1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $ 39 * 40 * This module implements a slab allocator drop-in replacement for the 41 * kernel malloc(). 42 * 43 * A slab allocator reserves a ZONE for each chunk size, then lays the 44 * chunks out in an array within the zone. Allocation and deallocation 45 * is nearly instantanious, and fragmentation/overhead losses are limited 46 * to a fixed worst-case amount. 47 * 48 * The downside of this slab implementation is in the chunk size 49 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 50 * In a kernel implementation all this memory will be physical so 51 * the zone size is adjusted downward on machines with less physical 52 * memory. The upside is that overhead is bounded... this is the *worst* 53 * case overhead. 54 * 55 * Slab management is done on a per-cpu basis and no locking or mutexes 56 * are required, only a critical section. When one cpu frees memory 57 * belonging to another cpu's slab manager an asynchronous IPI message 58 * will be queued to execute the operation. In addition, both the 59 * high level slab allocator and the low level zone allocator optimize 60 * M_ZERO requests, and the slab allocator does not have to pre initialize 61 * the linked list of chunks. 62 * 63 * XXX Balancing is needed between cpus. Balance will be handled through 64 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 65 * 66 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 67 * the new zone should be restricted to M_USE_RESERVE requests only. 68 * 69 * Alloc Size Chunking Number of zones 70 * 0-127 8 16 71 * 128-255 16 8 72 * 256-511 32 8 73 * 512-1023 64 8 74 * 1024-2047 128 8 75 * 2048-4095 256 8 76 * 4096-8191 512 8 77 * 8192-16383 1024 8 78 * 16384-32767 2048 8 79 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 80 * 81 * Allocations >= ZoneLimit go directly to kmem. 82 * 83 * API REQUIREMENTS AND SIDE EFFECTS 84 * 85 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 86 * have remained compatible with the following API requirements: 87 * 88 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 89 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 90 * + malloc(0) is allowed and returns non-NULL (ahc driver) 91 * + ability to allocate arbitrarily large chunks of memory 92 */ 93 94 #include "opt_vm.h" 95 96 #include <sys/param.h> 97 #include <sys/systm.h> 98 #include <sys/kernel.h> 99 #include <sys/slaballoc.h> 100 #include <sys/mbuf.h> 101 #include <sys/vmmeter.h> 102 #include <sys/lock.h> 103 #include <sys/thread.h> 104 #include <sys/globaldata.h> 105 #include <sys/sysctl.h> 106 #include <sys/ktr.h> 107 108 #include <vm/vm.h> 109 #include <vm/vm_param.h> 110 #include <vm/vm_kern.h> 111 #include <vm/vm_extern.h> 112 #include <vm/vm_object.h> 113 #include <vm/pmap.h> 114 #include <vm/vm_map.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pageout.h> 117 118 #include <machine/cpu.h> 119 120 #include <sys/thread2.h> 121 122 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 123 124 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 125 126 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x" 127 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \ 128 sizeof(int)) 129 130 #if !defined(KTR_MEMORY) 131 #define KTR_MEMORY KTR_ALL 132 #endif 133 KTR_INFO_MASTER(memory); 134 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0); 135 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE); 136 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE); 137 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE); 138 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE); 139 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE); 140 #ifdef SMP 141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE); 142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE); 143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE); 144 #endif 145 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0); 146 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0); 147 148 #define logmemory(name, ptr, type, size, flags) \ 149 KTR_LOG(memory_ ## name, ptr, type, size, flags) 150 #define logmemory_quick(name) \ 151 KTR_LOG(memory_ ## name) 152 153 /* 154 * Fixed globals (not per-cpu) 155 */ 156 static int ZoneSize; 157 static int ZoneLimit; 158 static int ZonePageCount; 159 static uintptr_t ZoneMask; 160 static int ZoneBigAlloc; /* in KB */ 161 static int ZoneGenAlloc; /* in KB */ 162 struct malloc_type *kmemstatistics; /* exported to vmstat */ 163 static int32_t weirdary[16]; 164 165 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 166 static void kmem_slab_free(void *ptr, vm_size_t bytes); 167 168 #if defined(INVARIANTS) 169 static void chunk_mark_allocated(SLZone *z, void *chunk); 170 static void chunk_mark_free(SLZone *z, void *chunk); 171 #else 172 #define chunk_mark_allocated(z, chunk) 173 #define chunk_mark_free(z, chunk) 174 #endif 175 176 /* 177 * Misc constants. Note that allocations that are exact multiples of 178 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 179 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 180 */ 181 #define MIN_CHUNK_SIZE 8 /* in bytes */ 182 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 183 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 184 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 