xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision bc49aa1be5400e3bdd801519c6936e8947d5d432)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.23 2004/07/16 05:51:10 dillon Exp $
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 
104 #include <vm/vm.h>
105 #include <vm/vm_param.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_object.h>
109 #include <vm/pmap.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pageout.h>
113 
114 #include <machine/cpu.h>
115 
116 #include <sys/thread2.h>
117 
118 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
119 
120 /*
121  * Fixed globals (not per-cpu)
122  */
123 static int ZoneSize;
124 static int ZoneLimit;
125 static int ZonePageCount;
126 static int ZonePageLimit;
127 static int ZoneMask;
128 static struct malloc_type *kmemstatistics;
129 static struct kmemusage *kmemusage;
130 static int32_t weirdary[16];
131 
132 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
133 static void kmem_slab_free(void *ptr, vm_size_t bytes);
134 
135 /*
136  * Misc constants.  Note that allocations that are exact multiples of
137  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
138  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
139  */
140 #define MIN_CHUNK_SIZE		8		/* in bytes */
141 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
142 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
143 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
144 
145 /*
146  * The WEIRD_ADDR is used as known text to copy into free objects to
147  * try to create deterministic failure cases if the data is accessed after
148  * free.
149  */
150 #define WEIRD_ADDR      0xdeadc0de
151 #define MAX_COPY        sizeof(weirdary)
152 #define ZERO_LENGTH_PTR	((void *)-8)
153 
154 /*
155  * Misc global malloc buckets
156  */
157 
158 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
159 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
160 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
161 
162 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
163 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
164 
165 /*
166  * Initialize the slab memory allocator.  We have to choose a zone size based
167  * on available physical memory.  We choose a zone side which is approximately
168  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
169  * 128K.  The zone size is limited to the bounds set in slaballoc.h
170  * (typically 32K min, 128K max).
171  */
172 static void kmeminit(void *dummy);
173 
174 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
175 
176 static void
177 kmeminit(void *dummy)
178 {
179     vm_poff_t limsize;
180     int usesize;
181     int i;
182     vm_pindex_t npg;
183 
184     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
185     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
186 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
187 
188     usesize = (int)(limsize / 1024);	/* convert to KB */
189 
190     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
191     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
192 	ZoneSize <<= 1;
193     ZoneLimit = ZoneSize / 4;
194     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
195 	ZoneLimit = ZALLOC_ZONE_LIMIT;
196     ZoneMask = ZoneSize - 1;
197     ZonePageLimit = PAGE_SIZE * 4;
198     ZonePageCount = ZoneSize / PAGE_SIZE;
199 
200     npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE;
201     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_WAITOK|M_ZERO);
202 
203     for (i = 0; i < arysize(weirdary); ++i)
204 	weirdary[i] = WEIRD_ADDR;
205 
206     if (bootverbose)
207 	printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
208 }
209 
210 /*
211  * Initialize a malloc type tracking structure.
212  */
213 void
214 malloc_init(void *data)
215 {
216     struct malloc_type *type = data;
217     vm_poff_t limsize;
218 
219     if (type->ks_magic != M_MAGIC)
220 	panic("malloc type lacks magic");
221 
222     if (type->ks_limit != 0)
223 	return;
224 
225     if (vmstats.v_page_count == 0)
226 	panic("malloc_init not allowed before vm init");
227 
228     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
229     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
230 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
231     type->ks_limit = limsize / 10;
232 
233     type->ks_next = kmemstatistics;
234     kmemstatistics = type;
235 }
236 
237 void
238 malloc_uninit(void *data)
239 {
240     struct malloc_type *type = data;
241     struct malloc_type *t;
242 #ifdef INVARIANTS
243     int i;
244     long ttl;
245 #endif
246 
247     if (type->ks_magic != M_MAGIC)
248 	panic("malloc type lacks magic");
249 
250     if (vmstats.v_page_count == 0)
251 	panic("malloc_uninit not allowed before vm init");
252 
253     if (type->ks_limit == 0)
254 	panic("malloc_uninit on uninitialized type");
255 
256 #ifdef INVARIANTS
257     /*
258      * memuse is only correct in aggregation.  Due to memory being allocated
259      * on one cpu and freed on another individual array entries may be
260      * negative or positive (canceling each other out).
