1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * Alignment properties: 82 * - All power-of-2 sized allocations are power-of-2 aligned. 83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest 84 * power-of-2 round up of 'size'. 85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the 86 * above table 'Chunking' column). 87 * 88 * API REQUIREMENTS AND SIDE EFFECTS 89 * 90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 91 * have remained compatible with the following API requirements: 92 * 93 * + malloc(0) is allowed and returns non-NULL (ahc driver) 94 * + ability to allocate arbitrarily large chunks of memory 95 */ 96 97 #include "opt_vm.h" 98 99 #include <sys/param.h> 100 #include <sys/systm.h> 101 #include <sys/kernel.h> 102 #include <sys/slaballoc.h> 103 #include <sys/mbuf.h> 104 #include <sys/vmmeter.h> 105 #include <sys/lock.h> 106 #include <sys/thread.h> 107 #include <sys/globaldata.h> 108 #include <sys/sysctl.h> 109 #include <sys/ktr.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_extern.h> 115 #include <vm/vm_object.h> 116 #include <vm/pmap.h> 117 #include <vm/vm_map.h> 118 #include <vm/vm_page.h> 119 #include <vm/vm_pageout.h> 120 121 #include <machine/cpu.h> 122 123 #include <sys/thread2.h> 124 #include <vm/vm_page2.h> 125 126 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 127 128 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x" 129 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags 130 131 #if !defined(KTR_MEMORY) 132 #define KTR_MEMORY KTR_ALL 133 #endif 134 KTR_INFO_MASTER(memory); 135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin"); 136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS); 137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS); 138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS); 139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS); 140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS); 141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS); 142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS); 143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS); 144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin"); 145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end"); 146 147 #define logmemory(name, ptr, type, size, flags) \ 148 KTR_LOG(memory_ ## name, ptr, type, size, flags) 149 #define logmemory_quick(name) \ 150 KTR_LOG(memory_ ## name) 151 152 /* 153 * Fixed globals (not per-cpu) 154 */ 155 static int ZoneSize; 156 static int ZoneLimit; 157 static int ZonePageCount; 158 static uintptr_t ZoneMask; 159 static int ZoneBigAlloc; /* in KB */ 160 static int ZoneGenAlloc; /* in KB */ 161 struct malloc_type *kmemstatistics; /* exported to vmstat */ 162 static int32_t weirdary[16]; 163 164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 165 static void kmem_slab_free(void *ptr, vm_size_t bytes); 166 167 #if defined(INVARIANTS) 168 static void chunk_mark_allocated(SLZone *z, void *chunk); 169 static void chunk_mark_free(SLZone *z, void *chunk); 170 #else 171 #define chunk_mark_allocated(z, chunk) 172 #define chunk_mark_free(z, chunk) 173 #endif 174 175 /* 176 * Misc constants. Note that allocations that are exact multiples of 177 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 178 */ 179 #define ZONE_RELS_THRESH 32 /* threshold number of zones */ 180 181 /* 182 * The WEIRD_ADDR is used as known text to copy into free objects to 183 * try to create deterministic failure cases if the data is accessed after 184 * free. 185 */ 186 #define WEIRD_ADDR 0xdeadc0de 187 #define MAX_COPY sizeof(weirdary) 188 #define ZERO_LENGTH_PTR ((void *)-8) 189 190 /* 191 * Misc global malloc buckets 192 */ 193 194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 197 198 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 199 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 200 201 /* 202 * Initialize the slab memory allocator. We have to choose a zone size based 203 * on available physical memory. We choose a zone side which is approximately 204 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 205 * 128K. The zone size is limited to the bounds set in slaballoc.h 206 * (typically 32K min, 128K max). 207 */ 208 static void kmeminit(void *dummy); 209 210 char *ZeroPage; 211 212 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 213 214 #ifdef INVARIANTS 215 /* 216 * If enabled any memory allocated without M_ZERO is initialized to -1. 217 */ 218 static int use_malloc_pattern; 219 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 220 &use_malloc_pattern, 0, 221 "Initialize memory to -1 if M_ZERO not specified"); 222 #endif 223 224 static int ZoneRelsThresh = ZONE_RELS_THRESH; 225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 227 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, ""); 228 static long SlabsAllocated; 229 static long SlabsFreed; 230 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, &SlabsAllocated, 0, ""); 231 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, &SlabsFreed, 0, ""); 232 233 /* 234 * Returns the kernel memory size limit for the purposes of initializing 235 * various subsystem caches. The smaller of available memory and the KVM 236 * memory space is returned. 237 * 238 * The size in megabytes is returned. 239 */ 240 size_t 241 kmem_lim_size(void) 242 { 243 size_t limsize; 244 245 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 246 if (limsize > KvaSize) 247 limsize = KvaSize; 248 return (limsize / (1024 * 1024)); 249 } 250 251 static void 252 kmeminit(void *dummy) 253 { 254 size_t limsize; 255 int usesize; 256 int i; 257 258 limsize = kmem_lim_size(); 259 usesize = (int)(limsize * 1024); /* convert to KB */ 260 261 /* 262 * If the machine has a large KVM space and more than 8G of ram, 263 * double the zone release threshold to reduce SMP invalidations. 