185 186 /* 187 * The WEIRD_ADDR is used as known text to copy into free objects to 188 * try to create deterministic failure cases if the data is accessed after 189 * free. 190 */ 191 #define WEIRD_ADDR 0xdeadc0de 192 #define MAX_COPY sizeof(weirdary) 193 #define ZERO_LENGTH_PTR ((void *)-8) 194 195 /* 196 * Misc global malloc buckets 197 */ 198 199 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 200 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 201 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 202 203 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 204 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 205 206 /* 207 * Initialize the slab memory allocator. We have to choose a zone size based 208 * on available physical memory. We choose a zone side which is approximately 209 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 210 * 128K. The zone size is limited to the bounds set in slaballoc.h 211 * (typically 32K min, 128K max). 212 */ 213 static void kmeminit(void *dummy); 214 215 char *ZeroPage; 216 217 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 218 219 #ifdef INVARIANTS 220 /* 221 * If enabled any memory allocated without M_ZERO is initialized to -1. 222 */ 223 static int use_malloc_pattern; 224 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 225 &use_malloc_pattern, 0, ""); 226 #endif 227 228 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 229 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 230 231 static void 232 kmeminit(void *dummy) 233 { 234 size_t limsize; 235 int usesize; 236 int i; 237 238 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 239 if (limsize > KvaSize) 240 limsize = KvaSize; 241 242 usesize = (int)(limsize / 1024); /* convert to KB */ 243 244 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 245 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 246 ZoneSize <<= 1; 247 ZoneLimit = ZoneSize / 4; 248 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 249 ZoneLimit = ZALLOC_ZONE_LIMIT; 250 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 251 ZonePageCount = ZoneSize / PAGE_SIZE; 252 253 for (i = 0; i < arysize(weirdary); ++i) 254 weirdary[i] = WEIRD_ADDR; 255 256 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 257 258 if (bootverbose) 259 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 260 } 261 262 /* 263 * Initialize a malloc type tracking structure. 264 */ 265 void 266 malloc_init(void *data) 267 { 268 struct malloc_type *type = data; 269 size_t limsize; 270 271 if (type->ks_magic != M_MAGIC) 272 panic("malloc type lacks magic"); 273 274 if (type->ks_limit != 0) 275 return; 276 277 if (vmstats.v_page_count == 0) 278 panic("malloc_init not allowed before vm init"); 279 280 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 281 if (limsize > KvaSize) 282 limsize = KvaSize; 283 type->ks_limit = limsize / 10; 284 285 type->ks_next = kmemstatistics; 286 kmemstatistics = type; 287 } 288 289 void 290 malloc_uninit(void *data) 291 { 292 struct malloc_type *type = data; 293 struct malloc_type *t; 294 #ifdef INVARIANTS 295 int i; 296 long ttl; 297 #endif 298 299 if (type->ks_magic != M_MAGIC) 300 panic("malloc type lacks magic"); 301 302 if (vmstats.v_page_count == 0) 303 panic("malloc_uninit not allowed before vm init"); 304 305 if (type->ks_limit == 0) 306 panic("malloc_uninit on uninitialized type"); 307 308 #ifdef SMP 309 /* Make sure that all pending kfree()s are finished. */ 310 lwkt_synchronize_ipiqs("muninit"); 311 #endif 312 313 #ifdef INVARIANTS 314 /* 315 * memuse is only correct in aggregation. Due to memory being allocated 316 * on one cpu and freed on another individual array entries may be 317 * negative or positive (canceling each other out). 318 */ 319 for (i = ttl = 0; i < ncpus; ++i) 320 ttl += type->ks_memuse[i]; 321 if (ttl) { 322 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 323 ttl, type->ks_shortdesc, i); 324 } 325 #endif 326 if (type == kmemstatistics) { 327 kmemstatistics = type->ks_next; 328 } else { 329 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 330 if (t->ks_next == type) { 331 t->ks_next = type->ks_next; 332 break; 333 } 334 } 335 } 336 type->ks_next = NULL; 337 type->ks_limit = 0; 338 } 339 340 /* 341 * Increase the kmalloc pool limit for the specified pool. No changes 342 * are the made if the pool would shrink. 343 */ 344 void 345 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 346 { 347 if (type->ks_limit == 0) 348 malloc_init(type); 349 if (bytes == 0) 350 bytes = KvaSize; 351 if (type->ks_limit < bytes) 352 type->ks_limit = bytes; 353 } 354 355 /* 356 * Dynamically create a malloc pool. This function is a NOP if *typep is 357 * already non-NULL. 358 */ 359 void 360 kmalloc_create(struct malloc_type **typep, const char *descr) 361 { 362 struct malloc_type *type; 363 364 if (*typep == NULL) { 365 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 366 type->ks_magic = M_MAGIC; 367 type->ks_shortdesc = descr; 368 malloc_init(type); 369 *typep = type; 370 } 371 } 372 373 /* 374 * Destroy a dynamically created malloc pool. This function is a NOP if 375 * the pool has already been destroyed. 