1 /* 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator (MP SAFE) 3 * 4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.31 2005/04/26 00:47:59 dillon Exp $ 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * API REQUIREMENTS AND SIDE EFFECTS 82 * 83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 84 * have remained compatible with the following API requirements: 85 * 86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 88 * + malloc(0) is allowed and returns non-NULL (ahc driver) 89 * + ability to allocate arbitrarily large chunks of memory 90 */ 91 92 #include "opt_vm.h" 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kernel.h> 97 #include <sys/slaballoc.h> 98 #include <sys/mbuf.h> 99 #include <sys/vmmeter.h> 100 #include <sys/lock.h> 101 #include <sys/thread.h> 102 #include <sys/globaldata.h> 103 104 #include <vm/vm.h> 105 #include <vm/vm_param.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_object.h> 109 #include <vm/pmap.h> 110 #include <vm/vm_map.h> 111 #include <vm/vm_page.h> 112 #include <vm/vm_pageout.h> 113 114 #include <machine/cpu.h> 115 116 #include <sys/thread2.h> 117 118 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 119 120 /* 121 * Fixed globals (not per-cpu) 122 */ 123 static int ZoneSize; 124 static int ZoneLimit; 125 static int ZonePageCount; 126 static int ZoneMask; 127 static struct malloc_type *kmemstatistics; 128 static struct kmemusage *kmemusage; 129 static int32_t weirdary[16]; 130 131 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 132 static void kmem_slab_free(void *ptr, vm_size_t bytes); 133 134 /* 135 * Misc constants. Note that allocations that are exact multiples of 136 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 137 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 138 */ 139 #define MIN_CHUNK_SIZE 8 /* in bytes */ 140 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 141 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 142 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 143 144 /* 145 * The WEIRD_ADDR is used as known text to copy into free objects to 146 * try to create deterministic failure cases if the data is accessed after 147 * free. 148 */ 149 #define WEIRD_ADDR 0xdeadc0de 150 #define MAX_COPY sizeof(weirdary) 151 #define ZERO_LENGTH_PTR ((void *)-8) 152 153 /* 154 * Misc global malloc buckets 155 */ 156 157 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 158 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 159 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 160 161 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 162 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 163 164 /* 165 * Initialize the slab memory allocator. We have to choose a zone size based 166 * on available physical memory. We choose a zone side which is approximately 167 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 168 * 128K. The zone size is limited to the bounds set in slaballoc.h 169 * (typically 32K min, 128K max). 170 */ 171 static void kmeminit(void *dummy); 172 173 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 174 175 static void 176 kmeminit(void *dummy) 177 { 178 vm_poff_t limsize; 179 int usesize; 180 int i; 181 vm_pindex_t npg; 182 183 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 184 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) 185 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 186 187 usesize = (int)(limsize / 1024); /* convert to KB */ 188 189 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 190 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 191 ZoneSize <<= 1; 192 ZoneLimit = ZoneSize / 4; 193 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 194 ZoneLimit = ZALLOC_ZONE_LIMIT; 195 ZoneMask = ZoneSize - 1; 196 ZonePageCount = ZoneSize / PAGE_SIZE; 197 198 npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE; 199 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_WAITOK|M_ZERO); 200 201 for (i = 0; i < arysize(weirdary); ++i) 202 weirdary[i] = WEIRD_ADDR; 203 204 if (bootverbose) 205 printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 206 } 207 208 /* 209 * Initialize a malloc type tracking structure. 