264 * If more than 16G of ram, do it again. 265 * 266 * The BIOS eats a little ram so add some slop. We want 8G worth of 267 * memory sticks to trigger the first adjustment. 268 */ 269 if (ZoneRelsThresh == ZONE_RELS_THRESH) { 270 if (limsize >= 7 * 1024) 271 ZoneRelsThresh *= 2; 272 if (limsize >= 15 * 1024) 273 ZoneRelsThresh *= 2; 274 } 275 276 /* 277 * Calculate the zone size. This typically calculates to 278 * ZALLOC_MAX_ZONE_SIZE 279 */ 280 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 281 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 282 ZoneSize <<= 1; 283 ZoneLimit = ZoneSize / 4; 284 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 285 ZoneLimit = ZALLOC_ZONE_LIMIT; 286 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 287 ZonePageCount = ZoneSize / PAGE_SIZE; 288 289 for (i = 0; i < NELEM(weirdary); ++i) 290 weirdary[i] = WEIRD_ADDR; 291 292 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 293 294 if (bootverbose) 295 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 296 } 297 298 /* 299 * Initialize a malloc type tracking structure. 300 */ 301 void 302 malloc_init(void *data) 303 { 304 struct malloc_type *type = data; 305 size_t limsize; 306 307 if (type->ks_magic != M_MAGIC) 308 panic("malloc type lacks magic"); 309 310 if (type->ks_limit != 0) 311 return; 312 313 if (vmstats.v_page_count == 0) 314 panic("malloc_init not allowed before vm init"); 315 316 limsize = kmem_lim_size() * (1024 * 1024); 317 type->ks_limit = limsize / 10; 318 319 type->ks_next = kmemstatistics; 320 kmemstatistics = type; 321 } 322 323 void 324 malloc_uninit(void *data) 325 { 326 struct malloc_type *type = data; 327 struct malloc_type *t; 328 #ifdef INVARIANTS 329 int i; 330 long ttl; 331 #endif 332 333 if (type->ks_magic != M_MAGIC) 334 panic("malloc type lacks magic"); 335 336 if (vmstats.v_page_count == 0) 337 panic("malloc_uninit not allowed before vm init"); 338 339 if (type->ks_limit == 0) 340 panic("malloc_uninit on uninitialized type"); 341 342 /* Make sure that all pending kfree()s are finished. */ 343 lwkt_synchronize_ipiqs("muninit"); 344 345 #ifdef INVARIANTS 346 /* 347 * memuse is only correct in aggregation. Due to memory being allocated 348 * on one cpu and freed on another individual array entries may be 349 * negative or positive (canceling each other out). 350 */ 351 for (i = ttl = 0; i < ncpus; ++i) 352 ttl += type->ks_memuse[i]; 353 if (ttl) { 354 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 355 ttl, type->ks_shortdesc, i); 356 } 357 #endif 358 if (type == kmemstatistics) { 359 kmemstatistics = type->ks_next; 360 } else { 361 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 362 if (t->ks_next == type) { 363 t->ks_next = type->ks_next; 364 break; 365 } 366 } 367 } 368 type->ks_next = NULL; 369 type->ks_limit = 0; 370 } 371 372 /* 373 * Increase the kmalloc pool limit for the specified pool. No changes 374 * are the made if the pool would shrink. 375 */ 376 void 377 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 378 { 379 if (type->ks_limit == 0) 380 malloc_init(type); 381 if (bytes == 0) 382 bytes = KvaSize; 383 if (type->ks_limit < bytes) 384 type->ks_limit = bytes; 385 } 386 387 /* 388 * Dynamically create a malloc pool. This function is a NOP if *typep is 389 * already non-NULL. 390 */ 391 void 392 kmalloc_create(struct malloc_type **typep, const char *descr) 393 { 394 struct malloc_type *type; 395 396 if (*typep == NULL) { 397 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 398 type->ks_magic = M_MAGIC; 399 type->ks_shortdesc = descr; 400 malloc_init(type); 401 *typep = type; 402 } 403 } 404 405 /* 406 * Destroy a dynamically created malloc pool. This function is a NOP if 407 * the pool has already been destroyed. 408 */ 409 void 410 kmalloc_destroy(struct malloc_type **typep) 411 { 412 if (*typep != NULL) { 413 malloc_uninit(*typep); 414 kfree(*typep, M_TEMP); 415 *typep = NULL; 416 } 417 } 418 419 /* 420 * Calculate the zone index for the allocation request size and set the 421 * allocation request size to that particular zone's chunk size. 422 */ 423 static __inline int 424 zoneindex(unsigned long *bytes, unsigned long *align) 425 { 426 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 427 if (n < 128) { 428 *bytes = n = (n + 7) & ~7; 429 *align = 8; 430 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 431 } 432 if (n < 256) { 433 *bytes = n = (n + 15) & ~15; 434 *align = 16; 435 return(n / 16 + 7); 436 } 437 if (n < 8192) { 438 if (n < 512) { 439 *bytes = n = (n + 31) & ~31; 440 *align = 32; 441 return(n / 32 + 15); 442 } 443 if (n < 1024) { 444 *bytes = n = (n + 63) & ~63; 445 *align = 64; 446 return(n / 64 + 23); 447 } 448 if (n < 2048) { 449 *bytes = n = (n + 127) & ~127; 450 *align = 128; 451 return(n / 128 + 31); 452 } 453 if (n < 4096) { 454 *bytes = n = (n + 255) & ~255; 455 *align = 256; 456 return(n / 256 + 39); 457 } 458 *bytes = n = (n + 511) & ~511; 459 *align = 512; 460 return(n / 512 + 47); 461 } 462 #if ZALLOC_ZONE_LIMIT > 8192 463 if (n < 16384) { 464 *bytes = n = (n + 1023) & ~1023; 465 *align = 1024; 466 return(n / 1024 + 55); 467 } 468 #endif 469 #if ZALLOC_ZONE_LIMIT > 16384 470 if (n < 32768) { 471 *bytes = n = (n + 2047) & ~2047; 472 *align = 2048; 473 return(n / 2048 + 63); 474 } 475 #endif 476 panic("Unexpected byte count %d", n); 477 return(0); 478 } 479 480 static __inline 