memuse[cpu].
495      */
496     while (type->ks_loosememuse >= type->ks_limit) {
497 	int i;
498 	long ttl;
499 
500 	for (i = ttl = 0; i < ncpus; ++i)
501 	    ttl += type->ks_memuse[i];
502 	type->ks_loosememuse = ttl;	/* not MP synchronized */
503 	if (ttl >= type->ks_limit) {
504 	    if (flags & M_NULLOK) {
505 		logmemory(malloc_end, NULL, type, size, flags);
506 		return(NULL);
507 	    }
508 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
509 	}
510     }
511 
512     /*
513      * Handle the degenerate size == 0 case.  Yes, this does happen.
514      * Return a special pointer.  This is to maintain compatibility with
515      * the original malloc implementation.  Certain devices, such as the
516      * adaptec driver, not only allocate 0 bytes, they check for NULL and
517      * also realloc() later on.  Joy.
518      */
519     if (size == 0) {
520 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
521 	return(ZERO_LENGTH_PTR);
522     }
523 
524     /*
525      * Handle hysteresis from prior frees here in malloc().  We cannot
526      * safely manipulate the kernel_map in free() due to free() possibly
527      * being called via an IPI message or from sensitive interrupt code.
528      *
529      * NOTE: ku_pagecnt must be cleared before we free the slab or we
530      *	     might race another cpu allocating the kva and setting
531      *	     ku_pagecnt.
532      */
533     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
534 	crit_enter();
535 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
536 	    struct kmemusage *kup;
537 
538 	    z = slgd->FreeZones;
539 	    slgd->FreeZones = z->z_Next;
540 	    --slgd->NFreeZones;
541 	    kup = btokup(z);
542 	    kup->ku_pagecnt = 0;
543 	    kmem_slab_free(z, ZoneSize);	/* may block */
544 	    atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
545 	}
546 	crit_exit();
547     }
548 
549     /*
550      * XXX handle oversized frees that were queued from kfree().
551      */
552     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
553 	crit_enter();
554 	if ((z = slgd->FreeOvZones) != NULL) {
555 	    vm_size_t tsize;
556 
557 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
558 	    slgd->FreeOvZones = z->z_Next;
559 	    tsize = z->z_ChunkSize;
560 	    kmem_slab_free(z, tsize);	/* may block */
561 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
562 	}
563 	crit_exit();
564     }
565 
566     /*
567      * Handle large allocations directly.  There should not be very many of
568      * these so performance is not a big issue.
569      *
570      * The backend allocator is pretty nasty on a SMP system.   Use the
571      * slab allocator for one and two page-sized chunks even though we lose
572      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
573      */
574     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
575 	struct kmemusage *kup;
576 
577 	size = round_page(size);
578 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
579 	if (chunk == NULL) {
580 	    logmemory(malloc_end, NULL, type, size, flags);
581 	    return(NULL);
582 	}
583 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
584 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
585 	flags |= M_PASSIVE_ZERO;
586 	kup = btokup(chunk);
587 	kup->ku_pagecnt = size / PAGE_SIZE;
588 	crit_enter();
589 	goto done;
590     }
591 
592     /*
593      * Attempt to allocate out of an existing zone.  First try the free list,
594      * then allocate out of unallocated space.  If we find a good zone move
595      * it to the head of the list so later allocations find it quickly
596      * (we might have thousands of zones in the list).
597      *
598      * Note: zoneindex() will panic of size is too large.
599      */
600     zi = zoneindex(&size);
601     KKASSERT(zi < NZONES);
602     crit_enter();
603 
604     if ((z = slgd->ZoneAry[zi]) != NULL) {
605 	/*
606 	 * Locate a chunk - we have to have at least one.  If this is the
607 	 * last chunk go ahead and do the work to retrieve chunks freed
608 	 * from remote cpus, and if the zone is still empty move it off
609 	 * the ZoneAry.