261      */
262     for (i = ttl = 0; i < ncpus; ++i)
263 	ttl += type->ks_memuse[i];
264     if (ttl) {
265 	printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
266 	    ttl, type->ks_shortdesc, i);
267     }
268 #endif
269     if (type == kmemstatistics) {
270 	kmemstatistics = type->ks_next;
271     } else {
272 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
273 	    if (t->ks_next == type) {
274 		t->ks_next = type->ks_next;
275 		break;
276 	    }
277 	}
278     }
279     type->ks_next = NULL;
280     type->ks_limit = 0;
281 }
282 
283 /*
284  * Calculate the zone index for the allocation request size and set the
285  * allocation request size to that particular zone's chunk size.
286  */
287 static __inline int
288 zoneindex(unsigned long *bytes)
289 {
290     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
291     if (n < 128) {
292 	*bytes = n = (n + 7) & ~7;
293 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
294     }
295     if (n < 256) {
296 	*bytes = n = (n + 15) & ~15;
297 	return(n / 16 + 7);
298     }
299     if (n < 8192) {
300 	if (n < 512) {
301 	    *bytes = n = (n + 31) & ~31;
302 	    return(n / 32 + 15);
303 	}
304 	if (n < 1024) {
305 	    *bytes = n = (n + 63) & ~63;
306 	    return(n / 64 + 23);
307 	}
308 	if (n < 2048) {
309 	    *bytes = n = (n + 127) & ~127;
310 	    return(n / 128 + 31);
311 	}
312 	if (n < 4096) {
313 	    *bytes = n = (n + 255) & ~255;
314 	    return(n / 256 + 39);
315 	}
316 	*bytes = n = (n + 511) & ~511;
317 	return(n / 512 + 47);
318     }
319 #if ZALLOC_ZONE_LIMIT > 8192
320     if (n < 16384) {
321 	*bytes = n = (n + 1023) & ~1023;
322 	return(n / 1024 + 55);
323     }
324 #endif
325 #if ZALLOC_ZONE_LIMIT > 16384
326     if (n < 32768) {
327 	*bytes = n = (n + 2047) & ~2047;
328 	return(n / 2048 + 63);
329     }
330 #endif
331     panic("Unexpected byte count %d", n);
332     return(0);
333 }
334 
335 /*
336  * malloc()	(SLAB ALLOCATOR)
337  *
338  *	Allocate memory via the slab allocator.  If the request is too large,
339  *	or if it page-aligned beyond a certain size, we fall back to the
340  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
341  *	&SlabMisc if you don't care.
342  *
343  *	M_RNOWAIT	- return NULL instead of blocking.
344  *	M_ZERO		- zero the returned memory.
345  *	M_USE_RESERVE	- allow greater drawdown of the free list
346  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
347  *
348  *	M_FAILSAFE	- Failsafe allocation, when the allocation must
349  *			  succeed attemp to get out of any preemption context
350  *			  and allocate from the cache, else block (even though
351  *			  we might be blocking from an interrupt), or panic.
352  */
353 void *
354 malloc(unsigned long size, struct malloc_type *type, int flags)
355 {
356     SLZone *z;
357     SLChunk *chunk;
358     SLGlobalData *slgd;
359     struct globaldata *gd;
360     int zi;
361 
362     gd = mycpu;
363     slgd = &gd->gd_slab;
364 
365     /*
366      * XXX silly to have this in the critical path.
367      */
368     if (type->ks_limit == 0) {
369 	crit_enter();
370 	if (type->ks_limit == 0)
371 	    malloc_init(type);
372 	crit_exit();
373     }
374     ++type->ks_calls;
375 
376     /*
377      * Handle the case where the limit is reached.  Panic if can't return
378      * NULL.  XXX the original malloc code looped, but this tended to
379      * simply deadlock the computer.