376 */ 377 void 378 kmalloc_destroy(struct malloc_type **typep) 379 { 380 if (*typep != NULL) { 381 malloc_uninit(*typep); 382 kfree(*typep, M_TEMP); 383 *typep = NULL; 384 } 385 } 386 387 /* 388 * Calculate the zone index for the allocation request size and set the 389 * allocation request size to that particular zone's chunk size. 390 */ 391 static __inline int 392 zoneindex(unsigned long *bytes) 393 { 394 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 395 if (n < 128) { 396 *bytes = n = (n + 7) & ~7; 397 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 398 } 399 if (n < 256) { 400 *bytes = n = (n + 15) & ~15; 401 return(n / 16 + 7); 402 } 403 if (n < 8192) { 404 if (n < 512) { 405 *bytes = n = (n + 31) & ~31; 406 return(n / 32 + 15); 407 } 408 if (n < 1024) { 409 *bytes = n = (n + 63) & ~63; 410 return(n / 64 + 23); 411 } 412 if (n < 2048) { 413 *bytes = n = (n + 127) & ~127; 414 return(n / 128 + 31); 415 } 416 if (n < 4096) { 417 *bytes = n = (n + 255) & ~255; 418 return(n / 256 + 39); 419 } 420 *bytes = n = (n + 511) & ~511; 421 return(n / 512 + 47); 422 } 423 #if ZALLOC_ZONE_LIMIT > 8192 424 if (n < 16384) { 425 *bytes = n = (n + 1023) & ~1023; 426 return(n / 1024 + 55); 427 } 428 #endif 429 #if ZALLOC_ZONE_LIMIT > 16384 430 if (n < 32768) { 431 *bytes = n = (n + 2047) & ~2047; 432 return(n / 2048 + 63); 433 } 434 #endif 435 panic("Unexpected byte count %d", n); 436 return(0); 437 } 438 439 /* 440 * kmalloc() (SLAB ALLOCATOR) 441 * 442 * Allocate memory via the slab allocator. If the request is too large, 443 * or if it page-aligned beyond a certain size, we fall back to the 444 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 445 * &SlabMisc if you don't care. 446 * 447 * M_RNOWAIT - don't block. 448 * M_NULLOK - return NULL instead of blocking. 449 * M_ZERO - zero the returned memory. 450 * M_USE_RESERVE - allow greater drawdown of the free list 451 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 452 * 453 * MPSAFE 454 */ 455 void * 456 kmalloc(unsigned long size, struct malloc_type *type, int flags) 457 { 458 SLZone *z; 459 SLChunk *chunk; 460 #ifdef SMP 461 SLChunk *bchunk; 462 #endif 463 SLGlobalData *slgd; 464 struct globaldata *gd; 465 int zi; 466 #ifdef INVARIANTS 467 int i; 468 #endif 469 470 logmemory_quick(malloc_beg); 471 gd = mycpu; 472 slgd = &gd->gd_slab; 473 474 /* 475 * XXX silly to have this in the critical path. 476 */ 477 if (type->ks_limit == 0) { 478 crit_enter(); 479 if (type->ks_limit == 0) 480 malloc_init(type); 481 crit_exit(); 482 } 483 ++type->ks_calls; 484 485 /* 486 * Handle the case where the limit is reached. Panic if we can't return 487 * NULL. The original malloc code looped, but this tended to 488 * simply deadlock the computer. 489 * 490 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 491 * to determine if a more complete limit check should be done. The 492 * actual memory use is tracked via ks_memuse[cpu]. 493 */ 494 while (type->ks_loosememuse >= type->ks_limit) { 495 int i; 496 long ttl; 497 498 for (i = ttl = 0; i < ncpus; ++i) 499 ttl += type->ks_memuse[i]; 500 type->ks_loosememuse = ttl; /* not MP synchronized */ 501 if ((ssize_t)ttl < 0) /* deal with occassional race */ 502 ttl = 0; 503 if (ttl >= type->ks_limit) { 504 if (flags & M_NULLOK) { 505 logmemory(malloc_end, NULL, type, size, flags); 506 return(NULL); 507 } 508 panic("%s: malloc limit exceeded", type->ks_shortdesc); 509 } 510 } 511 512 /* 513 * Handle the degenerate size == 0 case. Yes, this does happen. 514 * Return a special pointer. This is to maintain compatibility with 515 * the original malloc implementation. Certain devices, such as the 516 * adaptec driver, not only allocate 0 bytes, they check for NULL and 517 * also realloc() later on. Joy. 518 */ 519 if (size == 0) { 520 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 521 return(ZERO_LENGTH_PTR); 522 } 523 524 /* 525 * Handle hysteresis from prior frees here in malloc(). We cannot 526 * safely manipulate the kernel_map in free() due to free() possibly 527 * being called via an IPI message or from sensitive interrupt code. 528 * 529 * NOTE: ku_pagecnt must be cleared before we free the slab or we 530 * might race another cpu allocating the kva and setting 531 * ku_pagecnt. 532 */ 533 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 534 crit_enter(); 535 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 536 int *kup; 537 538 z = slgd->FreeZones; 539 slgd->FreeZones = z->z_Next; 540 --slgd->NFreeZones; 541 kup = btokup(z); 542 *kup = 0; 543 kmem_slab_free(z, ZoneSize); /* may block */ 544 atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024); 545 } 546 crit_exit(); 547 } 548 549 /* 550 * XXX handle oversized frees that were queued from kfree(). 551 */ 552 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 553 crit_enter(); 554 if ((z = slgd->FreeOvZones) != NULL) { 555 vm_size_t tsize; 556 557 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 558 slgd->FreeOvZones = z->z_Next; 559 tsize = z->z_ChunkSize; 560 kmem_slab_free(z, tsize); /* may block */ 561 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 562 } 563 crit_exit(); 564 } 565 566 /* 567 * Handle large allocations directly. There should not be very many of 568 * these so performance is not a big issue. 569 * 570 * The backend allocator is pretty nasty on a SMP system. Use the 571 * slab allocator for one and two page-sized chunks even though we lose 572 * some efficiency. XXX maybe fix mmio and the elf loader instead. 