610 	 */
611 	if (--z->z_NFree <= 0) {
612 	    KKASSERT(z->z_NFree == 0);
613 
614 #ifdef SMP
615 	    /*
616 	     * WARNING! This code competes with other cpus.  It is ok
617 	     * for us to not drain RChunks here but we might as well, and
618 	     * it is ok if more accumulate after we're done.
619 	     *
620 	     * Set RSignal before pulling rchunks off, indicating that we
621 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
622 	     * read RSignal before putting rchunks on thus interlocking
623 	     * their IPI signaling.
624 	     */
625 	    if (z->z_RChunks == NULL)
626 		atomic_swap_int(&z->z_RSignal, 1);
627 
628 	    while ((bchunk = z->z_RChunks) != NULL) {
629 		cpu_ccfence();
630 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
631 		    *z->z_LChunksp = bchunk;
632 		    while (bchunk) {
633 			chunk_mark_free(z, bchunk);
634 			z->z_LChunksp = &bchunk->c_Next;
635 			bchunk = bchunk->c_Next;
636 			++z->z_NFree;
637 		    }
638 		    break;
639 		}
640 	    }
641 #endif
642 	    /*
643 	     * Remove from the zone list if no free chunks remain.
644 	     * Clear RSignal
645 	     */
646 	    if (z->z_NFree == 0) {
647 		slgd->ZoneAry[zi] = z->z_Next;
648 		z->z_Next = NULL;
649 	    } else {
650 		z->z_RSignal = 0;
651 	    }
652 	}
653 
654 	/*
655 	 * Fast path, we have chunks available in z_LChunks.
656 	 */
657 	chunk = z->z_LChunks;
658 	if (chunk) {
659 		chunk_mark_allocated(z, chunk);
660 		z->z_LChunks = chunk->c_Next;
661 		if (z->z_LChunks == NULL)
662 			z->z_LChunksp = &z->z_LChunks;
663 		goto done;
664 	}
665 
666 	/*
667 	 * No chunks are available in LChunks, the free chunk MUST be
668 	 * in the never-before-used memory area, controlled by UIndex.
669 	 *
670 	 * The consequences are very serious if our zone got corrupted so
671 	 * we use an explicit panic rather than a KASSERT.
672 	 */
673 	if (z->z_UIndex + 1 != z->z_NMax)
674 	    ++z->z_UIndex;
675 	else
676 	    z->z_UIndex = 0;
677 
678 	if (z->z_UIndex == z->z_UEndIndex)
679 	    panic("slaballoc: corrupted zone");
680 
681 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
682 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
683 	    flags &= ~M_ZERO;
684 	    flags |= M_PASSIVE_ZERO;
685 	}
686 	chunk_mark_allocated(z, chunk);
687 	goto done;
688     }
689 
690     /*
691      * If all zones are exhausted we need to allocate a new zone for this
692      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
693      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
694      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
695      * we do not pre-zero it because we do not want to mess up the L1 cache.
696      *
697      * At least one subsystem, the tty code (see CROUND) expects power-of-2
698      * allocations to be power-of-2 aligned.  We maintain compatibility by
699      * adjusting the base offset below.
700      */
701     {
702 	int off;
703 	struct kmemusage *kup;
704 
705 	if ((z = slgd->FreeZones) != NULL) {
706 	    slgd->FreeZones = z->z_Next;
707 	    --slgd->NFreeZones;
708 	    bzero(z, sizeof(SLZone));
709 	    z->z_Flags |= SLZF_UNOTZEROD;
710 	} else {
711 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
712 	    if (z == NULL)
713 		goto fail;
714 	    atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
715 	}
716 
717 	/*
718 	 * How big is the base structure?
719 	 */
720 #if defined(INVARIANTS)
721 	/*
722 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
723 	 * complicated so don't make an exact calculation.
724 	 */
725 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
726 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
727 #else
728 	off = sizeof(SLZone);
729 #endif
730 
731 	/*
732 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
733 	 * Otherwise just 8-byte align the data.