210 */ 211 void 212 malloc_init(void *data) 213 { 214 struct malloc_type *type = data; 215 vm_poff_t limsize; 216 217 if (type->ks_magic != M_MAGIC) 218 panic("malloc type lacks magic"); 219 220 if (type->ks_limit != 0) 221 return; 222 223 if (vmstats.v_page_count == 0) 224 panic("malloc_init not allowed before vm init"); 225 226 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 227 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) 228 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 229 type->ks_limit = limsize / 10; 230 231 type->ks_next = kmemstatistics; 232 kmemstatistics = type; 233 } 234 235 void 236 malloc_uninit(void *data) 237 { 238 struct malloc_type *type = data; 239 struct malloc_type *t; 240 #ifdef INVARIANTS 241 int i; 242 long ttl; 243 #endif 244 245 if (type->ks_magic != M_MAGIC) 246 panic("malloc type lacks magic"); 247 248 if (vmstats.v_page_count == 0) 249 panic("malloc_uninit not allowed before vm init"); 250 251 if (type->ks_limit == 0) 252 panic("malloc_uninit on uninitialized type"); 253 254 #ifdef INVARIANTS 255 /* 256 * memuse is only correct in aggregation. Due to memory being allocated 257 * on one cpu and freed on another individual array entries may be 258 * negative or positive (canceling each other out). 259 */ 260 for (i = ttl = 0; i < ncpus; ++i) 261 ttl += type->ks_memuse[i]; 262 if (ttl) { 263 printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 264 ttl, type->ks_shortdesc, i); 265 } 266 #endif 267 if (type == kmemstatistics) { 268 kmemstatistics = type->ks_next; 269 } else { 270 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 271 if (t->ks_next == type) { 272 t->ks_next = type->ks_next; 273 break; 274 } 275 } 276 } 277 type->ks_next = NULL; 278 type->ks_limit = 0; 279 } 280 281 /* 282 * Calculate the zone index for the allocation request size and set the 283 * allocation request size to that particular zone's chunk size. 284 */ 285 static __inline int 286 zoneindex(unsigned long *bytes) 287 { 288 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 289 if (n < 128) { 290 *bytes = n = (n + 7) & ~7; 291 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 292 } 293 if (n < 256) { 294 *bytes = n = (n + 15) & ~15; 295 return(n / 16 + 7); 296 } 297 if (n < 8192) { 298 if (n < 512) { 299 *bytes = n = (n + 31) & ~31; 300 return(n / 32 + 15); 301 } 302 if (n < 1024) { 303 *bytes = n = (n + 63) & ~63; 304 return(n / 64 + 23); 305 } 306 if (n < 2048) { 307 *bytes = n = (n + 127) & ~127; 308 return(n / 128 + 31); 309 } 310 if (n < 4096) { 311 *bytes = n = (n + 255) & ~255; 312 return(n / 256 + 39); 313 } 314 *bytes = n = (n + 511) & ~511; 315 return(n / 512 + 47); 316 } 317 #if ZALLOC_ZONE_LIMIT > 8192 318 if (n < 16384) { 319 *bytes = n = (n + 1023) & ~1023; 320 return(n / 1024 + 55); 321 } 322 #endif 323 #if ZALLOC_ZONE_LIMIT > 16384 324 if (n < 32768) { 325 *bytes = n = (n + 2047) & ~2047; 326 return(n / 2048 + 63); 327 } 328 #endif 329 panic("Unexpected byte count %d", n); 330 return(0); 331 } 332 333 /* 334 * malloc() (SLAB ALLOCATOR) (MP SAFE) 335 * 336 * Allocate memory via the slab allocator. If the request is too large, 337 * or if it page-aligned beyond a certain size, we fall back to the 338 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 339 * &SlabMisc if you don't care. 340 * 341 * M_RNOWAIT - don't block. 342 * M_NULLOK - return NULL instead of blocking. 343 * M_ZERO - zero the returned memory. 344 * M_USE_RESERVE - allow greater drawdown of the free list 345 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 346 */ 347 void * 348 malloc(unsigned long size, struct malloc_type *type, int flags) 349 { 350 SLZone *z; 351 SLChunk *chunk; 352 SLGlobalData *slgd; 353 struct globaldata *gd; 354 int zi; 355 356 gd = mycpu; 357 slgd = &gd->gd_slab; 358 359 /* 360 * XXX silly to have this in the critical path. 361 */ 362 if (type->ks_limit == 0) { 363 crit_enter(); 364 if (type->ks_limit == 0) 365 malloc_init(type); 366 crit_exit(); 367 } 368 ++type->ks_calls; 369 370 /* 371 * Handle the case where the limit is reached. Panic if we can't return 372 * NULL. The original malloc code looped, but this tended to 373 * simply deadlock the computer. 