380      */
381     while (type->ks_loosememuse >= type->ks_limit) {
382 	int i;
383 	long ttl;
384 
385 	for (i = ttl = 0; i < ncpus; ++i)
386 	    ttl += type->ks_memuse[i];
387 	type->ks_loosememuse = ttl;
388 	if (ttl >= type->ks_limit) {
389 	    if (flags & (M_RNOWAIT|M_NULLOK))
390 		return(NULL);
391 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
392 	}
393     }
394 
395     /*
396      * Handle the degenerate size == 0 case.  Yes, this does happen.
397      * Return a special pointer.  This is to maintain compatibility with
398      * the original malloc implementation.  Certain devices, such as the
399      * adaptec driver, not only allocate 0 bytes, they check for NULL and
400      * also realloc() later on.  Joy.
401      */
402     if (size == 0)
403 	return(ZERO_LENGTH_PTR);
404 
405     /*
406      * Handle hysteresis from prior frees here in malloc().  We cannot
407      * safely manipulate the kernel_map in free() due to free() possibly
408      * being called via an IPI message or from sensitive interrupt code.
409      */
410     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
411 	crit_enter();
412 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
413 	    z = slgd->FreeZones;
414 	    slgd->FreeZones = z->z_Next;
415 	    --slgd->NFreeZones;
416 	    kmem_slab_free(z, ZoneSize);	/* may block */
417 	}
418 	crit_exit();
419     }
420     /*
421      * XXX handle oversized frees that were queued from free().
422      */
423     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
424 	crit_enter();
425 	if ((z = slgd->FreeOvZones) != NULL) {
426 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
427 	    slgd->FreeOvZones = z->z_Next;
428 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
429 	}
430 	crit_exit();
431     }
432 
433     /*
434      * Handle large allocations directly.  There should not be very many of
435      * these so performance is not a big issue.
436      *
437      * Guarentee page alignment for allocations in multiples of PAGE_SIZE
438      */
439     if (size >= ZoneLimit || (size & PAGE_MASK) == 0) {
440 	struct kmemusage *kup;
441 
442 	size = round_page(size);
443 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
444 	if (chunk == NULL)
445 	    return(NULL);
446 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
447 	flags |= M_PASSIVE_ZERO;
448 	kup = btokup(chunk);
449 	kup->ku_pagecnt = size / PAGE_SIZE;
450 	kup->ku_cpu = gd->gd_cpuid;
451 	crit_enter();
452 	goto done;
453     }
454 
455     /*
456      * Attempt to allocate out of an existing zone.  First try the free list,
457      * then allocate out of unallocated space.  If we find a good zone move
458      * it to the head of the list so later allocations find it quickly
459      * (we might have thousands of zones in the list).
460      *
461      * Note: zoneindex() will panic of size is too large.
462      */
463     zi = zoneindex(&size);
464     KKASSERT(zi < NZONES);
465     crit_enter();
466     if ((z = slgd->ZoneAry[zi]) != NULL) {
467 	KKASSERT(z->z_NFree > 0);
468 
469 	/*
470 	 * Remove us from the ZoneAry[] when we become empty
471 	 */
472 	if (--z->z_NFree == 0) {
473 	    slgd->ZoneAry[zi] = z->z_Next;
474 	    z->z_Next = NULL;
475 	}
476 
477 	/*
478 	 * Locate a chunk in a free page.  This attempts to localize
479 	 * reallocations into earlier pages without us having to sort
480 	 * the chunk list.  A chunk may still overlap a page boundary.
481 	 */
482 	while (z->z_FirstFreePg < ZonePageCount) {
483 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
484 #ifdef DIAGNOSTIC
485 		/*
486 		 * Diagnostic: c_Next is not total garbage.
487 		 */
488 		KKASSERT(chunk->c_Next == NULL ||
489 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
490 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
491 #endif
492 #ifdef INVARIANTS
493 		if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
494 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
495 		if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
496 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
497 #endif
498 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
499 		goto done;
500 	    }
501 	    ++z->z_FirstFreePg;
502 	}
503 
504 	/*
505 	 * No chunks are available but NFree said we had some memory, so
506 	 * it must be available in the never-before-used-memory area
507 	 * governed by UIndex.  The consequences are very serious if our zone
508 	 * got corrupted so we use an explicit panic rather then a KASSERT.