734 	 */
735 	if ((size | (size - 1)) + 1 == (size << 1))
736 	    off = (off + size - 1) & ~(size - 1);
737 	else
738 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
739 	z->z_Magic = ZALLOC_SLAB_MAGIC;
740 	z->z_ZoneIndex = zi;
741 	z->z_NMax = (ZoneSize - off) / size;
742 	z->z_NFree = z->z_NMax - 1;
743 	z->z_BasePtr = (char *)z + off;
744 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
745 	z->z_ChunkSize = size;
746 	z->z_CpuGd = gd;
747 	z->z_Cpu = gd->gd_cpuid;
748 	z->z_LChunksp = &z->z_LChunks;
749 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
750 	z->z_Next = slgd->ZoneAry[zi];
751 	slgd->ZoneAry[zi] = z;
752 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
753 	    flags &= ~M_ZERO;	/* already zero'd */
754 	    flags |= M_PASSIVE_ZERO;
755 	}
756 	kup = btokup(z);
757 	kup->ku_pagecnt = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
758 	chunk_mark_allocated(z, chunk);
759 
760 	/*
761 	 * Slide the base index for initial allocations out of the next
762 	 * zone we create so we do not over-weight the lower part of the
763 	 * cpu memory caches.
764 	 */
765 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
766 				& (ZALLOC_MAX_ZONE_SIZE - 1);
767     }
768 
769 done:
770     ++type->ks_inuse[gd->gd_cpuid];
771     type->ks_memuse[gd->gd_cpuid] += size;
772     type->ks_loosememuse += size;	/* not MP synchronized */
773     crit_exit();
774 
775     if (flags & M_ZERO)
776 	bzero(chunk, size);
777 #ifdef INVARIANTS
778     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
779 	if (use_malloc_pattern) {
780 	    for (i = 0; i < size; i += sizeof(int)) {
781 		*(int *)((char *)chunk + i) = -1;
782 	    }
783 	}
784 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
785     }
786 #endif
787     logmemory(malloc_end, chunk, type, size, flags);
788     return(chunk);
789 fail:
790     crit_exit();
791     logmemory(malloc_end, NULL, type, size, flags);
792     return(NULL);
793 }
794 
795 /*
796  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
797  *
798  * Generally speaking this routine is not called very often and we do
799  * not attempt to optimize it beyond reusing the same pointer if the
800  * new size fits within the chunking of the old pointer's zone.
801  */
802 void *
803 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
804 {
805     struct kmemusage *kup;
806     SLZone *z;
807     void *nptr;
808     unsigned long osize;
809 
810     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
811 
812     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
813 	return(kmalloc(size, type, flags));
814     if (size == 0) {
815 	kfree(ptr, type);
816 	return(NULL);
817     }
818 
819     /*
820      * Handle oversized allocations.  XXX we really should require that a
821      * size be passed to free() instead of this nonsense.
822      */
823     kup = btokup(ptr);
824     if (kup->ku_pagecnt > 0) {
825 	osize = kup->ku_pagecnt << PAGE_SHIFT;
826 	if (osize == round_page(size))
827 	    return(ptr);
828 	if ((nptr = kmalloc(size, type, flags)) == NULL)
829 	    return(NULL);
830 	bcopy(ptr, nptr, min(size, osize));
831 	kfree(ptr, type);
832 	return(nptr);
833     }
834 
835     /*
836      * Get the original allocation's zone.  If the new request winds up
837      * using the same chunk size we do not have to do anything.
838      */
839     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
840     kup = btokup(z);
841     KKASSERT(kup->ku_pagecnt < 0);
842     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
843 
844     /*
845      * Allocate memory for the new request size.  Note that zoneindex has
846      * already adjusted the request size to the appropriate chunk size, which
847      * should optimize our bcopy().  Then copy and return the new pointer.
848      *
849      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
850      * necessary align the result.
851      *
852      * We can only zoneindex (to align size to the chunk size) if the new
853      * size is not too large.