374 * 375 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 376 * to determine if a more complete limit check should be done. The 377 * actual memory use is tracked via ks_memuse[cpu]. 378 */ 379 while (type->ks_loosememuse >= type->ks_limit) { 380 int i; 381 long ttl; 382 383 for (i = ttl = 0; i < ncpus; ++i) 384 ttl += type->ks_memuse[i]; 385 type->ks_loosememuse = ttl; /* not MP synchronized */ 386 if (ttl >= type->ks_limit) { 387 if (flags & M_NULLOK) 388 return(NULL); 389 panic("%s: malloc limit exceeded", type->ks_shortdesc); 390 } 391 } 392 393 /* 394 * Handle the degenerate size == 0 case. Yes, this does happen. 395 * Return a special pointer. This is to maintain compatibility with 396 * the original malloc implementation. Certain devices, such as the 397 * adaptec driver, not only allocate 0 bytes, they check for NULL and 398 * also realloc() later on. Joy. 399 */ 400 if (size == 0) 401 return(ZERO_LENGTH_PTR); 402 403 /* 404 * Handle hysteresis from prior frees here in malloc(). We cannot 405 * safely manipulate the kernel_map in free() due to free() possibly 406 * being called via an IPI message or from sensitive interrupt code. 407 */ 408 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 409 crit_enter(); 410 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 411 z = slgd->FreeZones; 412 slgd->FreeZones = z->z_Next; 413 --slgd->NFreeZones; 414 kmem_slab_free(z, ZoneSize); /* may block */ 415 } 416 crit_exit(); 417 } 418 /* 419 * XXX handle oversized frees that were queued from free(). 420 */ 421 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 422 crit_enter(); 423 if ((z = slgd->FreeOvZones) != NULL) { 424 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 425 slgd->FreeOvZones = z->z_Next; 426 kmem_slab_free(z, z->z_ChunkSize); /* may block */ 427 } 428 crit_exit(); 429 } 430 431 /* 432 * Handle large allocations directly. There should not be very many of 433 * these so performance is not a big issue. 434 * 435 * Guarentee page alignment for allocations in multiples of PAGE_SIZE 436 */ 437 if (size >= ZoneLimit || (size & PAGE_MASK) == 0) { 438 struct kmemusage *kup; 439 440 size = round_page(size); 441 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 442 if (chunk == NULL) 443 return(NULL); 444 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 445 flags |= M_PASSIVE_ZERO; 446 kup = btokup(chunk); 447 kup->ku_pagecnt = size / PAGE_SIZE; 448 kup->ku_cpu = gd->gd_cpuid; 449 crit_enter(); 450 goto done; 451 } 452 453 /* 454 * Attempt to allocate out of an existing zone. First try the free list, 455 * then allocate out of unallocated space. If we find a good zone move 456 * it to the head of the list so later allocations find it quickly 457 * (we might have thousands of zones in the list). 458 * 459 * Note: zoneindex() will panic of size is too large. 460 */ 461 zi = zoneindex(&size); 462 KKASSERT(zi < NZONES); 463 crit_enter(); 464 if ((z = slgd->ZoneAry[zi]) != NULL) { 465 KKASSERT(z->z_NFree > 0); 466 467 /* 468 * Remove us from the ZoneAry[] when we become empty 469 */ 470 if (--z->z_NFree == 0) { 471 slgd->ZoneAry[zi] = z->z_Next; 472 z->z_Next = NULL; 473 } 474 475 /* 476 * Locate a chunk in a free page. This attempts to localize 477 * reallocations into earlier pages without us having to sort 478 * the chunk list. A chunk may still overlap a page boundary. 479 */ 480 while (z->z_FirstFreePg < ZonePageCount) { 481 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) { 482 #ifdef DIAGNOSTIC 483 /* 484 * Diagnostic: c_Next is not total garbage. 