481 void 482 clean_zone_rchunks(SLZone *z) 483 { 484 SLChunk *bchunk; 485 486 while ((bchunk = z->z_RChunks) != NULL) { 487 cpu_ccfence(); 488 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 489 *z->z_LChunksp = bchunk; 490 while (bchunk) { 491 chunk_mark_free(z, bchunk); 492 z->z_LChunksp = &bchunk->c_Next; 493 bchunk = bchunk->c_Next; 494 ++z->z_NFree; 495 } 496 break; 497 } 498 /* retry */ 499 } 500 } 501 502 /* 503 * If the zone becomes totally free, and there are other zones we 504 * can allocate from, move this zone to the FreeZones list. Since 505 * this code can be called from an IPI callback, do *NOT* try to mess 506 * with kernel_map here. Hysteresis will be performed at malloc() time. 507 */ 508 static __inline 509 SLZone * 510 check_zone_free(SLGlobalData *slgd, SLZone *z) 511 { 512 if (z->z_NFree == z->z_NMax && 513 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 514 z->z_RCount == 0 515 ) { 516 SLZone **pz; 517 int *kup; 518 519 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 520 ; 521 *pz = z->z_Next; 522 z->z_Magic = -1; 523 z->z_Next = slgd->FreeZones; 524 slgd->FreeZones = z; 525 ++slgd->NFreeZones; 526 kup = btokup(z); 527 *kup = 0; 528 z = *pz; 529 } else { 530 z = z->z_Next; 531 } 532 return z; 533 } 534 535 #ifdef SLAB_DEBUG 536 /* 537 * Used to debug memory corruption issues. Record up to (typically 32) 538 * allocation sources for this zone (for a particular chunk size). 539 */ 540 541 static void 542 slab_record_source(SLZone *z, const char *file, int line) 543 { 544 int i; 545 int b = line & (SLAB_DEBUG_ENTRIES - 1); 546 547 i = b; 548 do { 549 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line) 550 return; 551 if (z->z_Sources[i].file == NULL) 552 break; 553 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1); 554 } while (i != b); 555 z->z_Sources[i].file = file; 556 z->z_Sources[i].line = line; 557 } 558 559 #endif 560 561 static __inline unsigned long 562 powerof2_size(unsigned long size) 563 { 564 int i; 565 566 if (size == 0 || powerof2(size)) 567 return size; 568 569 i = flsl(size); 570 return (1UL << i); 571 } 572 573 /* 574 * kmalloc() (SLAB ALLOCATOR) 575 * 576 * Allocate memory via the slab allocator. If the request is too large, 577 * or if it page-aligned beyond a certain size, we fall back to the 578 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 579 * &SlabMisc if you don't care. 580 * 581 * M_RNOWAIT - don't block. 582 * M_NULLOK - return NULL instead of blocking. 583 * M_ZERO - zero the returned memory. 584 * M_USE_RESERVE - allow greater drawdown of the free list 585 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 586 * M_POWEROF2 - roundup size to the nearest power of 2 587 * 588 * MPSAFE 589 */ 590 591 #ifdef SLAB_DEBUG 592 void * 593 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags, 594 const char *file, int line) 595 #else 596 void * 597 kmalloc(unsigned long size, struct malloc_type *type, int flags) 598 #endif 599 { 600 SLZone *z; 601 SLChunk *chunk; 602 SLGlobalData *slgd; 603 struct globaldata *gd; 604 unsigned long align; 605 int zi; 606 #ifdef INVARIANTS 607 int i; 608 #endif 609 610 logmemory_quick(malloc_beg); 611 gd = mycpu; 612 slgd = &gd->gd_slab; 613 614 /* 615 * XXX silly to have this in the critical path. 616 */ 617 if (type->ks_limit == 0) { 618 crit_enter(); 619 malloc_init(type); 620 crit_exit(); 621 } 622 ++type->ks_calls; 623 624 if (flags & M_POWEROF2) 625 size = powerof2_size(size); 626 627 /* 628 * Handle the case where the limit is reached. Panic if we can't return 629 * NULL. The original malloc code looped, but this tended to 630 * simply deadlock the computer. 631 * 632 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 633 * to determine if a more complete limit check should be done. The 634 * actual memory use is tracked via ks_memuse[cpu]. 635 */ 636 while (type->ks_loosememuse >= type->ks_limit) { 637 int i; 638 long ttl; 639 640 for (i = ttl = 0; i < ncpus; ++i) 641 ttl += type->ks_memuse[i]; 642 type->ks_loosememuse = ttl; /* not MP synchronized */ 643 if ((ssize_t)ttl < 0) /* deal with occassional race */ 644 ttl = 0; 645 if (ttl >= type->ks_limit) { 646 if (flags & M_NULLOK) { 647 logmemory(malloc_end, NULL, type, size, flags); 648 return(NULL); 649 } 650 panic("%s: malloc limit exceeded", type->ks_shortdesc); 651 } 652 } 653 654 /* 655 * Handle the degenerate size == 0 case. Yes, this does happen. 656 * Return a special pointer. This is to maintain compatibility with 657 * the original malloc implementation. Certain devices, such as the 658 * adaptec driver, not only allocate 0 bytes, they check for NULL and 659 * also realloc() later on. Joy. 660 */ 661 if (size == 0) { 662 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 663 return(ZERO_LENGTH_PTR); 664 } 665 666 /* 667 * Handle hysteresis from prior frees here in malloc(). We cannot 668 * safely manipulate the kernel_map in free() due to free() possibly 669 * being called via an IPI message or from sensitive interrupt code. 670 * 671 * NOTE: ku_pagecnt must be cleared before we free the slab or we 672 * might race another cpu allocating the kva and setting 673 * ku_pagecnt. 674 */ 675 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) { 676 crit_enter(); 677 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */ 678 int *kup; 679 680 z = slgd->FreeZones; 681 slgd->FreeZones = z->z_Next; 682 --slgd->NFreeZones; 683 kup = btokup(z); 684 *kup = 0; 685 kmem_slab_free(z, ZoneSize); /* may block */ 686 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024); 687 } 688 crit_exit(); 689 } 690 691 /* 692 * XXX handle oversized frees that were queued from kfree(). 