854      */
855     if (size < ZoneLimit) {
856 	zoneindex(&size);
857 	if (z->z_ChunkSize == size)
858 	    return(ptr);
859     }
860     if ((nptr = kmalloc(size, type, flags)) == NULL)
861 	return(NULL);
862     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
863     kfree(ptr, type);
864     return(nptr);
865 }
866 
867 /*
868  * Return the kmalloc limit for this type, in bytes.
869  */
870 long
871 kmalloc_limit(struct malloc_type *type)
872 {
873     if (type->ks_limit == 0) {
874 	crit_enter();
875 	if (type->ks_limit == 0)
876 	    malloc_init(type);
877 	crit_exit();
878     }
879     return(type->ks_limit);
880 }
881 
882 /*
883  * Allocate a copy of the specified string.
884  *
885  * (MP SAFE) (MAY BLOCK)
886  */
887 char *
888 kstrdup(const char *str, struct malloc_type *type)
889 {
890     int zlen;	/* length inclusive of terminating NUL */
891     char *nstr;
892 
893     if (str == NULL)
894 	return(NULL);
895     zlen = strlen(str) + 1;
896     nstr = kmalloc(zlen, type, M_WAITOK);
897     bcopy(str, nstr, zlen);
898     return(nstr);
899 }
900 
901 #ifdef SMP
902 /*
903  * Notify our cpu that a remote cpu has freed some chunks in a zone that
904  * we own.  Due to MP races we might no longer own the zone, use the
905  * kmemusage array to check.
906  */
907 static
908 void
909 kfree_remote(void *ptr)
910 {
911     struct kmemusage *kup;
912     SLGlobalData *slgd;
913     SLChunk *bchunk;
914     SLZone *z;
915     int nfree;
916 
917     /*
918      * Do not dereference (z) until we validate that its storage is
919      * still around.
920      */
921     slgd = &mycpu->gd_slab;
922     z = ptr;
923     kup = btokup(z);
924 
925     if (kup->ku_pagecnt == -((int)mycpuid + 1)) {	/* -1 to -(N+1) */
926 	logmemory(free_rem_beg, z, NULL, 0, 0);
927 	KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
928 	KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
929 	nfree = z->z_NFree;
930 
931 	/*
932 	 * Indicate that we will no longer be off of the ZoneAry by
933 	 * clearing RSignal.
934 	 */
935 	if (z->z_RChunks)
936 	    z->z_RSignal = 0;
937 
938 	/*
939 	 * Atomically extract the bchunks list and then process it back
940 	 * into the lchunks list.  We want to append our bchunks to the
941 	 * lchunks list and not prepend since we likely do not have
942 	 * cache mastership of the related data (not that it helps since
943 	 * we are using c_Next).
944 	 */
945 	while ((bchunk = z->z_RChunks) != NULL) {
946 	    cpu_ccfence();
947 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
948 		*z->z_LChunksp = bchunk;
949 		while (bchunk) {
950 			chunk_mark_free(z, bchunk);
951 			z->z_LChunksp = &bchunk->c_Next;
952 			bchunk = bchunk->c_Next;
953 			++z->z_NFree;
954 		}
955 		break;
956 	    }
957 	}
958 	if (z->z_NFree && nfree == 0) {
959 	    z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
960 	    slgd->ZoneAry[z->z_ZoneIndex] = z;
961 	}
962 
963 	/*
964 	 * If the zone becomes totally free, and there are other zones we
965 	 * can allocate from, move this zone to the FreeZones list.  Since
966 	 * this code can be called from an IPI callback, do *NOT* try to mess
967 	 * with kernel_map here.  Hysteresis will be performed at malloc() time.