485 */ 486 KKASSERT(chunk->c_Next == NULL || 487 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) == 488 ((intptr_t)chunk & IN_SAME_PAGE_MASK)); 489 #endif 490 #ifdef INVARIANTS 491 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS) 492 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount); 493 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS) 494 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount); 495 #endif 496 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next; 497 goto done; 498 } 499 ++z->z_FirstFreePg; 500 } 501 502 /* 503 * No chunks are available but NFree said we had some memory, so 504 * it must be available in the never-before-used-memory area 505 * governed by UIndex. The consequences are very serious if our zone 506 * got corrupted so we use an explicit panic rather then a KASSERT. 507 */ 508 if (z->z_UIndex + 1 != z->z_NMax) 509 z->z_UIndex = z->z_UIndex + 1; 510 else 511 z->z_UIndex = 0; 512 if (z->z_UIndex == z->z_UEndIndex) 513 panic("slaballoc: corrupted zone"); 514 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 515 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 516 flags &= ~M_ZERO; 517 flags |= M_PASSIVE_ZERO; 518 } 519 goto done; 520 } 521 522 /* 523 * If all zones are exhausted we need to allocate a new zone for this 524 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 525 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 526 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 527 * we do not pre-zero it because we do not want to mess up the L1 cache. 528 * 529 * At least one subsystem, the tty code (see CROUND) expects power-of-2 530 * allocations to be power-of-2 aligned. We maintain compatibility by 531 * adjusting the base offset below. 532 */ 533 { 534 int off; 535 536 if ((z = slgd->FreeZones) != NULL) { 537 slgd->FreeZones = z->z_Next; 538 --slgd->NFreeZones; 539 bzero(z, sizeof(SLZone)); 540 z->z_Flags |= SLZF_UNOTZEROD; 541 } else { 542 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 543 if (z == NULL) 544 goto fail; 545 } 546 547 /* 548 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 549 * Otherwise just 8-byte align the data. 550 */ 551 if ((size | (size - 1)) + 1 == (size << 1)) 552 off = (sizeof(SLZone) + size - 1) & ~(size - 1); 553 else 554 off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 555 z->z_Magic = ZALLOC_SLAB_MAGIC; 556 z->z_ZoneIndex = zi; 557 z->z_NMax = (ZoneSize - off) / size; 558 z->z_NFree = z->z_NMax - 1; 559 z->z_BasePtr = (char *)z + off; 560 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 561 z->z_ChunkSize = size; 562 z->z_FirstFreePg = ZonePageCount; 563 z->z_CpuGd = gd; 564 z->z_Cpu = gd->gd_cpuid; 565 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 566 z->z_Next = slgd->ZoneAry[zi]; 567 slgd->ZoneAry[zi] = z; 568 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 569 flags &= ~M_ZERO; /* already zero'd */ 570 flags |= M_PASSIVE_ZERO; 571 } 572 573 /* 574 * Slide the base index for initial allocations out of the next 575 * zone we create so we do not over-weight the lower part of the 576 * cpu memory caches. 577 */ 578 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 579 & (ZALLOC_MAX_ZONE_SIZE - 1); 580 } 581 done: 582 ++type->ks_inuse[gd->gd_cpuid]; 583 type->ks_memuse[gd->gd_cpuid] += size; 584 type->ks_loosememuse += size; /* not MP synchronized */ 585 crit_exit(); 586 if (flags & M_ZERO) 587 bzero(chunk, size); 588 #ifdef INVARIANTS 589 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) 590 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 591 #endif 592 return(chunk); 593 fail: 594 crit_exit(); 595 return(NULL); 596 } 597 598 /* 599 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 600 * 601 * Generally speaking this routine is not called very often and we do 602 * not attempt to optimize it beyond reusing the same pointer if the 603 * new size fits within the chunking of the old pointer's zone. 604 */ 605 void * 606 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 607 { 608 SLZone *z; 609 void *nptr; 610 unsigned long osize; 611 612 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 613 614 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 615 return(malloc(size, type, flags)); 616 if (size == 0) { 617 free(ptr, type); 618 return(NULL); 619 } 620 621 /* 622 * Handle oversized allocations. XXX we really should require that a 623 * size be passed to free() instead of this nonsense. 