509 	 */
510 	if (z->z_UIndex + 1 != z->z_NMax)
511 	    z->z_UIndex = z->z_UIndex + 1;
512 	else
513 	    z->z_UIndex = 0;
514 	if (z->z_UIndex == z->z_UEndIndex)
515 	    panic("slaballoc: corrupted zone");
516 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
517 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
518 	    flags &= ~M_ZERO;
519 	    flags |= M_PASSIVE_ZERO;
520 	}
521 	goto done;
522     }
523 
524     /*
525      * If all zones are exhausted we need to allocate a new zone for this
526      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
527      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
528      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
529      * we do not pre-zero it because we do not want to mess up the L1 cache.
530      *
531      * At least one subsystem, the tty code (see CROUND) expects power-of-2
532      * allocations to be power-of-2 aligned.  We maintain compatibility by
533      * adjusting the base offset below.
534      */
535     {
536 	int off;
537 
538 	if ((z = slgd->FreeZones) != NULL) {
539 	    slgd->FreeZones = z->z_Next;
540 	    --slgd->NFreeZones;
541 	    bzero(z, sizeof(SLZone));
542 	    z->z_Flags |= SLZF_UNOTZEROD;
543 	} else {
544 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
545 	    if (z == NULL)
546 		goto fail;
547 	}
548 
549 	/*
550 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
551 	 * Otherwise just 8-byte align the data.
552 	 */
553 	if ((size | (size - 1)) + 1 == (size << 1))
554 	    off = (sizeof(SLZone) + size - 1) & ~(size - 1);
555 	else
556 	    off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
557 	z->z_Magic = ZALLOC_SLAB_MAGIC;
558 	z->z_ZoneIndex = zi;
559 	z->z_NMax = (ZoneSize - off) / size;
560 	z->z_NFree = z->z_NMax - 1;
561 	z->z_BasePtr = (char *)z + off;
562 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
563 	z->z_ChunkSize = size;
564 	z->z_FirstFreePg = ZonePageCount;
565 	z->z_CpuGd = gd;
566 	z->z_Cpu = gd->gd_cpuid;
567 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
568 	z->z_Next = slgd->ZoneAry[zi];
569 	slgd->ZoneAry[zi] = z;
570 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
571 	    flags &= ~M_ZERO;	/* already zero'd */
572 	    flags |= M_PASSIVE_ZERO;
573 	}
574 
575 	/*
576 	 * Slide the base index for initial allocations out of the next
577 	 * zone we create so we do not over-weight the lower part of the
578 	 * cpu memory caches.
579 	 */
580 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
581 				& (ZALLOC_MAX_ZONE_SIZE - 1);
582     }
583 done:
584     ++type->ks_inuse[gd->gd_cpuid];
585     type->ks_memuse[gd->gd_cpuid] += size;
586     type->ks_loosememuse += size;
587     crit_exit();
588     if (flags & M_ZERO)
589 	bzero(chunk, size);
590 #ifdef INVARIANTS
591     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0)
592 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
593 #endif
594     return(chunk);
595 fail:
596     crit_exit();
597     return(NULL);
598 }
599 
600 void *
601 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
602 {
603     SLZone *z;
604     void *nptr;
605     unsigned long osize;
606 
607     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
608 
609     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
610 	return(malloc(size, type, flags));
611     if (size == 0) {
612 	free(ptr, type);
613 	return(NULL);
614     }
615 
616     /*
617      * Handle oversized allocations.  XXX we really should require that a
618      * size be passed to free() instead of this nonsense.
619      */
620     {
621 	struct kmemusage *kup;
622 
623 	kup = btokup(ptr);
624 	if (kup->ku_pagecnt) {
625 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
626 	    if (osize == round_page(size))
627 		return(ptr);
628 	    if ((nptr = malloc(size, type, flags)) == NULL)
629 		return(NULL);
630 	    bcopy(ptr, nptr, min(size, osize));
631 	    free(ptr, type);
632 	    return(nptr);
633 	}
634     }
635 
636     /*
637      * Get the original allocation's zone.  If the new request winds up
638      * using the same chunk size we do not have to do anything.