573 */ 574 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 575 int *kup; 576 577 size = round_page(size); 578 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 579 if (chunk == NULL) { 580 logmemory(malloc_end, NULL, type, size, flags); 581 return(NULL); 582 } 583 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 584 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 585 flags |= M_PASSIVE_ZERO; 586 kup = btokup(chunk); 587 *kup = size / PAGE_SIZE; 588 crit_enter(); 589 goto done; 590 } 591 592 /* 593 * Attempt to allocate out of an existing zone. First try the free list, 594 * then allocate out of unallocated space. If we find a good zone move 595 * it to the head of the list so later allocations find it quickly 596 * (we might have thousands of zones in the list). 597 * 598 * Note: zoneindex() will panic of size is too large. 599 */ 600 zi = zoneindex(&size); 601 KKASSERT(zi < NZONES); 602 crit_enter(); 603 604 if ((z = slgd->ZoneAry[zi]) != NULL) { 605 /* 606 * Locate a chunk - we have to have at least one. If this is the 607 * last chunk go ahead and do the work to retrieve chunks freed 608 * from remote cpus, and if the zone is still empty move it off 609 * the ZoneAry. 610 */ 611 if (--z->z_NFree <= 0) { 612 KKASSERT(z->z_NFree == 0); 613 614 #ifdef SMP 615 /* 616 * WARNING! This code competes with other cpus. It is ok 617 * for us to not drain RChunks here but we might as well, and 618 * it is ok if more accumulate after we're done. 619 * 620 * Set RSignal before pulling rchunks off, indicating that we 621 * will be moving ourselves off of the ZoneAry. Remote ends will 622 * read RSignal before putting rchunks on thus interlocking 623 * their IPI signaling. 624 */ 625 if (z->z_RChunks == NULL) 626 atomic_swap_int(&z->z_RSignal, 1); 627 628 while ((bchunk = z->z_RChunks) != NULL) { 629 cpu_ccfence(); 630 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 631 *z->z_LChunksp = bchunk; 632 while (bchunk) { 633 chunk_mark_free(z, bchunk); 634 z->z_LChunksp = &bchunk->c_Next; 635 bchunk = bchunk->c_Next; 636 ++z->z_NFree; 637 } 638 break; 639 } 640 } 641 #endif 642 /* 643 * Remove from the zone list if no free chunks remain. 644 * Clear RSignal 645 */ 646 if (z->z_NFree == 0) { 647 slgd->ZoneAry[zi] = z->z_Next; 648 z->z_Next = NULL; 649 } else { 650 z->z_RSignal = 0; 651 } 652 } 653 654 /* 655 * Fast path, we have chunks available in z_LChunks. 656 */ 657 chunk = z->z_LChunks; 658 if (chunk) { 659 chunk_mark_allocated(z, chunk); 660 z->z_LChunks = chunk->c_Next; 661 if (z->z_LChunks == NULL) 662 z->z_LChunksp = &z->z_LChunks; 663 goto done; 664 } 665 666 /* 667 * No chunks are available in LChunks, the free chunk MUST be 668 * in the never-before-used memory area, controlled by UIndex. 669 * 670 * The consequences are very serious if our zone got corrupted so 671 * we use an explicit panic rather than a KASSERT. 672 */ 673 if (z->z_UIndex + 1 != z->z_NMax) 674 ++z->z_UIndex; 675 else 676 z->z_UIndex = 0; 677 678 if (z->z_UIndex == z->z_UEndIndex) 679 panic("slaballoc: corrupted zone"); 680 681 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 682 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 683 flags &= ~M_ZERO; 684 flags |= M_PASSIVE_ZERO; 685 } 686 chunk_mark_allocated(z, chunk); 687 goto done; 688 } 689 690 /* 691 * If all zones are exhausted we need to allocate a new zone for this 692 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 693 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 694 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 695 * we do not pre-zero it because we do not want to mess up the L1 cache. 696 * 697 * At least one subsystem, the tty code (see CROUND) expects power-of-2 698 * allocations to be power-of-2 aligned. We maintain compatibility by 699 * adjusting the base offset below. 700 */ 701 { 702 int off; 703 int *kup; 704 705 if ((z = slgd->FreeZones) != NULL) { 706 slgd->FreeZones = z->z_Next; 707 --slgd->NFreeZones; 708 bzero(z, sizeof(SLZone)); 709 z->z_Flags |= SLZF_UNOTZEROD; 710 } else { 711 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 712 if (z == NULL) 713 goto fail; 714 atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024); 715 } 716 717 /* 718 * How big is the base structure? 719 */ 720 #if defined(INVARIANTS) 721 /* 722 * Make room for z_Bitmap. An exact calculation is somewhat more 723 * complicated so don't make an exact calculation. 724 */ 725 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 726 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 727 #else 728 off = sizeof(SLZone); 729 #endif 730 731 /* 732 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 733 * Otherwise just 8-byte align the data. 734 */ 735 if ((size | (size - 1)) + 1 == (size << 1)) 736 off = (off + size - 1) & ~(size - 1); 737 else 738 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 739 z->z_Magic = ZALLOC_SLAB_MAGIC; 740 z->z_ZoneIndex = zi; 741 z->z_NMax = (ZoneSize - off) / size; 742 z->z_NFree = z->z_NMax - 1; 743 z->z_BasePtr = (char *)z + off; 744 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 745 z->z_ChunkSize = size; 746 z->z_CpuGd = gd; 747 z->z_Cpu = gd->gd_cpuid; 748 z->z_LChunksp = &z->z_LChunks; 749 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 750 z->z_Next = slgd->ZoneAry[zi]; 751 slgd->ZoneAry[zi] = z; 752 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 753 flags &= ~M_ZERO; /* already zero'd */ 754 flags |= M_PASSIVE_ZERO; 755 } 756 kup = btokup(z); 757 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 758 chunk_mark_allocated(z, chunk); 759 760 /* 761 * Slide the base index for initial allocations out of the next 762 * zone we create so we do not over-weight the lower part of the 763 * cpu memory caches. 