968 	 */
969 	if (z->z_NFree == z->z_NMax &&
970 	    (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
971 	) {
972 	    struct kmemusage *kup;
973 	    SLZone **pz;
974 
975 	    for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
976 		 z != *pz;
977 		 pz = &(*pz)->z_Next) {
978 		;
979 	    }
980 	    *pz = z->z_Next;
981 	    z->z_Magic = -1;
982 	    z->z_Next = slgd->FreeZones;
983 	    slgd->FreeZones = z;
984 	    ++slgd->NFreeZones;
985 	    kup = btokup(z);
986 	    kup->ku_pagecnt = 0;
987 	}
988 	logmemory(free_rem_end, z, bchunk, 0, 0);
989     }
990 }
991 
992 #endif
993 
994 /*
995  * free (SLAB ALLOCATOR)
996  *
997  * Free a memory block previously allocated by malloc.  Note that we do not
998  * attempt to update ks_loosememuse as MP races could prevent us from
999  * checking memory limits in malloc.
1000  *
1001  * MPSAFE
1002  */
1003 void
1004 kfree(void *ptr, struct malloc_type *type)
1005 {
1006     SLZone *z;
1007     SLChunk *chunk;
1008     SLChunk *bchunk;
1009     SLGlobalData *slgd;
1010     struct globaldata *gd;
1011     struct kmemusage *kup;
1012     unsigned long size;
1013     int rsignal;
1014 
1015     logmemory_quick(free_beg);
1016     gd = mycpu;
1017     slgd = &gd->gd_slab;
1018 
1019     if (ptr == NULL)
1020 	panic("trying to free NULL pointer");
1021 
1022     /*
1023      * Handle special 0-byte allocations
1024      */
1025     if (ptr == ZERO_LENGTH_PTR) {
1026 	logmemory(free_zero, ptr, type, -1, 0);
1027 	logmemory_quick(free_end);
1028 	return;
1029     }
1030 
1031     /*
1032      * Panic on bad malloc type
1033      */
1034     if (type->ks_magic != M_MAGIC)
1035 	panic("free: malloc type lacks magic");
1036 
1037     /*
1038      * Handle oversized allocations.  XXX we really should require that a
1039      * size be passed to free() instead of this nonsense.
1040      *
1041      * This code is never called via an ipi.
1042      */
1043     kup = btokup(ptr);
1044     if (kup->ku_pagecnt > 0) {
1045 	size = kup->ku_pagecnt << PAGE_SHIFT;
1046 	kup->ku_pagecnt = 0;
1047 #ifdef INVARIANTS
1048 	KKASSERT(sizeof(weirdary) <= size);
1049 	bcopy(weirdary, ptr, sizeof(weirdary));
1050 #endif
1051 	/*
1052 	 * NOTE: For oversized allocations we do not record the
1053 	 *	     originating cpu.  It gets freed on the cpu calling
1054 	 *	     kfree().  The statistics are in aggregate.
1055 	 *
1056 	 * note: XXX we have still inherited the interrupts-can't-block
1057 	 * assumption.  An interrupt thread does not bump
1058 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1059 	 * primarily until we can fix softupdate's assumptions about free().
1060 	 */
1061 	crit_enter();
1062 	--type->ks_inuse[gd->gd_cpuid];
1063 	type->ks_memuse[gd->gd_cpuid] -= size;
1064 	if (mycpu->gd_intr_nesting_level ||
1065 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1066 	{
1067 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1068 	    z = (SLZone *)ptr;
1069 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1070 	    z->z_Next = slgd->FreeOvZones;
1071 	    z->z_ChunkSize = size;
1072 	    slgd->FreeOvZones = z;
1073 	    crit_exit();
1074 	} else {
1075 	    crit_exit();
1076 	    logmemory(free_ovsz, ptr, type, size, 0);
1077 	    kmem_slab_free(ptr, size);	/* may block */
1078 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1079 	}
1080 	logmemory_quick(free_end);
1081 	return;
1082     }
1083 
1084     /*
1085      * Zone case.  Figure out the zone based on the fact that it is
1086      * ZoneSize aligned.
1087      */
1088     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1089     kup = btokup(z);
1090     KKASSERT(kup->ku_pagecnt < 0);
1091     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1092 
1093     /*
1094      * If we do not own the zone then use atomic ops to free to the
1095      * remote cpu linked list and notify the target zone using a
1096      * passive message.