639      */
640     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
641     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
642 
643     zoneindex(&size);
644     if (z->z_ChunkSize == size)
645 	return(ptr);
646 
647     /*
648      * Allocate memory for the new request size.  Note that zoneindex has
649      * already adjusted the request size to the appropriate chunk size, which
650      * should optimize our bcopy().  Then copy and return the new pointer.
651      */
652     if ((nptr = malloc(size, type, flags)) == NULL)
653 	return(NULL);
654     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
655     free(ptr, type);
656     return(nptr);
657 }
658 
659 #ifdef SMP
660 /*
661  * free()	(SLAB ALLOCATOR)
662  *
663  *	Free the specified chunk of memory.
664  */
665 static
666 void
667 free_remote(void *ptr)
668 {
669     free(ptr, *(struct malloc_type **)ptr);
670 }
671 
672 #endif
673 
674 void
675 free(void *ptr, struct malloc_type *type)
676 {
677     SLZone *z;
678     SLChunk *chunk;
679     SLGlobalData *slgd;
680     struct globaldata *gd;
681     int pgno;
682 
683     gd = mycpu;
684     slgd = &gd->gd_slab;
685 
686     if (ptr == NULL)
687 	panic("trying to free NULL pointer");
688 
689     /*
690      * Handle special 0-byte allocations
691      */
692     if (ptr == ZERO_LENGTH_PTR)
693 	return;
694 
695     /*
696      * Handle oversized allocations.  XXX we really should require that a
697      * size be passed to free() instead of this nonsense.
698      *
699      * This code is never called via an ipi.
700      */
701     {
702 	struct kmemusage *kup;
703 	unsigned long size;
704 
705 	kup = btokup(ptr);
706 	if (kup->ku_pagecnt) {
707 	    size = kup->ku_pagecnt << PAGE_SHIFT;
708 	    kup->ku_pagecnt = 0;
709 #ifdef INVARIANTS
710 	    KKASSERT(sizeof(weirdary) <= size);
711 	    bcopy(weirdary, ptr, sizeof(weirdary));
712 #endif
713 	    /*
714 	     * note: we always adjust our cpu's slot, not the originating
715 	     * cpu (kup->ku_cpuid).  The statistics are in aggregate.
716 	     *
717 	     * note: XXX we have still inherited the interrupts-can't-block
718 	     * assumption.  An interrupt thread does not bump
719 	     * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
720 	     * primarily until we can fix softupdate's assumptions about free().
721 	     */
722 	    crit_enter();
723 	    --type->ks_inuse[gd->gd_cpuid];
724 	    type->ks_memuse[gd->gd_cpuid] -= size;
725 	    if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
726 		z = (SLZone *)ptr;
727 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
728 		z->z_Next = slgd->FreeOvZones;
729 		z->z_ChunkSize = size;
730 		slgd->FreeOvZones = z;
731 		crit_exit();
732 	    } else {
733 		crit_exit();
734 		kmem_slab_free(ptr, size);	/* may block */
735 	    }
736 	    return;
737 	}
738     }
739 
740     /*
741      * Zone case.  Figure out the zone based on the fact that it is
742      * ZoneSize aligned.
743      */
744     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
745     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
746 
747     /*
748      * If we do not own the zone then forward the request to the
749      * cpu that does.
750      */
751     if (z->z_CpuGd != gd) {
752 	*(struct malloc_type **)ptr = type;
753 #ifdef SMP
754 	lwkt_send_ipiq(z->z_CpuGd, free_remote, ptr);
755 #else
756 	panic("Corrupt SLZone");
757 #endif
758 	return;
759     }
760 
761     if (type->ks_magic != M_MAGIC)
762 	panic("free: malloc type lacks magic");
763 
764     crit_enter();
765     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
766     chunk = ptr;
767 
768 #ifdef INVARIANTS
769     /*
770      * Attempt to detect a double-free.  To reduce overhead we only check
771      * if there appears to be link pointer at the base of the data.