764 */ 765 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 766 & (ZALLOC_MAX_ZONE_SIZE - 1); 767 } 768 769 done: 770 ++type->ks_inuse[gd->gd_cpuid]; 771 type->ks_memuse[gd->gd_cpuid] += size; 772 type->ks_loosememuse += size; /* not MP synchronized */ 773 crit_exit(); 774 775 if (flags & M_ZERO) 776 bzero(chunk, size); 777 #ifdef INVARIANTS 778 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 779 if (use_malloc_pattern) { 780 for (i = 0; i < size; i += sizeof(int)) { 781 *(int *)((char *)chunk + i) = -1; 782 } 783 } 784 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 785 } 786 #endif 787 logmemory(malloc_end, chunk, type, size, flags); 788 return(chunk); 789 fail: 790 crit_exit(); 791 logmemory(malloc_end, NULL, type, size, flags); 792 return(NULL); 793 } 794 795 /* 796 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 797 * 798 * Generally speaking this routine is not called very often and we do 799 * not attempt to optimize it beyond reusing the same pointer if the 800 * new size fits within the chunking of the old pointer's zone. 801 */ 802 void * 803 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 804 { 805 unsigned long osize; 806 SLZone *z; 807 void *nptr; 808 int *kup; 809 810 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 811 812 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 813 return(kmalloc(size, type, flags)); 814 if (size == 0) { 815 kfree(ptr, type); 816 return(NULL); 817 } 818 819 /* 820 * Handle oversized allocations. XXX we really should require that a 821 * size be passed to free() instead of this nonsense. 822 */ 823 kup = btokup(ptr); 824 if (*kup > 0) { 825 osize = *kup << PAGE_SHIFT; 826 if (osize == round_page(size)) 827 return(ptr); 828 if ((nptr = kmalloc(size, type, flags)) == NULL) 829 return(NULL); 830 bcopy(ptr, nptr, min(size, osize)); 831 kfree(ptr, type); 832 return(nptr); 833 } 834 835 /* 836 * Get the original allocation's zone. If the new request winds up 837 * using the same chunk size we do not have to do anything. 838 */ 839 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 840 kup = btokup(z); 841 KKASSERT(*kup < 0); 842 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 843 844 /* 845 * Allocate memory for the new request size. Note that zoneindex has 846 * already adjusted the request size to the appropriate chunk size, which 847 * should optimize our bcopy(). Then copy and return the new pointer. 848 * 849 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 850 * necessary align the result. 851 * 852 * We can only zoneindex (to align size to the chunk size) if the new 853 * size is not too large. 854 */ 855 if (size < ZoneLimit) { 856 zoneindex(&size); 857 if (z->z_ChunkSize == size) 858 return(ptr); 859 } 860 if ((nptr = kmalloc(size, type, flags)) == NULL) 861 return(NULL); 862 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 863 kfree(ptr, type); 864 return(nptr); 865 } 866 867 /* 868 * Return the kmalloc limit for this type, in bytes. 869 */ 870 long 871 kmalloc_limit(struct malloc_type *type) 872 { 873 if (type->ks_limit == 0) { 874 crit_enter(); 875 if (type->ks_limit == 0) 876 malloc_init(type); 877 crit_exit(); 878 } 879 return(type->ks_limit); 880 } 881 882 /* 883 * Allocate a copy of the specified string. 884 * 885 * (MP SAFE) (MAY BLOCK) 886 */ 887 char * 888 kstrdup(const char *str, struct malloc_type *type) 889 { 890 int zlen; /* length inclusive of terminating NUL */ 891 char *nstr; 892 893 if (str == NULL) 894 return(NULL); 895 zlen = strlen(str) + 1; 896 nstr = kmalloc(zlen, type, M_WAITOK); 897 bcopy(str, nstr, zlen); 898 return(nstr); 899 } 900 901 #ifdef SMP 902 /* 903 * Notify our cpu that a remote cpu has freed some chunks in a zone that 904 * we own. RCount will be bumped so the memory should be good, but validate 905 * that it really is. 906 */ 907 static 908 void 909 kfree_remote(void *ptr) 910 { 911 SLGlobalData *slgd; 912 SLChunk *bchunk; 913 SLZone *z; 914 int nfree; 915 int *kup; 916 917 slgd = &mycpu->gd_slab; 918 z = ptr; 919 kup = btokup(z); 920 KKASSERT(*kup == -((int)mycpuid + 1)); 921 KKASSERT(z->z_RCount > 0); 922 atomic_subtract_int(&z->z_RCount, 1); 923 924 logmemory(free_rem_beg, z, NULL, 0, 0); 925 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 926 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 927 nfree = z->z_NFree; 928 929 /* 930 * Indicate that we will no longer be off of the ZoneAry by 931 * clearing RSignal. 932 */ 933 if (z->z_RChunks) 934 z->z_RSignal = 0; 935 936 /* 937 * Atomically extract the bchunks list and then process it back 938 * into the lchunks list. We want to append our bchunks to the 939 * lchunks list and not prepend since we likely do not have 940 * cache mastership of the related data (not that it helps since 941 * we are using c_Next). 