xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision b14d39bea25ac6b89cc943b26215359832fdb51a)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $
39  *
40  * This module implements a slab allocator drop-in replacement for the
41  * kernel malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantanious, and fragmentation/overhead losses are limited
46  * to a fixed worst-case amount.
47  *
48  * The downside of this slab implementation is in the chunk size
49  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
50  * In a kernel implementation all this memory will be physical so
51  * the zone size is adjusted downward on machines with less physical
52  * memory.  The upside is that overhead is bounded... this is the *worst*
53  * case overhead.
54  *
55  * Slab management is done on a per-cpu basis and no locking or mutexes
56  * are required, only a critical section.  When one cpu frees memory
57  * belonging to another cpu's slab manager an asynchronous IPI message
58  * will be queued to execute the operation.   In addition, both the
59  * high level slab allocator and the low level zone allocator optimize
60  * M_ZERO requests, and the slab allocator does not have to pre initialize
61  * the linked list of chunks.
62  *
63  * XXX Balancing is needed between cpus.  Balance will be handled through
64  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
65  *
66  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
67  * the new zone should be restricted to M_USE_RESERVE requests only.
68  *
69  *	Alloc Size	Chunking        Number of zones
70  *	0-127		8		16
71  *	128-255		16		8
72  *	256-511		32		8
73  *	512-1023	64		8
74  *	1024-2047	128		8
75  *	2048-4095	256		8
76  *	4096-8191	512		8
77  *	8192-16383	1024		8
78  *	16384-32767	2048		8
79  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
80  *
81  *	Allocations >= ZoneLimit go directly to kmem.
82  *
83  *			API REQUIREMENTS AND SIDE EFFECTS
84  *
85  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
86  *    have remained compatible with the following API requirements:
87  *
88  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
89  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
90  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
91  *    + ability to allocate arbitrarily large chunks of memory
92  */
93 
94 #include "opt_vm.h"
95 
96 #include <sys/param.h>
97 #include <sys/systm.h>
98 #include <sys/kernel.h>
99 #include <sys/slaballoc.h>
100 #include <sys/mbuf.h>
101 #include <sys/vmmeter.h>
102 #include <sys/lock.h>
103 #include <sys/thread.h>
104 #include <sys/globaldata.h>
105 #include <sys/sysctl.h>
106 #include <sys/ktr.h>
107 
108 #include <vm/vm.h>
109 #include <vm/vm_param.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_object.h>
113 #include <vm/pmap.h>
114 #include <vm/vm_map.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pageout.h>
117 
118 #include <machine/cpu.h>
119 
120 #include <sys/thread2.h>
121 
122 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
123 
124 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
125 
126 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
127 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
128 			sizeof(int))
129 
130 #if !defined(KTR_MEMORY)
131 #define KTR_MEMORY	KTR_ALL
132 #endif
133 KTR_INFO_MASTER(memory);
134 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
135 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
136 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
139 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
140 #ifdef SMP
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
144 #endif
145 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
146 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
147 
148 #define logmemory(name, ptr, type, size, flags)				\
149 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
150 #define logmemory_quick(name)						\
151 	KTR_LOG(memory_ ## name)
152 
153 /*
154  * Fixed globals (not per-cpu)
155  */
156 static int ZoneSize;
157 static int ZoneLimit;
158 static int ZonePageCount;
159 static uintptr_t ZoneMask;
160 static int ZoneBigAlloc;		/* in KB */
161 static int ZoneGenAlloc;		/* in KB */
162 struct malloc_type *kmemstatistics;	/* exported to vmstat */
163 static int32_t weirdary[16];
164 
165 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
166 static void kmem_slab_free(void *ptr, vm_size_t bytes);
167 
168 #if defined(INVARIANTS)
169 static void chunk_mark_allocated(SLZone *z, void *chunk);
170 static void chunk_mark_free(SLZone *z, void *chunk);
171 #else
172 #define chunk_mark_allocated(z, chunk)
173 #define chunk_mark_free(z, chunk)
174 #endif
175 
176 /*
177  * Misc constants.  Note that allocations that are exact multiples of
178  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
179  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
180  */
181 #define MIN_CHUNK_SIZE		8		/* in bytes */
182 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
183 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
184 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
185 
186 /*
187  * The WEIRD_ADDR is used as known text to copy into free objects to
188  * try to create deterministic failure cases if the data is accessed after
189  * free.