772      */
773     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
774 	SLChunk *scan;
775 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
776 	    if (scan == chunk)
777 		panic("Double free at %p", chunk);
778 	}
779     }
780 #endif
781 
782     /*
783      * Put weird data into the memory to detect modifications after freeing,
784      * illegal pointer use after freeing (we should fault on the odd address),
785      * and so forth.  XXX needs more work, see the old malloc code.
786      */
787 #ifdef INVARIANTS
788     if (z->z_ChunkSize < sizeof(weirdary))
789 	bcopy(weirdary, chunk, z->z_ChunkSize);
790     else
791 	bcopy(weirdary, chunk, sizeof(weirdary));
792 #endif
793 
794     /*
795      * Add this free non-zero'd chunk to a linked list for reuse, adjust
796      * z_FirstFreePg.
797      */
798 #ifdef INVARIANTS
799     if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
800 	panic("BADFREE %p", chunk);
801 #endif
802     chunk->c_Next = z->z_PageAry[pgno];
803     z->z_PageAry[pgno] = chunk;
804 #ifdef INVARIANTS
805     if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
806 	panic("BADFREE2");
807 #endif
808     if (z->z_FirstFreePg > pgno)
809 	z->z_FirstFreePg = pgno;
810 
811     /*
812      * Bump the number of free chunks.  If it becomes non-zero the zone
813      * must be added back onto the appropriate list.
814      */
815     if (z->z_NFree++ == 0) {
816 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
817 	slgd->ZoneAry[z->z_ZoneIndex] = z;
818     }
819 
820     --type->ks_inuse[z->z_Cpu];
821     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
822 
823     /*
824      * If the zone becomes totally free, and there are other zones we
825      * can allocate from, move this zone to the FreeZones list.  Since
826      * this code can be called from an IPI callback, do *NOT* try to mess
827      * with kernel_map here.  Hysteresis will be performed at malloc() time.
828      */
829     if (z->z_NFree == z->z_NMax &&
830 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
831     ) {
832 	SLZone **pz;
833 
834 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
835 	    ;
836 	*pz = z->z_Next;
837 	z->z_Magic = -1;
838 	z->z_Next = slgd->FreeZones;
839 	slgd->FreeZones = z;
840 	++slgd->NFreeZones;
841     }
842     crit_exit();
843 }
844 
845 /*
846  * kmem_slab_alloc()
847  *
848  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
849  *	specified alignment.  M_* flags are expected in the flags field.
850  *
851  *	Alignment must be a multiple of PAGE_SIZE.
852  *
853  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
854  *	but when we move zalloc() over to use this function as its backend
855  *	we will have to switch to kreserve/krelease and call reserve(0)
856  *	after the new space is made available.
857  *
858  *	Interrupt code which has preempted other code is not allowed to
859  *	message with CACHE pages, but if M_FAILSAFE is set we can do a
860  *	yield to become non-preempting and try again inclusive of
861  *	cache pages.
862  */
863 static void *
864 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
865 {
866     vm_size_t i;
867     vm_offset_t addr;
868     vm_offset_t offset;
869     int count;
870     thread_t td;
871     vm_map_t map = kernel_map;
872 
873     size = round_page(size);
874     addr = vm_map_min(map);
875 
876     /*
877      * Reserve properly aligned space from kernel_map
878      */
879     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
880     crit_enter();
881     vm_map_lock(map);
882     if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) {
883 	vm_map_unlock(map);
884 	if ((flags & (M_RNOWAIT|M_NULLOK)) == 0)
885 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
886 	crit_exit();
887 	vm_map_entry_release(count);
888 	if ((flags & (M_FAILSAFE|M_NULLOK)) == M_FAILSAFE)
889 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
890 	return(NULL);
891     }
892     offset = addr - VM_MIN_KERNEL_ADDRESS;
893     vm_object_reference(kernel_object);
894     vm_map_insert(map, &count,
895 		    kernel_object, offset, addr, addr + size,
896 		    VM_PROT_ALL, VM_PROT_ALL, 0);
897 
898     td = curthread;
899 
900     /*
901      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
902      */
903     for (i = 0; i < size; i += PAGE_SIZE) {
904 	vm_page_t m;
905 	vm_pindex_t idx = OFF_TO_IDX(offset + i);
906 	int vmflags = 0;
907 
908 	if (flags & M_ZERO)
909 	    vmflags |= VM_ALLOC_ZERO;
910 	if (flags & M_USE_RESERVE)
911 	    vmflags |= VM_ALLOC_SYSTEM;
912 	if (flags & M_USE_INTERRUPT_RESERVE)
913 	    vmflags |= VM_ALLOC_INTERRUPT;
914 	if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
915 		panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
916 
917 	/*
918 	 * Never set VM_ALLOC_NORMAL during a preemption because this allows
919 	 * allocation out of the VM page cache and could cause mainline kernel
920 	 * code working on VM objects to get confused.