1097      *
1098      * The target zone cannot be deallocated while we own a chunk of it,
1099      * so the zone header's storage is stable until the very moment
1100      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1101      *
1102      * (no critical section needed)
1103      */
1104     if (z->z_CpuGd != gd) {
1105 #ifdef SMP
1106 	/*
1107 	 * Making these adjustments now allow us to avoid passing (type)
1108 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1109 	 * adjusted on a different cpu, but it should all still sum up
1110 	 * properly and cancel out.
1111 	 */
1112 	--type->ks_inuse[z->z_Cpu];
1113 	type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1114 
1115 	/*
1116 	 * WARNING! This code competes with other cpus.  Once we
1117 	 *	    successfully link the chunk to RChunks the remote
1118 	 *	    cpu can rip z's storage out from under us.
1119 	 */
1120 	rsignal = z->z_RSignal;
1121 	cpu_lfence();
1122 
1123 	chunk = ptr;
1124 	for (;;) {
1125 	    bchunk = z->z_RChunks;
1126 	    cpu_ccfence();
1127 	    chunk->c_Next = bchunk;
1128 	    cpu_sfence();
1129 
1130 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1131 		break;
1132 	}
1133 	/* z cannot be dereferenced now */
1134 
1135 	/*
1136 	 * We have to signal the remote cpu if our actions will cause
1137 	 * the remote zone to be placed back on ZoneAry so it can
1138 	 * move the zone back on.
1139 	 *
1140 	 * We only need to deal with NULL->non-NULL RChunk transitions
1141 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1142 	 * before adding our chunk to RChunks.  This should result in
1143 	 * virtually no IPI traffic.
1144 	 *
1145 	 * We can use a passive IPI to reduce overhead even further.
1146 	 */
1147 	if (bchunk == NULL && rsignal) {
1148 	    logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1149 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1150 	}
1151 #else
1152 	panic("Corrupt SLZone");
1153 #endif
1154 	logmemory_quick(free_end);
1155 	return;
1156     }
1157 
1158     /*
1159      * kfree locally
1160      */
1161     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1162 
1163     crit_enter();
1164     chunk = ptr;
1165     chunk_mark_free(z, chunk);
1166 
1167     /*
1168      * Put weird data into the memory to detect modifications after freeing,
1169      * illegal pointer use after freeing (we should fault on the odd address),
1170      * and so forth.  XXX needs more work, see the old malloc code.
1171      */
1172 #ifdef INVARIANTS
1173     if (z->z_ChunkSize < sizeof(weirdary))
1174 	bcopy(weirdary, chunk, z->z_ChunkSize);
1175     else
1176 	bcopy(weirdary, chunk, sizeof(weirdary));
1177 #endif
1178 
1179     /*
1180      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1181      * to the front of the linked list so it is more likely to be
1182      * reallocated, since it is already in our L1 cache.
1183      */
1184 #ifdef INVARIANTS
1185     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1186 	panic("BADFREE %p", chunk);
1187 #endif
1188     chunk->c_Next = z->z_LChunks;
1189     z->z_LChunks = chunk;
1190     if (chunk->c_Next == NULL)
1191 	    z->z_LChunksp = &chunk->c_Next;
1192 
1193 #ifdef INVARIANTS
1194     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1195 	panic("BADFREE2");
1196 #endif
1197 
1198     /*
1199      * Bump the number of free chunks.  If it becomes non-zero the zone
1200      * must be added back onto the appropriate list.