942 */ 943 while ((bchunk = z->z_RChunks) != NULL) { 944 cpu_ccfence(); 945 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 946 *z->z_LChunksp = bchunk; 947 while (bchunk) { 948 chunk_mark_free(z, bchunk); 949 z->z_LChunksp = &bchunk->c_Next; 950 bchunk = bchunk->c_Next; 951 ++z->z_NFree; 952 } 953 break; 954 } 955 } 956 if (z->z_NFree && nfree == 0) { 957 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 958 slgd->ZoneAry[z->z_ZoneIndex] = z; 959 } 960 961 /* 962 * If the zone becomes totally free, and there are other zones we 963 * can allocate from, move this zone to the FreeZones list. Since 964 * this code can be called from an IPI callback, do *NOT* try to mess 965 * with kernel_map here. Hysteresis will be performed at malloc() time. 966 * 967 * Do not move the zone if there is an IPI inflight, otherwise MP 968 * races can result in our free_remote code accessing a destroyed 969 * zone. 970 */ 971 if (z->z_NFree == z->z_NMax && 972 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 973 z->z_RCount == 0 974 ) { 975 SLZone **pz; 976 int *kup; 977 978 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; 979 z != *pz; 980 pz = &(*pz)->z_Next) { 981 ; 982 } 983 *pz = z->z_Next; 984 z->z_Magic = -1; 985 z->z_Next = slgd->FreeZones; 986 slgd->FreeZones = z; 987 ++slgd->NFreeZones; 988 kup = btokup(z); 989 *kup = 0; 990 } 991 logmemory(free_rem_end, z, bchunk, 0, 0); 992 } 993 994 #endif 995 996 /* 997 * free (SLAB ALLOCATOR) 998 * 999 * Free a memory block previously allocated by malloc. Note that we do not 1000 * attempt to update ks_loosememuse as MP races could prevent us from 1001 * checking memory limits in malloc. 1002 * 1003 * MPSAFE 1004 */ 1005 void 1006 kfree(void *ptr, struct malloc_type *type) 1007 { 1008 SLZone *z; 1009 SLChunk *chunk; 1010 SLGlobalData *slgd; 1011 struct globaldata *gd; 1012 int *kup; 1013 unsigned long size; 1014 #ifdef SMP 1015 SLChunk *bchunk; 1016 int rsignal; 1017 #endif 1018 1019 logmemory_quick(free_beg); 1020 gd = mycpu; 1021 slgd = &gd->gd_slab; 1022 1023 if (ptr == NULL) 1024 panic("trying to free NULL pointer"); 1025 1026 /* 1027 * Handle special 0-byte allocations 1028 */ 1029 if (ptr == ZERO_LENGTH_PTR) { 1030 logmemory(free_zero, ptr, type, -1, 0); 1031 logmemory_quick(free_end); 1032 return; 1033 } 1034 1035 /* 1036 * Panic on bad malloc type 1037 */ 1038 if (type->ks_magic != M_MAGIC) 1039 panic("free: malloc type lacks magic"); 1040 1041 /* 1042 * Handle oversized allocations. XXX we really should require that a 1043 * size be passed to free() instead of this nonsense. 1044 * 1045 * This code is never called via an ipi. 1046 */ 1047 kup = btokup(ptr); 1048 if (*kup > 0) { 1049 size = *kup << PAGE_SHIFT; 1050 *kup = 0; 1051 #ifdef INVARIANTS 1052 KKASSERT(sizeof(weirdary) <= size); 1053 bcopy(weirdary, ptr, sizeof(weirdary)); 1054 #endif 1055 /* 1056 * NOTE: For oversized allocations we do not record the 1057 * originating cpu. It gets freed on the cpu calling 1058 * kfree(). The statistics are in aggregate. 1059 * 1060 * note: XXX we have still inherited the interrupts-can't-block 1061 * assumption. An interrupt thread does not bump 1062 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1063 * primarily until we can fix softupdate's assumptions about free(). 1064 */ 1065 crit_enter(); 1066 --type->ks_inuse[gd->gd_cpuid]; 1067 type->ks_memuse[gd->gd_cpuid] -= size; 1068 if (mycpu->gd_intr_nesting_level || 1069 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) 1070 { 1071 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1072 z = (SLZone *)ptr; 1073 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1074 z->z_Next = slgd->FreeOvZones; 1075 z->z_ChunkSize = size; 1076 slgd->FreeOvZones = z; 1077 crit_exit(); 1078 } else { 1079 crit_exit(); 1080 logmemory(free_ovsz, ptr, type, size, 0); 1081 kmem_slab_free(ptr, size); /* may block */ 1082 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1083 } 1084 logmemory_quick(free_end); 1085 return; 1086 } 1087 1088 /* 1089 * Zone case. Figure out the zone based on the fact that it is 1090 * ZoneSize aligned. 1091 */ 1092 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1093 kup = btokup(z); 1094 KKASSERT(*kup < 0); 1095 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1096 1097 /* 1098 * If we do not own the zone then use atomic ops to free to the 1099 * remote cpu linked list and notify the target zone using a 1100 * passive message. 1101 * 1102 * The target zone cannot be deallocated while we own a chunk of it, 1103 * so the zone header's storage is stable until the very moment 1104 * we adjust z_RChunks. After that we cannot safely dereference (z). 