921 	 */
922 	if (flags & (M_FAILSAFE|M_WAITOK)) {
923 	    if (td->td_preempted) {
924 		vmflags |= VM_ALLOC_SYSTEM;
925 	    } else {
926 		vmflags |= VM_ALLOC_NORMAL;
927 	    }
928 	}
929 
930 	m = vm_page_alloc(kernel_object, idx, vmflags);
931 
932 	/*
933 	 * If the allocation failed we either return NULL or we retry.
934 	 *
935 	 * If M_WAITOK or M_FAILSAFE is set we retry.  Note that M_WAITOK
936 	 * (and M_FAILSAFE) can be specified from an interrupt.  M_FAILSAFE
937 	 * generates a warning or a panic.
938 	 *
939 	 * If we are preempting a thread we yield instead of block.  Both
940 	 * gets us out from under a preemption but yielding will get cpu
941 	 * back more quicker.  Livelock does not occur because we will not
942 	 * be preempting anyone the second time around.
943 	 *
944 	 */
945 	if (m == NULL) {
946 	    if (flags & (M_FAILSAFE|M_WAITOK)) {
947 		if (td->td_preempted) {
948 		    if (flags & M_FAILSAFE) {
949 			printf("malloc: M_WAITOK from preemption would block"
950 				" try failsafe yield/block\n");
951 		    }
952 		    vm_map_unlock(map);
953 		    lwkt_yield();
954 		    vm_map_lock(map);
955 		} else {
956 		    vm_map_unlock(map);
957 		    vm_wait();
958 		    vm_map_lock(map);
959 		}
960 		i -= PAGE_SIZE;	/* retry */
961 		continue;
962 	    }
963 
964 	    /*
965 	     * We were unable to recover, cleanup and return NULL
966 	     */
967 	    while (i != 0) {
968 		i -= PAGE_SIZE;
969 		m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
970 		vm_page_free(m);
971 	    }
972 	    vm_map_delete(map, addr, addr + size, &count);
973 	    vm_map_unlock(map);
974 	    crit_exit();
975 	    vm_map_entry_release(count);
976 	    return(NULL);
977 	}
978     }
979 
980     /*
981      * Success!
982      *
983      * Mark the map entry as non-pageable using a routine that allows us to
984      * populate the underlying pages.
985      */
986     vm_map_set_wired_quick(map, addr, size, &count);
987     crit_exit();
988 
989     /*
990      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
991      */
992     for (i = 0; i < size; i += PAGE_SIZE) {
993 	vm_page_t m;
994 
995 	m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
996 	m->valid = VM_PAGE_BITS_ALL;
997 	vm_page_wire(m);
998 	vm_page_wakeup(m);
999 	pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1000 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1001 	    bzero((char *)addr + i, PAGE_SIZE);
1002 	vm_page_flag_clear(m, PG_ZERO);
1003 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
1004     }
1005     vm_map_unlock(map);
1006     vm_map_entry_release(count);
1007     return((void *)addr);
1008 }
1009 
1010 static void
1011 kmem_slab_free(void *ptr, vm_size_t size)
1012 {
1013     crit_enter();
1014     vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1015     crit_exit();
1016 }
1017 
1018