1201      */
1202     if (z->z_NFree++ == 0) {
1203 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1204 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1205     }
1206 
1207     --type->ks_inuse[z->z_Cpu];
1208     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1209 
1210     /*
1211      * If the zone becomes totally free, and there are other zones we
1212      * can allocate from, move this zone to the FreeZones list.  Since
1213      * this code can be called from an IPI callback, do *NOT* try to mess
1214      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1215      */
1216     if (z->z_NFree == z->z_NMax &&
1217 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
1218     ) {
1219 	SLZone **pz;
1220 	struct kmemusage *kup;
1221 
1222 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1223 	    ;
1224 	*pz = z->z_Next;
1225 	z->z_Magic = -1;
1226 	z->z_Next = slgd->FreeZones;
1227 	slgd->FreeZones = z;
1228 	++slgd->NFreeZones;
1229 	kup = btokup(z);
1230 	kup->ku_pagecnt = 0;
1231     }
1232     logmemory_quick(free_end);
1233     crit_exit();
1234 }
1235 
1236 #if defined(INVARIANTS)
1237 
1238 /*
1239  * Helper routines for sanity checks
1240  */
1241 static
1242 void
1243 chunk_mark_allocated(SLZone *z, void *chunk)
1244 {
1245     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1246     __uint32_t *bitptr;
1247 
1248     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1249     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1250 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1251     bitptr = &z->z_Bitmap[bitdex >> 5];
1252     bitdex &= 31;
1253     KASSERT((*bitptr & (1 << bitdex)) == 0,
1254 	    ("memory chunk %p is already allocated!", chunk));
1255     *bitptr |= 1 << bitdex;
1256 }
1257 
1258 static
1259 void
1260 chunk_mark_free(SLZone *z, void *chunk)
1261 {
1262     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1263     __uint32_t *bitptr;
1264 
1265     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1266     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1267 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1268     bitptr = &z->z_Bitmap[bitdex >> 5];
1269     bitdex &= 31;
1270     KASSERT((*bitptr & (1 << bitdex)) != 0,
1271 	    ("memory chunk %p is already free!", chunk));
1272     *bitptr &= ~(1 << bitdex);
1273 }
1274 
1275 #endif
1276 
1277 /*
1278  * kmem_slab_alloc()
1279  *
1280  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1281  *	specified alignment.  M_* flags are expected in the flags field.
1282  *
1283  *	Alignment must be a multiple of PAGE_SIZE.
1284  *
1285  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1286  *	but when we move zalloc() over to use this function as its backend
1287  *	we will have to switch to kreserve/krelease and call reserve(0)
1288  *	after the new space is made available.
1289  *
1290  *	Interrupt code which has preempted other code is not allowed to
1291  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1292  *	non-preemptively or blocks and then runs non-preemptively, then
1293  *	it is free to use PQ_CACHE pages.
1294  */
1295 static void *
1296 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1297 {
1298     vm_size_t i;
1299     vm_offset_t addr;
1300     int count, vmflags, base_vmflags;
1301     thread_t td;
1302 
1303     size = round_page(size);
1304     addr = vm_map_min(&kernel_map);
1305 
1306     /*
1307      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1308      * cannot block.
1309      */
1310     if (flags & M_RNOWAIT) {
1311 	if (lwkt_trytoken(&vm_token) == 0)
1312 	    return(NULL);
1313     } else {
1314 	lwkt_gettoken(&vm_token);
1315     }
1316     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1317     crit_enter();
1318     vm_map_lock(&kernel_map);
1319     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1320 	vm_map_unlock(&kernel_map);
1321 	if ((flags & M_NULLOK) == 0)
1322 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1323 	vm_map_entry_release(count);
1324 	crit_exit();
1325 	lwkt_reltoken(&vm_token);
1326 	return(NULL);
1327     }
1328 
1329     /*
1330      * kernel_object maps 1:1 to kernel_map.
1331      */
1332     vm_object_reference(&kernel_object);
1333     vm_map_insert(&kernel_map, &count,
1334 		    &kernel_object, addr, addr, addr + size,
1335 		    VM_MAPTYPE_NORMAL,
1336 		    VM_PROT_ALL, VM_PROT_ALL,
1337 		    0);
1338 
1339     td = curthread;
1340 
1341     base_vmflags = 0;
1342     if (flags & M_ZERO)
1343         base_vmflags |= VM_ALLOC_ZERO;
1344     if (flags & M_USE_RESERVE)
1345 	base_vmflags |= VM_ALLOC_SYSTEM;
1346     if (flags & M_USE_INTERRUPT_RESERVE)
1347         base_vmflags |= VM_ALLOC_INTERRUPT;
1348     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1349 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1350 	      flags, ((int **)&size)[-1]);
1351     }
1352 
1353 
1354     /*
1355      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1356      */
1357     for (i = 0; i < size; i += PAGE_SIZE) {
1358 	vm_page_t m;
1359 
1360 	/*
1361 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1362 	 *
1363 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1364 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1365 	 * implied in this case), though I'm not sure if we really need to
1366 	 * do that.