693 */ 694 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 695 crit_enter(); 696 if ((z = slgd->FreeOvZones) != NULL) { 697 vm_size_t tsize; 698 699 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 700 slgd->FreeOvZones = z->z_Next; 701 tsize = z->z_ChunkSize; 702 kmem_slab_free(z, tsize); /* may block */ 703 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 704 } 705 crit_exit(); 706 } 707 708 /* 709 * Handle large allocations directly. There should not be very many of 710 * these so performance is not a big issue. 711 * 712 * The backend allocator is pretty nasty on a SMP system. Use the 713 * slab allocator for one and two page-sized chunks even though we lose 714 * some efficiency. XXX maybe fix mmio and the elf loader instead. 715 */ 716 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 717 int *kup; 718 719 size = round_page(size); 720 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 721 if (chunk == NULL) { 722 logmemory(malloc_end, NULL, type, size, flags); 723 return(NULL); 724 } 725 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 726 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 727 flags |= M_PASSIVE_ZERO; 728 kup = btokup(chunk); 729 *kup = size / PAGE_SIZE; 730 crit_enter(); 731 goto done; 732 } 733 734 /* 735 * Attempt to allocate out of an existing zone. First try the free list, 736 * then allocate out of unallocated space. If we find a good zone move 737 * it to the head of the list so later allocations find it quickly 738 * (we might have thousands of zones in the list). 739 * 740 * Note: zoneindex() will panic of size is too large. 741 */ 742 zi = zoneindex(&size, &align); 743 KKASSERT(zi < NZONES); 744 crit_enter(); 745 746 if ((z = slgd->ZoneAry[zi]) != NULL) { 747 /* 748 * Locate a chunk - we have to have at least one. If this is the 749 * last chunk go ahead and do the work to retrieve chunks freed 750 * from remote cpus, and if the zone is still empty move it off 751 * the ZoneAry. 752 */ 753 if (--z->z_NFree <= 0) { 754 KKASSERT(z->z_NFree == 0); 755 756 /* 757 * WARNING! This code competes with other cpus. It is ok 758 * for us to not drain RChunks here but we might as well, and 759 * it is ok if more accumulate after we're done. 760 * 761 * Set RSignal before pulling rchunks off, indicating that we 762 * will be moving ourselves off of the ZoneAry. Remote ends will 763 * read RSignal before putting rchunks on thus interlocking 764 * their IPI signaling. 765 */ 766 if (z->z_RChunks == NULL) 767 atomic_swap_int(&z->z_RSignal, 1); 768 769 clean_zone_rchunks(z); 770 771 /* 772 * Remove from the zone list if no free chunks remain. 773 * Clear RSignal 774 */ 775 if (z->z_NFree == 0) { 776 slgd->ZoneAry[zi] = z->z_Next; 777 z->z_Next = NULL; 778 } else { 779 z->z_RSignal = 0; 780 } 781 } 782 783 /* 784 * Fast path, we have chunks available in z_LChunks. 785 */ 786 chunk = z->z_LChunks; 787 if (chunk) { 788 chunk_mark_allocated(z, chunk); 789 z->z_LChunks = chunk->c_Next; 790 if (z->z_LChunks == NULL) 791 z->z_LChunksp = &z->z_LChunks; 792 #ifdef SLAB_DEBUG 793 slab_record_source(z, file, line); 794 #endif 795 goto done; 796 } 797 798 /* 799 * No chunks are available in LChunks, the free chunk MUST be 800 * in the never-before-used memory area, controlled by UIndex. 801 * 802 * The consequences are very serious if our zone got corrupted so 803 * we use an explicit panic rather than a KASSERT. 804 */ 805 if (z->z_UIndex + 1 != z->z_NMax) 806 ++z->z_UIndex; 807 else 808 z->z_UIndex = 0; 809 810 if (z->z_UIndex == z->z_UEndIndex) 811 panic("slaballoc: corrupted zone"); 812 813 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 814 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 815 flags &= ~M_ZERO; 816 flags |= M_PASSIVE_ZERO; 817 } 818 chunk_mark_allocated(z, chunk); 819 #ifdef SLAB_DEBUG 820 slab_record_source(z, file, line); 821 #endif 822 goto done; 823 } 824 825 /* 826 * If all zones are exhausted we need to allocate a new zone for this 827 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 828 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 829 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 830 * we do not pre-zero it because we do not want to mess up the L1 cache. 831 * 832 * At least one subsystem, the tty code (see CROUND) expects power-of-2 833 * allocations to be power-of-2 aligned. We maintain compatibility by 834 * adjusting the base offset below. 835 */ 836 { 837 int off; 838 int *kup; 839 840 if ((z = slgd->FreeZones) != NULL) { 841 slgd->FreeZones = z->z_Next; 842 --slgd->NFreeZones; 843 bzero(z, sizeof(SLZone)); 844 z->z_Flags |= SLZF_UNOTZEROD; 845 } else { 846 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 847 if (z == NULL) 848 goto fail; 849 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024); 850 } 851 852 /* 853 * How big is the base structure? 854 */ 855 #if defined(INVARIANTS) 856 /* 857 * Make room for z_Bitmap. An exact calculation is somewhat more 858 * complicated so don't make an exact calculation. 