624 */ 625 { 626 struct kmemusage *kup; 627 628 kup = btokup(ptr); 629 if (kup->ku_pagecnt) { 630 osize = kup->ku_pagecnt << PAGE_SHIFT; 631 if (osize == round_page(size)) 632 return(ptr); 633 if ((nptr = malloc(size, type, flags)) == NULL) 634 return(NULL); 635 bcopy(ptr, nptr, min(size, osize)); 636 free(ptr, type); 637 return(nptr); 638 } 639 } 640 641 /* 642 * Get the original allocation's zone. If the new request winds up 643 * using the same chunk size we do not have to do anything. 644 */ 645 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 646 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 647 648 zoneindex(&size); 649 if (z->z_ChunkSize == size) 650 return(ptr); 651 652 /* 653 * Allocate memory for the new request size. Note that zoneindex has 654 * already adjusted the request size to the appropriate chunk size, which 655 * should optimize our bcopy(). Then copy and return the new pointer. 656 */ 657 if ((nptr = malloc(size, type, flags)) == NULL) 658 return(NULL); 659 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 660 free(ptr, type); 661 return(nptr); 662 } 663 664 /* 665 * Allocate a copy of the specified string. 666 * 667 * (MP SAFE) (MAY BLOCK) 668 */ 669 char * 670 strdup(const char *str, struct malloc_type *type) 671 { 672 int zlen; /* length inclusive of terminating NUL */ 673 char *nstr; 674 675 if (str == NULL) 676 return(NULL); 677 zlen = strlen(str) + 1; 678 nstr = malloc(zlen, type, M_WAITOK); 679 bcopy(str, nstr, zlen); 680 return(nstr); 681 } 682 683 #ifdef SMP 684 /* 685 * free() (SLAB ALLOCATOR) 686 * 687 * Free the specified chunk of memory. 688 */ 689 static 690 void 691 free_remote(void *ptr) 692 { 693 free(ptr, *(struct malloc_type **)ptr); 694 } 695 696 #endif 697 698 /* 699 * free (SLAB ALLOCATOR) (MP SAFE) 700 * 701 * Free a memory block previously allocated by malloc. Note that we do not 702 * attempt to uplodate ks_loosememuse as MP races could prevent us from 703 * checking memory limits in malloc. 704 */ 705 void 706 free(void *ptr, struct malloc_type *type) 707 { 708 SLZone *z; 709 SLChunk *chunk; 710 SLGlobalData *slgd; 711 struct globaldata *gd; 712 int pgno; 713 714 gd = mycpu; 715 slgd = &gd->gd_slab; 716 717 if (ptr == NULL) 718 panic("trying to free NULL pointer"); 719 720 /* 721 * Handle special 0-byte allocations 722 */ 723 if (ptr == ZERO_LENGTH_PTR) 724 return; 725 726 /* 727 * Handle oversized allocations. XXX we really should require that a 728 * size be passed to free() instead of this nonsense. 729 * 730 * This code is never called via an ipi. 731 */ 732 { 733 struct kmemusage *kup; 734 unsigned long size; 735 736 kup = btokup(ptr); 737 if (kup->ku_pagecnt) { 738 size = kup->ku_pagecnt << PAGE_SHIFT; 739 kup->ku_pagecnt = 0; 740 #ifdef INVARIANTS 741 KKASSERT(sizeof(weirdary) <= size); 742 bcopy(weirdary, ptr, sizeof(weirdary)); 743 #endif 744 /* 745 * note: we always adjust our cpu's slot, not the originating 746 * cpu (kup->ku_cpuid). The statistics are in aggregate. 747 * 748 * note: XXX we have still inherited the interrupts-can't-block 749 * assumption. An interrupt thread does not bump 750 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 751 * primarily until we can fix softupdate's assumptions about free(). 752 */ 753 crit_enter(); 754 --type->ks_inuse[gd->gd_cpuid]; 755 type->ks_memuse[gd->gd_cpuid] -= size; 756 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) { 757 z = (SLZone *)ptr; 758 z->z_Magic = ZALLOC_OVSZ_MAGIC; 759 z->z_Next = slgd->FreeOvZones; 760 z->z_ChunkSize = size; 761 slgd->FreeOvZones = z; 762 crit_exit(); 763 } else { 764 crit_exit(); 765 kmem_slab_free(ptr, size); /* may block */ 766 } 767 return; 768 } 769 } 770 771 /* 772 * Zone case. Figure out the zone based on the fact that it is 773 * ZoneSize aligned. 