1105 * 1106 * (no critical section needed) 1107 */ 1108 if (z->z_CpuGd != gd) { 1109 #ifdef SMP 1110 /* 1111 * Making these adjustments now allow us to avoid passing (type) 1112 * to the remote cpu. Note that ks_inuse/ks_memuse is being 1113 * adjusted on OUR cpu, not the zone cpu, but it should all still 1114 * sum up properly and cancel out. 1115 */ 1116 crit_enter(); 1117 --type->ks_inuse[gd->gd_cpuid]; 1118 type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize; 1119 crit_exit(); 1120 1121 /* 1122 * WARNING! This code competes with other cpus. Once we 1123 * successfully link the chunk to RChunks the remote 1124 * cpu can rip z's storage out from under us. 1125 * 1126 * Bumping RCount prevents z's storage from getting 1127 * ripped out. 1128 */ 1129 rsignal = z->z_RSignal; 1130 cpu_lfence(); 1131 if (rsignal) 1132 atomic_add_int(&z->z_RCount, 1); 1133 1134 chunk = ptr; 1135 for (;;) { 1136 bchunk = z->z_RChunks; 1137 cpu_ccfence(); 1138 chunk->c_Next = bchunk; 1139 cpu_sfence(); 1140 1141 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1142 break; 1143 } 1144 1145 /* 1146 * We have to signal the remote cpu if our actions will cause 1147 * the remote zone to be placed back on ZoneAry so it can 1148 * move the zone back on. 1149 * 1150 * We only need to deal with NULL->non-NULL RChunk transitions 1151 * and only if z_RSignal is set. We interlock by reading rsignal 1152 * before adding our chunk to RChunks. This should result in 1153 * virtually no IPI traffic. 1154 * 1155 * We can use a passive IPI to reduce overhead even further. 1156 */ 1157 if (bchunk == NULL && rsignal) { 1158 logmemory(free_request, ptr, type, z->z_ChunkSize, 0); 1159 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1160 /* z can get ripped out from under us from this point on */ 1161 } else if (rsignal) { 1162 atomic_subtract_int(&z->z_RCount, 1); 1163 /* z can get ripped out from under us from this point on */ 1164 } 1165 #else 1166 panic("Corrupt SLZone"); 1167 #endif 1168 logmemory_quick(free_end); 1169 return; 1170 } 1171 1172 /* 1173 * kfree locally 1174 */ 1175 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0); 1176 1177 crit_enter(); 1178 chunk = ptr; 1179 chunk_mark_free(z, chunk); 1180 1181 /* 1182 * Put weird data into the memory to detect modifications after freeing, 1183 * illegal pointer use after freeing (we should fault on the odd address), 1184 * and so forth. XXX needs more work, see the old malloc code. 1185 */ 1186 #ifdef INVARIANTS 1187 if (z->z_ChunkSize < sizeof(weirdary)) 1188 bcopy(weirdary, chunk, z->z_ChunkSize); 1189 else 1190 bcopy(weirdary, chunk, sizeof(weirdary)); 1191 #endif 1192 1193 /* 1194 * Add this free non-zero'd chunk to a linked list for reuse. Add 1195 * to the front of the linked list so it is more likely to be 1196 * reallocated, since it is already in our L1 cache. 1197 */ 1198 #ifdef INVARIANTS 1199 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1200 panic("BADFREE %p", chunk); 1201 #endif 1202 chunk->c_Next = z->z_LChunks; 1203 z->z_LChunks = chunk; 1204 if (chunk->c_Next == NULL) 1205 z->z_LChunksp = &chunk->c_Next; 1206 1207 #ifdef INVARIANTS 1208 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1209 panic("BADFREE2"); 1210 #endif 1211 1212 /* 1213 * Bump the number of free chunks. If it becomes non-zero the zone 1214 * must be added back onto the appropriate list. 1215 */ 1216 if (z->z_NFree++ == 0) { 1217 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1218 slgd->ZoneAry[z->z_ZoneIndex] = z; 1219 } 1220 1221 --type->ks_inuse[z->z_Cpu]; 1222 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1223 1224 /* 1225 * If the zone becomes totally free, and there are other zones we 1226 * can allocate from, move this zone to the FreeZones list. Since 1227 * this code can be called from an IPI callback, do *NOT* try to mess 1228 * with kernel_map here. Hysteresis will be performed at malloc() time. 1229 */ 1230 if (z->z_NFree == z->z_NMax && 1231 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 1232 z->z_RCount == 0 1233 ) { 1234 SLZone **pz; 1235 int *kup; 1236 1237 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 1238 ; 1239 *pz = z->z_Next; 1240 z->z_Magic = -1; 1241 z->z_Next = slgd->FreeZones; 1242 slgd->FreeZones = z; 1243 ++slgd->NFreeZones; 1244 kup = btokup(z); 1245 *kup = 0; 1246 } 1247 logmemory_quick(free_end); 1248 crit_exit(); 1249 } 1250 1251 #if defined(INVARIANTS) 1252 1253 /* 1254 * Helper routines for sanity checks 1255 */ 1256 static 1257 void 1258 chunk_mark_allocated(SLZone *z, void *chunk) 1259 { 1260 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1261 __uint32_t *bitptr; 1262 1263 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1264 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1265 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1266 bitptr = &z->z_Bitmap[bitdex >> 5]; 1267 bitdex &= 31; 1268 KASSERT((*bitptr & (1 << bitdex)) == 0, 1269 ("memory chunk %p is already allocated!", chunk)); 1270 *bitptr |= 1 << bitdex; 1271 } 1272 1273 static 1274 void 1275 chunk_mark_free(SLZone *z, void *chunk) 1276 { 1277 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1278 __uint32_t *bitptr; 1279 1280 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1281 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1282 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1283 bitptr = &z->z_Bitmap[bitdex >> 5]; 1284 bitdex &= 31; 1285 KASSERT((*bitptr & (1 << bitdex)) != 0, 1286 ("memory chunk %p is already free!", chunk)); 1287 *bitptr &= ~(1 << bitdex); 1288 } 1289 1290 #endif 1291 1292 /* 1293 * kmem_slab_alloc() 1294 * 1295 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1296 * specified alignment. M_* flags are expected in the flags field. 