859 */ 860 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 861 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 862 #else 863 off = sizeof(SLZone); 864 #endif 865 866 /* 867 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 868 * Otherwise properly align the data according to the chunk size. 869 */ 870 if (powerof2(size)) 871 align = size; 872 off = (off + align - 1) & ~(align - 1); 873 874 z->z_Magic = ZALLOC_SLAB_MAGIC; 875 z->z_ZoneIndex = zi; 876 z->z_NMax = (ZoneSize - off) / size; 877 z->z_NFree = z->z_NMax - 1; 878 z->z_BasePtr = (char *)z + off; 879 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 880 z->z_ChunkSize = size; 881 z->z_CpuGd = gd; 882 z->z_Cpu = gd->gd_cpuid; 883 z->z_LChunksp = &z->z_LChunks; 884 #ifdef SLAB_DEBUG 885 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources)); 886 bzero(z->z_Sources, sizeof(z->z_Sources)); 887 #endif 888 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 889 z->z_Next = slgd->ZoneAry[zi]; 890 slgd->ZoneAry[zi] = z; 891 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 892 flags &= ~M_ZERO; /* already zero'd */ 893 flags |= M_PASSIVE_ZERO; 894 } 895 kup = btokup(z); 896 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 897 chunk_mark_allocated(z, chunk); 898 #ifdef SLAB_DEBUG 899 slab_record_source(z, file, line); 900 #endif 901 902 /* 903 * Slide the base index for initial allocations out of the next 904 * zone we create so we do not over-weight the lower part of the 905 * cpu memory caches. 906 */ 907 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 908 & (ZALLOC_MAX_ZONE_SIZE - 1); 909 } 910 911 done: 912 ++type->ks_inuse[gd->gd_cpuid]; 913 type->ks_memuse[gd->gd_cpuid] += size; 914 type->ks_loosememuse += size; /* not MP synchronized */ 915 crit_exit(); 916 917 if (flags & M_ZERO) 918 bzero(chunk, size); 919 #ifdef INVARIANTS 920 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 921 if (use_malloc_pattern) { 922 for (i = 0; i < size; i += sizeof(int)) { 923 *(int *)((char *)chunk + i) = -1; 924 } 925 } 926 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 927 } 928 #endif 929 logmemory(malloc_end, chunk, type, size, flags); 930 return(chunk); 931 fail: 932 crit_exit(); 933 logmemory(malloc_end, NULL, type, size, flags); 934 return(NULL); 935 } 936 937 /* 938 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 939 * 940 * Generally speaking this routine is not called very often and we do 941 * not attempt to optimize it beyond reusing the same pointer if the 942 * new size fits within the chunking of the old pointer's zone. 943 */ 944 #ifdef SLAB_DEBUG 945 void * 946 krealloc_debug(void *ptr, unsigned long size, 947 struct malloc_type *type, int flags, 948 const char *file, int line) 949 #else 950 void * 951 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 952 #endif 953 { 954 unsigned long osize; 955 unsigned long align; 956 SLZone *z; 957 void *nptr; 958 int *kup; 959 960 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 961 962 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 963 return(kmalloc_debug(size, type, flags, file, line)); 964 if (size == 0) { 965 kfree(ptr, type); 966 return(NULL); 967 } 968 969 /* 970 * Handle oversized allocations. XXX we really should require that a 971 * size be passed to free() instead of this nonsense. 972 */ 973 kup = btokup(ptr); 974 if (*kup > 0) { 975 osize = *kup << PAGE_SHIFT; 976 if (osize == round_page(size)) 977 return(ptr); 978 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 979 return(NULL); 980 bcopy(ptr, nptr, min(size, osize)); 981 kfree(ptr, type); 982 return(nptr); 983 } 984 985 /* 986 * Get the original allocation's zone. If the new request winds up 987 * using the same chunk size we do not have to do anything. 988 */ 989 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 990 kup = btokup(z); 991 KKASSERT(*kup < 0); 992 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 993 994 /* 995 * Allocate memory for the new request size. Note that zoneindex has 996 * already adjusted the request size to the appropriate chunk size, which 997 * should optimize our bcopy(). Then copy and return the new pointer. 998 * 999 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 1000 * necessary align the result. 1001 * 1002 * We can only zoneindex (to align size to the chunk size) if the new 1003 * size is not too large. 1004 */ 1005 if (size < ZoneLimit) { 1006 zoneindex(&size, &align); 1007 if (z->z_ChunkSize == size) 1008 return(ptr); 1009 } 1010 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 1011 return(NULL); 1012 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 1013 kfree(ptr, type); 1014 return(nptr); 1015 } 1016 1017 /* 1018 * Return the kmalloc limit for this type, in bytes. 1019 */ 1020 long 1021 kmalloc_limit(struct malloc_type *type) 1022 { 1023 if (type->ks_limit == 0) { 1024 crit_enter(); 1025 if (type->ks_limit == 0) 1026 malloc_init(type); 1027 crit_exit(); 1028 } 1029 return(type->ks_limit); 1030 } 1031 1032 /* 1033 * Allocate a copy of the specified string. 1034 * 1035 * (MP SAFE) (MAY BLOCK) 1036 */ 1037 #ifdef SLAB_DEBUG 1038 char * 1039 kstrdup_debug(const char *str, struct malloc_type *type, 1040 const char *file, int line) 1041 #else 1042 char * 1043 kstrdup(const char *str, struct malloc_type *type) 1044 #endif 1045 { 1046 int zlen; /* length inclusive of terminating NUL */ 1047 char *nstr; 1048 1049 if (str == NULL) 1050 return(NULL); 1051 zlen = strlen(str) + 1; 1052 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1053 bcopy(str, nstr, zlen); 1054 return(nstr); 1055 } 1056 1057 /* 1058 * Notify our cpu that a remote cpu has freed some chunks in a zone that 1059 * we own. RCount will be bumped so the memory should be good, but validate 1060 * that it really is. 1061 */ 1062 static 1063 void 1064 kfree_remote(void *ptr) 1065 { 1066 SLGlobalData *slgd; 1067 SLZone *z; 1068 int nfree; 1069 int *kup; 1070 1071 slgd = &mycpu->gd_slab; 1072 z = ptr; 1073 kup = btokup(z); 1074 KKASSERT(*kup == -((int)mycpuid + 1)); 1075 KKASSERT(z->z_RCount > 0); 1076 atomic_subtract_int(&z->z_RCount, 1); 1077 1078 logmemory(free_rem_beg, z, NULL, 0L, 0); 1079 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1080 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 1081 nfree = z->z_NFree; 1082 1083 /* 1084 * Indicate that we will no longer be off of the ZoneAry by 1085 * clearing RSignal. 