774 */ 775 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 776 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 777 778 /* 779 * If we do not own the zone then forward the request to the 780 * cpu that does. Since the timing is non-critical, a passive 781 * message is sent. 782 */ 783 if (z->z_CpuGd != gd) { 784 *(struct malloc_type **)ptr = type; 785 #ifdef SMP 786 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr); 787 #else 788 panic("Corrupt SLZone"); 789 #endif 790 return; 791 } 792 793 if (type->ks_magic != M_MAGIC) 794 panic("free: malloc type lacks magic"); 795 796 crit_enter(); 797 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT; 798 chunk = ptr; 799 800 #ifdef INVARIANTS 801 /* 802 * Attempt to detect a double-free. To reduce overhead we only check 803 * if there appears to be link pointer at the base of the data. 804 */ 805 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) { 806 SLChunk *scan; 807 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) { 808 if (scan == chunk) 809 panic("Double free at %p", chunk); 810 } 811 } 812 #endif 813 814 /* 815 * Put weird data into the memory to detect modifications after freeing, 816 * illegal pointer use after freeing (we should fault on the odd address), 817 * and so forth. XXX needs more work, see the old malloc code. 818 */ 819 #ifdef INVARIANTS 820 if (z->z_ChunkSize < sizeof(weirdary)) 821 bcopy(weirdary, chunk, z->z_ChunkSize); 822 else 823 bcopy(weirdary, chunk, sizeof(weirdary)); 824 #endif 825 826 /* 827 * Add this free non-zero'd chunk to a linked list for reuse, adjust 828 * z_FirstFreePg. 829 */ 830 #ifdef INVARIANTS 831 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS) 832 panic("BADFREE %p", chunk); 833 #endif 834 chunk->c_Next = z->z_PageAry[pgno]; 835 z->z_PageAry[pgno] = chunk; 836 #ifdef INVARIANTS 837 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS) 838 panic("BADFREE2"); 839 #endif 840 if (z->z_FirstFreePg > pgno) 841 z->z_FirstFreePg = pgno; 842 843 /* 844 * Bump the number of free chunks. If it becomes non-zero the zone 845 * must be added back onto the appropriate list. 846 */ 847 if (z->z_NFree++ == 0) { 848 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 849 slgd->ZoneAry[z->z_ZoneIndex] = z; 850 } 851 852 --type->ks_inuse[z->z_Cpu]; 853 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 854 855 /* 856 * If the zone becomes totally free, and there are other zones we 857 * can allocate from, move this zone to the FreeZones list. Since 858 * this code can be called from an IPI callback, do *NOT* try to mess 859 * with kernel_map here. Hysteresis will be performed at malloc() time. 860 */ 861 if (z->z_NFree == z->z_NMax && 862 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 863 ) { 864 SLZone **pz; 865 866 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 867 ; 868 *pz = z->z_Next; 869 z->z_Magic = -1; 870 z->z_Next = slgd->FreeZones; 871 slgd->FreeZones = z; 872 ++slgd->NFreeZones; 873 } 874 crit_exit(); 875 } 876 877 /* 878 * kmem_slab_alloc() (MP SAFE) (GETS BGL) 879 * 880 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 881 * specified alignment. M_* flags are expected in the flags field. 882 * 883 * Alignment must be a multiple of PAGE_SIZE. 884 * 885 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 886 * but when we move zalloc() over to use this function as its backend 887 * we will have to switch to kreserve/krelease and call reserve(0) 888 * after the new space is made available. 889 * 890 * Interrupt code which has preempted other code is not allowed to 891 * use PQ_CACHE pages. However, if an interrupt thread is run 892 * non-preemptively or blocks and then runs non-preemptively, then 893 * it is free to use PQ_CACHE pages. 894 * 895 * This routine will currently obtain the BGL. 896 */ 897 static void * 898 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 899 { 900 vm_size_t i; 901 vm_offset_t addr; 902 vm_offset_t offset; 903 int count, vmflags, base_vmflags; 904 thread_t td; 905 vm_map_t map = kernel_map; 906 907 size = round_page(size); 908 addr = vm_map_min(map); 909 910 /* 911 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 912 * cannot block. 