1367 	 */
1368 	vmflags = base_vmflags;
1369 	if (flags & M_WAITOK) {
1370 	    if (td->td_preempted)
1371 		vmflags |= VM_ALLOC_SYSTEM;
1372 	    else
1373 		vmflags |= VM_ALLOC_NORMAL;
1374 	}
1375 
1376 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1377 
1378 	/*
1379 	 * If the allocation failed we either return NULL or we retry.
1380 	 *
1381 	 * If M_WAITOK is specified we wait for more memory and retry.
1382 	 * If M_WAITOK is specified from a preemption we yield instead of
1383 	 * wait.  Livelock will not occur because the interrupt thread
1384 	 * will not be preempting anyone the second time around after the
1385 	 * yield.
1386 	 */
1387 	if (m == NULL) {
1388 	    if (flags & M_WAITOK) {
1389 		if (td->td_preempted) {
1390 		    vm_map_unlock(&kernel_map);
1391 		    lwkt_switch();
1392 		    vm_map_lock(&kernel_map);
1393 		} else {
1394 		    vm_map_unlock(&kernel_map);
1395 		    vm_wait(0);
1396 		    vm_map_lock(&kernel_map);
1397 		}
1398 		i -= PAGE_SIZE;	/* retry */
1399 		continue;
1400 	    }
1401 
1402 	    /*
1403 	     * We were unable to recover, cleanup and return NULL
1404 	     *
1405 	     * (vm_token already held)
1406 	     */
1407 	    while (i != 0) {
1408 		i -= PAGE_SIZE;
1409 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1410 		/* page should already be busy */
1411 		vm_page_free(m);
1412 	    }
1413 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1414 	    vm_map_unlock(&kernel_map);
1415 	    vm_map_entry_release(count);
1416 	    crit_exit();
1417 	    lwkt_reltoken(&vm_token);
1418 	    return(NULL);
1419 	}
1420     }
1421 
1422     /*
1423      * Success!
1424      *
1425      * Mark the map entry as non-pageable using a routine that allows us to
1426      * populate the underlying pages.
1427      *
1428      * The pages were busied by the allocations above.
1429      */
1430     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1431     crit_exit();
1432 
1433     /*
1434      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1435      */
1436     lwkt_gettoken(&vm_token);
1437     for (i = 0; i < size; i += PAGE_SIZE) {
1438 	vm_page_t m;
1439 
1440 	m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1441 	m->valid = VM_PAGE_BITS_ALL;
1442 	/* page should already be busy */
1443 	vm_page_wire(m);
1444 	vm_page_wakeup(m);
1445 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1446 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1447 	    bzero((char *)addr + i, PAGE_SIZE);
1448 	vm_page_flag_clear(m, PG_ZERO);
1449 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1450 	vm_page_flag_set(m, PG_REFERENCED);
1451     }
1452     lwkt_reltoken(&vm_token);
1453     vm_map_unlock(&kernel_map);
1454     vm_map_entry_release(count);
1455     lwkt_reltoken(&vm_token);
1456     return((void *)addr);
1457 }
1458 
1459 /*
1460  * kmem_slab_free()
1461  */
1462 static void
1463 kmem_slab_free(void *ptr, vm_size_t size)
1464 {
1465     crit_enter();
1466     lwkt_gettoken(&vm_token);
1467     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1468     lwkt_reltoken(&vm_token);
1469     crit_exit();
1470 }
1471 
1472