1086 */ 1087 if (z->z_RChunks) 1088 z->z_RSignal = 0; 1089 1090 /* 1091 * Atomically extract the bchunks list and then process it back 1092 * into the lchunks list. We want to append our bchunks to the 1093 * lchunks list and not prepend since we likely do not have 1094 * cache mastership of the related data (not that it helps since 1095 * we are using c_Next). 1096 */ 1097 clean_zone_rchunks(z); 1098 if (z->z_NFree && nfree == 0) { 1099 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1100 slgd->ZoneAry[z->z_ZoneIndex] = z; 1101 } 1102 1103 /* 1104 * If the zone becomes totally free, and there are other zones we 1105 * can allocate from, move this zone to the FreeZones list. Since 1106 * this code can be called from an IPI callback, do *NOT* try to mess 1107 * with kernel_map here. Hysteresis will be performed at malloc() time. 1108 * 1109 * Do not move the zone if there is an IPI inflight, otherwise MP 1110 * races can result in our free_remote code accessing a destroyed 1111 * zone. 1112 */ 1113 if (z->z_NFree == z->z_NMax && 1114 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 1115 z->z_RCount == 0 1116 ) { 1117 SLZone **pz; 1118 int *kup; 1119 1120 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; 1121 z != *pz; 1122 pz = &(*pz)->z_Next) { 1123 ; 1124 } 1125 *pz = z->z_Next; 1126 z->z_Magic = -1; 1127 z->z_Next = slgd->FreeZones; 1128 slgd->FreeZones = z; 1129 ++slgd->NFreeZones; 1130 kup = btokup(z); 1131 *kup = 0; 1132 } 1133 logmemory(free_rem_end, z, NULL, 0L, 0); 1134 } 1135 1136 /* 1137 * free (SLAB ALLOCATOR) 1138 * 1139 * Free a memory block previously allocated by malloc. Note that we do not 1140 * attempt to update ks_loosememuse as MP races could prevent us from 1141 * checking memory limits in malloc. 1142 * 1143 * MPSAFE 1144 */ 1145 void 1146 kfree(void *ptr, struct malloc_type *type) 1147 { 1148 SLZone *z; 1149 SLChunk *chunk; 1150 SLGlobalData *slgd; 1151 struct globaldata *gd; 1152 int *kup; 1153 unsigned long size; 1154 SLChunk *bchunk; 1155 int rsignal; 1156 1157 logmemory_quick(free_beg); 1158 gd = mycpu; 1159 slgd = &gd->gd_slab; 1160 1161 if (ptr == NULL) 1162 panic("trying to free NULL pointer"); 1163 1164 /* 1165 * Handle special 0-byte allocations 1166 */ 1167 if (ptr == ZERO_LENGTH_PTR) { 1168 logmemory(free_zero, ptr, type, -1UL, 0); 1169 logmemory_quick(free_end); 1170 return; 1171 } 1172 1173 /* 1174 * Panic on bad malloc type 1175 */ 1176 if (type->ks_magic != M_MAGIC) 1177 panic("free: malloc type lacks magic"); 1178 1179 /* 1180 * Handle oversized allocations. XXX we really should require that a 1181 * size be passed to free() instead of this nonsense. 1182 * 1183 * This code is never called via an ipi. 1184 */ 1185 kup = btokup(ptr); 1186 if (*kup > 0) { 1187 size = *kup << PAGE_SHIFT; 1188 *kup = 0; 1189 #ifdef INVARIANTS 1190 KKASSERT(sizeof(weirdary) <= size); 1191 bcopy(weirdary, ptr, sizeof(weirdary)); 1192 #endif 1193 /* 1194 * NOTE: For oversized allocations we do not record the 1195 * originating cpu. It gets freed on the cpu calling 1196 * kfree(). The statistics are in aggregate. 1197 * 1198 * note: XXX we have still inherited the interrupts-can't-block 1199 * assumption. An interrupt thread does not bump 1200 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1201 * primarily until we can fix softupdate's assumptions about free(). 1202 */ 1203 crit_enter(); 1204 --type->ks_inuse[gd->gd_cpuid]; 1205 type->ks_memuse[gd->gd_cpuid] -= size; 1206 if (mycpu->gd_intr_nesting_level || 1207 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) 1208 { 1209 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1210 z = (SLZone *)ptr; 1211 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1212 z->z_Next = slgd->FreeOvZones; 1213 z->z_ChunkSize = size; 1214 slgd->FreeOvZones = z; 1215 crit_exit(); 1216 } else { 1217 crit_exit(); 1218 logmemory(free_ovsz, ptr, type, size, 0); 1219 kmem_slab_free(ptr, size); /* may block */ 1220 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1221 } 1222 logmemory_quick(free_end); 1223 return; 1224 } 1225 1226 /* 1227 * Zone case. Figure out the zone based on the fact that it is 1228 * ZoneSize aligned. 1229 */ 1230 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1231 kup = btokup(z); 1232 KKASSERT(*kup < 0); 1233 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1234 1235 /* 1236 * If we do not own the zone then use atomic ops to free to the 1237 * remote cpu linked list and notify the target zone using a 1238 * passive message. 1239 * 1240 * The target zone cannot be deallocated while we own a chunk of it, 1241 * so the zone header's storage is stable until the very moment 1242 * we adjust z_RChunks. After that we cannot safely dereference (z). 