913 */ 914 if (flags & M_RNOWAIT) { 915 if (try_mplock() == 0) 916 return(NULL); 917 } else { 918 get_mplock(); 919 } 920 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 921 crit_enter(); 922 vm_map_lock(map); 923 if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) { 924 vm_map_unlock(map); 925 if ((flags & M_NULLOK) == 0) 926 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 927 crit_exit(); 928 vm_map_entry_release(count); 929 rel_mplock(); 930 return(NULL); 931 } 932 offset = addr - VM_MIN_KERNEL_ADDRESS; 933 vm_object_reference(kernel_object); 934 vm_map_insert(map, &count, 935 kernel_object, offset, addr, addr + size, 936 VM_PROT_ALL, VM_PROT_ALL, 0); 937 938 td = curthread; 939 940 base_vmflags = 0; 941 if (flags & M_ZERO) 942 base_vmflags |= VM_ALLOC_ZERO; 943 if (flags & M_USE_RESERVE) 944 base_vmflags |= VM_ALLOC_SYSTEM; 945 if (flags & M_USE_INTERRUPT_RESERVE) 946 base_vmflags |= VM_ALLOC_INTERRUPT; 947 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) 948 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]); 949 950 951 /* 952 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 953 */ 954 for (i = 0; i < size; i += PAGE_SIZE) { 955 vm_page_t m; 956 vm_pindex_t idx = OFF_TO_IDX(offset + i); 957 958 /* 959 * VM_ALLOC_NORMAL can only be set if we are not preempting. 960 * 961 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 962 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 963 * implied in this case), though I'm sure if we really need to do 964 * that. 965 */ 966 vmflags = base_vmflags; 967 if (flags & M_WAITOK) { 968 if (td->td_preempted) 969 vmflags |= VM_ALLOC_SYSTEM; 970 else 971 vmflags |= VM_ALLOC_NORMAL; 972 } 973 974 m = vm_page_alloc(kernel_object, idx, vmflags); 975 976 /* 977 * If the allocation failed we either return NULL or we retry. 978 * 979 * If M_WAITOK is specified we wait for more memory and retry. 980 * If M_WAITOK is specified from a preemption we yield instead of 981 * wait. Livelock will not occur because the interrupt thread 982 * will not be preempting anyone the second time around after the 983 * yield. 984 */ 985 if (m == NULL) { 986 if (flags & M_WAITOK) { 987 if (td->td_preempted) { 988 vm_map_unlock(map); 989 lwkt_yield(); 990 vm_map_lock(map); 991 } else { 992 vm_map_unlock(map); 993 vm_wait(); 994 vm_map_lock(map); 995 } 996 i -= PAGE_SIZE; /* retry */ 997 continue; 998 } 999 1000 /* 1001 * We were unable to recover, cleanup and return NULL 1002 */ 1003 while (i != 0) { 1004 i -= PAGE_SIZE; 1005 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i)); 1006 vm_page_free(m); 1007 } 1008 vm_map_delete(map, addr, addr + size, &count); 1009 vm_map_unlock(map); 1010 crit_exit(); 1011 vm_map_entry_release(count); 1012 rel_mplock(); 1013 return(NULL); 1014 } 1015 } 1016 1017 /* 1018 * Success! 1019 * 1020 * Mark the map entry as non-pageable using a routine that allows us to 1021 * populate the underlying pages. 1022 */ 1023 vm_map_set_wired_quick(map, addr, size, &count); 1024 crit_exit(); 1025 1026 /* 1027 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1028 */ 1029 for (i = 0; i < size; i += PAGE_SIZE) { 1030 vm_page_t m; 1031 1032 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i)); 1033 m->valid = VM_PAGE_BITS_ALL; 1034 vm_page_wire(m); 1035 vm_page_wakeup(m); 1036 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1037 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1038 bzero((char *)addr + i, PAGE_SIZE); 1039 vm_page_flag_clear(m, PG_ZERO); 1040 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 1041 } 1042 vm_map_unlock(map); 1043 vm_map_entry_release(count); 1044 rel_mplock(); 1045 return((void *)addr); 1046 } 1047 1048 /* 1049 * kmem_slab_free() (MP SAFE) (GETS BGL) 1050 */ 1051 static void 1052 kmem_slab_free(void *ptr, vm_size_t size) 1053 { 1054 get_mplock(); 1055 crit_enter(); 1056 vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1057 crit_exit(); 1058 rel_mplock(); 1059 } 1060 1061