1297 * 1298 * Alignment must be a multiple of PAGE_SIZE. 1299 * 1300 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1301 * but when we move zalloc() over to use this function as its backend 1302 * we will have to switch to kreserve/krelease and call reserve(0) 1303 * after the new space is made available. 1304 * 1305 * Interrupt code which has preempted other code is not allowed to 1306 * use PQ_CACHE pages. However, if an interrupt thread is run 1307 * non-preemptively or blocks and then runs non-preemptively, then 1308 * it is free to use PQ_CACHE pages. 1309 */ 1310 static void * 1311 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1312 { 1313 vm_size_t i; 1314 vm_offset_t addr; 1315 int count, vmflags, base_vmflags; 1316 thread_t td; 1317 1318 size = round_page(size); 1319 addr = vm_map_min(&kernel_map); 1320 1321 /* 1322 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 1323 * cannot block. 1324 */ 1325 if (flags & M_RNOWAIT) { 1326 if (lwkt_trytoken(&vm_token) == 0) 1327 return(NULL); 1328 } else { 1329 lwkt_gettoken(&vm_token); 1330 } 1331 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1332 crit_enter(); 1333 vm_map_lock(&kernel_map); 1334 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1335 vm_map_unlock(&kernel_map); 1336 if ((flags & M_NULLOK) == 0) 1337 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1338 vm_map_entry_release(count); 1339 crit_exit(); 1340 lwkt_reltoken(&vm_token); 1341 return(NULL); 1342 } 1343 1344 /* 1345 * kernel_object maps 1:1 to kernel_map. 1346 */ 1347 vm_object_reference(&kernel_object); 1348 vm_map_insert(&kernel_map, &count, 1349 &kernel_object, addr, addr, addr + size, 1350 VM_MAPTYPE_NORMAL, 1351 VM_PROT_ALL, VM_PROT_ALL, 1352 0); 1353 1354 td = curthread; 1355 1356 base_vmflags = 0; 1357 if (flags & M_ZERO) 1358 base_vmflags |= VM_ALLOC_ZERO; 1359 if (flags & M_USE_RESERVE) 1360 base_vmflags |= VM_ALLOC_SYSTEM; 1361 if (flags & M_USE_INTERRUPT_RESERVE) 1362 base_vmflags |= VM_ALLOC_INTERRUPT; 1363 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1364 panic("kmem_slab_alloc: bad flags %08x (%p)", 1365 flags, ((int **)&size)[-1]); 1366 } 1367 1368 1369 /* 1370 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 1371 */ 1372 for (i = 0; i < size; i += PAGE_SIZE) { 1373 vm_page_t m; 1374 1375 /* 1376 * VM_ALLOC_NORMAL can only be set if we are not preempting. 1377 * 1378 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1379 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1380 * implied in this case), though I'm not sure if we really need to 1381 * do that. 1382 */ 1383 vmflags = base_vmflags; 1384 if (flags & M_WAITOK) { 1385 if (td->td_preempted) 1386 vmflags |= VM_ALLOC_SYSTEM; 1387 else 1388 vmflags |= VM_ALLOC_NORMAL; 1389 } 1390 1391 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1392 1393 /* 1394 * If the allocation failed we either return NULL or we retry. 1395 * 1396 * If M_WAITOK is specified we wait for more memory and retry. 1397 * If M_WAITOK is specified from a preemption we yield instead of 1398 * wait. Livelock will not occur because the interrupt thread 1399 * will not be preempting anyone the second time around after the 1400 * yield. 1401 */ 1402 if (m == NULL) { 1403 if (flags & M_WAITOK) { 1404 if (td->td_preempted) { 1405 vm_map_unlock(&kernel_map); 1406 lwkt_switch(); 1407 vm_map_lock(&kernel_map); 1408 } else { 1409 vm_map_unlock(&kernel_map); 1410 vm_wait(0); 1411 vm_map_lock(&kernel_map); 1412 } 1413 i -= PAGE_SIZE; /* retry */ 1414 continue; 1415 } 1416 1417 /* 1418 * We were unable to recover, cleanup and return NULL 1419 * 1420 * (vm_token already held) 1421 */ 1422 while (i != 0) { 1423 i -= PAGE_SIZE; 1424 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1425 /* page should already be busy */ 1426 vm_page_free(m); 1427 } 1428 vm_map_delete(&kernel_map, addr, addr + size, &count); 1429 vm_map_unlock(&kernel_map); 1430 vm_map_entry_release(count); 1431 crit_exit(); 1432 lwkt_reltoken(&vm_token); 1433 return(NULL); 1434 } 1435 } 1436 1437 /* 1438 * Success! 1439 * 1440 * Mark the map entry as non-pageable using a routine that allows us to 1441 * populate the underlying pages. 1442 * 1443 * The pages were busied by the allocations above. 1444 */ 1445 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1446 crit_exit(); 1447 1448 /* 1449 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1450 */ 1451 lwkt_gettoken(&vm_token); 1452 for (i = 0; i < size; i += PAGE_SIZE) { 1453 vm_page_t m; 1454 1455 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1456 m->valid = VM_PAGE_BITS_ALL; 1457 /* page should already be busy */ 1458 vm_page_wire(m); 1459 vm_page_wakeup(m); 1460 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1461 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1462 bzero((char *)addr + i, PAGE_SIZE); 1463 vm_page_flag_clear(m, PG_ZERO); 1464 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1465 vm_page_flag_set(m, PG_REFERENCED); 1466 } 1467 lwkt_reltoken(&vm_token); 1468 vm_map_unlock(&kernel_map); 1469 vm_map_entry_release(count); 1470 lwkt_reltoken(&vm_token); 1471 return((void *)addr); 1472 } 1473 1474 /* 1475 * kmem_slab_free() 1476 */ 1477 static void 1478 kmem_slab_free(void *ptr, vm_size_t size) 1479 { 1480 crit_enter(); 1481 lwkt_gettoken(&vm_token); 1482 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1483 lwkt_reltoken(&vm_token); 1484 crit_exit(); 1485 } 1486 1487