1243 * 1244 * (no critical section needed) 1245 */ 1246 if (z->z_CpuGd != gd) { 1247 /* 1248 * Making these adjustments now allow us to avoid passing (type) 1249 * to the remote cpu. Note that ks_inuse/ks_memuse is being 1250 * adjusted on OUR cpu, not the zone cpu, but it should all still 1251 * sum up properly and cancel out. 1252 */ 1253 crit_enter(); 1254 --type->ks_inuse[gd->gd_cpuid]; 1255 type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize; 1256 crit_exit(); 1257 1258 /* 1259 * WARNING! This code competes with other cpus. Once we 1260 * successfully link the chunk to RChunks the remote 1261 * cpu can rip z's storage out from under us. 1262 * 1263 * Bumping RCount prevents z's storage from getting 1264 * ripped out. 1265 */ 1266 rsignal = z->z_RSignal; 1267 cpu_lfence(); 1268 if (rsignal) 1269 atomic_add_int(&z->z_RCount, 1); 1270 1271 chunk = ptr; 1272 for (;;) { 1273 bchunk = z->z_RChunks; 1274 cpu_ccfence(); 1275 chunk->c_Next = bchunk; 1276 cpu_sfence(); 1277 1278 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1279 break; 1280 } 1281 1282 /* 1283 * We have to signal the remote cpu if our actions will cause 1284 * the remote zone to be placed back on ZoneAry so it can 1285 * move the zone back on. 1286 * 1287 * We only need to deal with NULL->non-NULL RChunk transitions 1288 * and only if z_RSignal is set. We interlock by reading rsignal 1289 * before adding our chunk to RChunks. This should result in 1290 * virtually no IPI traffic. 1291 * 1292 * We can use a passive IPI to reduce overhead even further. 1293 */ 1294 if (bchunk == NULL && rsignal) { 1295 logmemory(free_request, ptr, type, 1296 (unsigned long)z->z_ChunkSize, 0); 1297 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1298 /* z can get ripped out from under us from this point on */ 1299 } else if (rsignal) { 1300 atomic_subtract_int(&z->z_RCount, 1); 1301 /* z can get ripped out from under us from this point on */ 1302 } 1303 logmemory_quick(free_end); 1304 return; 1305 } 1306 1307 /* 1308 * kfree locally 1309 */ 1310 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0); 1311 1312 crit_enter(); 1313 chunk = ptr; 1314 chunk_mark_free(z, chunk); 1315 1316 /* 1317 * Put weird data into the memory to detect modifications after freeing, 1318 * illegal pointer use after freeing (we should fault on the odd address), 1319 * and so forth. XXX needs more work, see the old malloc code. 1320 */ 1321 #ifdef INVARIANTS 1322 if (z->z_ChunkSize < sizeof(weirdary)) 1323 bcopy(weirdary, chunk, z->z_ChunkSize); 1324 else 1325 bcopy(weirdary, chunk, sizeof(weirdary)); 1326 #endif 1327 1328 /* 1329 * Add this free non-zero'd chunk to a linked list for reuse. Add 1330 * to the front of the linked list so it is more likely to be 1331 * reallocated, since it is already in our L1 cache. 1332 */ 1333 #ifdef INVARIANTS 1334 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1335 panic("BADFREE %p", chunk); 1336 #endif 1337 chunk->c_Next = z->z_LChunks; 1338 z->z_LChunks = chunk; 1339 if (chunk->c_Next == NULL) 1340 z->z_LChunksp = &chunk->c_Next; 1341 1342 #ifdef INVARIANTS 1343 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1344 panic("BADFREE2"); 1345 #endif 1346 1347 /* 1348 * Bump the number of free chunks. If it becomes non-zero the zone 1349 * must be added back onto the appropriate list. 1350 */ 1351 if (z->z_NFree++ == 0) { 1352 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1353 slgd->ZoneAry[z->z_ZoneIndex] = z; 1354 } 1355 1356 --type->ks_inuse[z->z_Cpu]; 1357 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1358 1359 check_zone_free(slgd, z); 1360 logmemory_quick(free_end); 1361 crit_exit(); 1362 } 1363 1364 /* 1365 * Cleanup slabs which are hanging around due to RChunks. Called once every 1366 * 10 seconds on all cpus. 1367 */ 1368 void 1369 slab_cleanup(void) 1370 { 1371 SLGlobalData *slgd = &mycpu->gd_slab; 1372 SLZone *z; 1373 int i; 1374 1375 crit_enter(); 1376 for (i = 0; i < NZONES; ++i) { 1377 if ((z = slgd->ZoneAry[i]) == NULL) 1378 continue; 1379 z = z->z_Next; 1380 1381 /* 1382 * Scan zones starting with the second zone in each list. 1383 */ 1384 while (z) { 1385 /* 1386 * Shift all RChunks to the end of the LChunks list. This is 1387 * an O(1) operation. 1388 */ 1389 clean_zone_rchunks(z); 1390 z = check_zone_free(slgd, z); 1391 } 1392 } 1393 crit_exit(); 1394 } 1395 1396 #if defined(INVARIANTS) 1397 1398 /* 1399 * Helper routines for sanity checks 1400 */ 1401 static 1402 void 1403 chunk_mark_allocated(SLZone *z, void *chunk) 1404 { 1405 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1406 __uint32_t *bitptr; 1407 1408 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1409 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1410 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1411 bitptr = &z->z_Bitmap[bitdex >> 5]; 1412 bitdex &= 31; 1413 KASSERT((*bitptr & (1 << bitdex)) == 0, 1414 ("memory chunk %p is already allocated!", chunk)); 1415 *bitptr |= 1 << bitdex; 1416 } 1417 1418 static 1419 void 1420 chunk_mark_free(SLZone *z, void *chunk) 1421 { 1422 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1423 __uint32_t *bitptr; 1424 1425 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1426 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1427 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1428 bitptr = &z->z_Bitmap[bitdex >> 5]; 1429 bitdex &= 31; 1430 KASSERT((*bitptr & (1 << bitdex)) != 0, 1431 ("memory chunk %p is already free!", chunk)); 1432 *bitptr &= ~(1 << bitdex); 1433 } 1434 1435 #endif 1436 1437 /* 1438 * kmem_slab_alloc() 1439 * 1440 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1441 * specified alignment. M_* flags are expected in the flags field. 1442 * 1443 * Alignment must be a multiple of PAGE_SIZE. 1444 * 1445 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1446 * but when we move zalloc() over to use this function as its backend 1447 * we will have to switch to kreserve/krelease and call reserve(0) 1448 * after the new space is made available. 1449 * 1450 * Interrupt code which has preempted other code is not allowed to 1451 * use PQ_CACHE pages. However, if an interrupt thread is run 1452 * non-preemptively or blocks and then runs non-preemptively, then 1453 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX 1454 */ 1455 static void * 1456 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1457 { 1458 vm_size_t i; 1459 vm_offset_t addr; 1460 int count, vmflags, base_vmflags; 1461 vm_page_t mbase = NULL; 1462 vm_page_t m; 1463 thread_t td; 1464 1465 size = round_page(size); 1466 addr = vm_map_min(&kernel_map); 1467 1468 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1469 crit_enter(); 1470 vm_map_lock(&kernel_map); 1471 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1472 vm_map_unlock(&kernel_map); 1473 if ((flags & M_NULLOK) == 0) 1474 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1475 vm_map_entry_release(count); 1476 crit_exit(); 1477 return(NULL); 1478 } 1479 1480 /* 1481 * kernel_object maps 1:1 to kernel_map. 1482 */ 1483 vm_object_hold(&kernel_object); 1484 vm_object_reference_locked(&kernel_object); 1485 vm_map_insert(&kernel_map, &count, 1486 &kernel_object, NULL, 1487 addr, addr, addr + size, 1488 VM_MAPTYPE_NORMAL, 1489 VM_PROT_ALL, VM_PROT_ALL, 1490 0); 1491 vm_object_drop(&kernel_object); 1492 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1493 vm_map_unlock(&kernel_map); 1494 1495 td = curthread; 1496 1497 base_vmflags = 0; 1498 if (flags & M_ZERO) 1499 base_vmflags |= VM_ALLOC_ZERO; 1500 if (flags & M_USE_RESERVE) 1501 base_vmflags |= VM_ALLOC_SYSTEM; 1502 if (flags & M_USE_INTERRUPT_RESERVE) 1503 base_vmflags |= VM_ALLOC_INTERRUPT; 1504 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1505 panic("kmem_slab_alloc: bad flags %08x (%p)", 1506 flags, ((int **)&size)[-1]); 1507 } 1508 1509 /* 1510 * Allocate the pages. Do not mess with the PG_ZERO flag or map 1511 * them yet. VM_ALLOC_NORMAL can only be set if we are not preempting. 1512 * 1513 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1514 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1515 * implied in this case), though I'm not sure if we really need to 1516 * do that. 1517 */ 1518 vmflags = base_vmflags; 1519 if (flags & M_WAITOK) { 1520 if (td->td_preempted) 1521 vmflags |= VM_ALLOC_SYSTEM; 1522 else 1523 vmflags |= VM_ALLOC_NORMAL; 1524 } 1525 1526 vm_object_hold(&kernel_object); 1527 for (i = 0; i < size; i += PAGE_SIZE) { 1528 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1529 if (i == 0) 1530 mbase = m; 1531 1532 /* 1533 * If the allocation failed we either return NULL or we retry. 1534 * 1535 * If M_WAITOK is specified we wait for more memory and retry. 1536 * If M_WAITOK is specified from a preemption we yield instead of 1537 * wait. Livelock will not occur because the interrupt thread 1538 * will not be preempting anyone the second time around after the 1539 * yield. 1540 */ 1541 if (m == NULL) { 1542 if (flags & M_WAITOK) { 1543 if (td->td_preempted) { 1544 lwkt_switch(); 1545 } else { 1546 vm_wait(0); 1547 } 1548 i -= PAGE_SIZE; /* retry */ 1549 continue; 1550 } 1551 break; 1552 } 1553 } 1554 1555 /* 1556 * Check and deal with an allocation failure 1557 */ 1558 if (i != size) { 1559 while (i != 0) { 1560 i -= PAGE_SIZE; 1561 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1562 /* page should already be busy */ 1563 vm_page_free(m); 1564 } 1565 vm_map_lock(&kernel_map); 1566 vm_map_delete(&kernel_map, addr, addr + size, &count); 1567 vm_map_unlock(&kernel_map); 1568 vm_object_drop(&kernel_object); 1569 1570 vm_map_entry_release(count); 1571 crit_exit(); 1572 return(NULL); 1573 } 1574 1575 /* 1576 * Success! 1577 * 1578 * NOTE: The VM pages are still busied. mbase points to the first one 1579 * but we have to iterate via vm_page_next() 1580 */ 1581 vm_object_drop(&kernel_object); 1582 crit_exit(); 1583 1584 /* 1585 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1586 */ 1587 m = mbase; 1588 i = 0; 1589 1590 while (i < size) { 1591 /* 1592 * page should already be busy 1593 */ 1594 m->valid = VM_PAGE_BITS_ALL; 1595 vm_page_wire(m); 1596 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC, 1597 1, NULL); 1598 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1599 bzero((char *)addr + i, PAGE_SIZE); 1600 vm_page_flag_clear(m, PG_ZERO); 1601 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1602 vm_page_flag_set(m, PG_REFERENCED); 1603 vm_page_wakeup(m); 1604 1605 i += PAGE_SIZE; 1606 vm_object_hold(&kernel_object); 1607 m = vm_page_next(m); 1608 vm_object_drop(&kernel_object); 1609 } 1610 smp_invltlb(); 1611 vm_map_entry_release(count); 1612 atomic_add_long(&SlabsAllocated, 1); 1613 return((void *)addr); 1614 } 1615 1616 /* 1617 * kmem_slab_free() 1618 */ 1619 static void 1620 kmem_slab_free(void *ptr, vm_size_t size) 1621 { 1622 crit_enter(); 1623 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1624 atomic_add_long(&SlabsFreed, 1); 1625 crit_exit(); 1626 } 1627 1628 void * 1629 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type, 1630 int flags) 1631 { 1632 #if (__VM_CACHELINE_SIZE == 32) 1633 #define CAN_CACHEALIGN(sz) ((sz) >= 256) 1634 #elif (__VM_CACHELINE_SIZE == 64) 1635 #define CAN_CACHEALIGN(sz) ((sz) >= 512) 1636 #elif (__VM_CACHELINE_SIZE == 128) 1637 #define CAN_CACHEALIGN(sz) ((sz) >= 1024) 1638 #else 1639 #error "unsupported cacheline size" 1640 #endif 1641 1642 void *ret; 1643 1644 if (size_alloc < __VM_CACHELINE_SIZE) 1645 size_alloc = __VM_CACHELINE_SIZE; 1646 else if (!CAN_CACHEALIGN(size_alloc)) 1647 flags |= M_POWEROF2; 1648 1649 ret = kmalloc(size_alloc, type, flags); 1650 KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0, 1651 ("%p(%lu) not cacheline %d aligned", 1652 ret, size_alloc, __VM_CACHELINE_SIZE)); 1653 return ret; 1654 1655 #undef CAN_CACHEALIGN 1656 } 1657