190  */
191 #define WEIRD_ADDR      0xdeadc0de
192 #define MAX_COPY        sizeof(weirdary)
193 #define ZERO_LENGTH_PTR	((void *)-8)
194 
195 /*
196  * Misc global malloc buckets
197  */
198 
199 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
200 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
201 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
202 
203 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
204 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
205 
206 /*
207  * Initialize the slab memory allocator.  We have to choose a zone size based
208  * on available physical memory.  We choose a zone side which is approximately
209  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
210  * 128K.  The zone size is limited to the bounds set in slaballoc.h
211  * (typically 32K min, 128K max).
212  */
213 static void kmeminit(void *dummy);
214 
215 char *ZeroPage;
216 
217 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
218 
219 #ifdef INVARIANTS
220 /*
221  * If enabled any memory allocated without M_ZERO is initialized to -1.
222  */
223 static int  use_malloc_pattern;
224 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
225 		&use_malloc_pattern, 0, "");
226 #endif
227 
228 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
229 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
230 
231 static void
232 kmeminit(void *dummy)
233 {
234     size_t limsize;
235     int usesize;
236     int i;
237 
238     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
239     if (limsize > KvaSize)
240 	limsize = KvaSize;
241 
242     usesize = (int)(limsize / 1024);	/* convert to KB */
243 
244     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
245     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
246 	ZoneSize <<= 1;
247     ZoneLimit = ZoneSize / 4;
248     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
249 	ZoneLimit = ZALLOC_ZONE_LIMIT;
250     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
251     ZonePageCount = ZoneSize / PAGE_SIZE;
252 
253     for (i = 0; i < arysize(weirdary); ++i)
254 	weirdary[i] = WEIRD_ADDR;
255 
256     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
257 
258     if (bootverbose)
259 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
260 }
261 
262 /*
263  * Initialize a malloc type tracking structure.
264  */
265 void
266 malloc_init(void *data)
267 {
268     struct malloc_type *type = data;
269     size_t limsize;
270 
271     if (type->ks_magic != M_MAGIC)
272 	panic("malloc type lacks magic");
273 
274     if (type->ks_limit != 0)
275 	return;
276 
277     if (vmstats.v_page_count == 0)
278 	panic("malloc_init not allowed before vm init");
279 
280     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
281     if (limsize > KvaSize)
282 	limsize = KvaSize;
283     type->ks_limit = limsize / 10;
284 
285     type->ks_next = kmemstatistics;
286     kmemstatistics = type;
287 }
288 
289 void
290 malloc_uninit(void *data)
291 {
292     struct malloc_type *type = data;
293     struct malloc_type *t;
294 #ifdef INVARIANTS
295     int i;
296     long ttl;
297 #endif
298 
299     if (type->ks_magic != M_MAGIC)
300 	panic("malloc type lacks magic");
301 
302     if (vmstats.v_page_count == 0)
303 	panic("malloc_uninit not allowed before vm init");
304 
305     if (type->ks_limit == 0)
306 	panic("malloc_uninit on uninitialized type");
307 
308 #ifdef SMP
309     /* Make sure that all pending kfree()s are finished. */
310     lwkt_synchronize_ipiqs("muninit");
311 #endif
312 
313 #ifdef INVARIANTS
314     /*
315      * memuse is only correct in aggregation.  Due to memory being allocated
316      * on one cpu and freed on another individual array entries may be
317      * negative or positive (canceling each other out).
318      */
319     for (i = ttl = 0; i < ncpus; ++i)
320 	ttl += type->ks_memuse[i];
321     if (ttl) {
322 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
323 	    ttl, type->ks_shortdesc, i);
324     }
325 #endif
326     if (type == kmemstatistics) {
327 	kmemstatistics = type->ks_next;
328     } else {
329 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
330 	    if (t->ks_next == type) {
331 		t->ks_next = type->ks_next;
332 		break;
333 	    }
334 	}
335     }
336     type->ks_next = NULL;
337     type->ks_limit = 0;
338 }
339 
340 /*
341  * Increase the kmalloc pool limit for the specified pool.  No changes
342  * are the made if the pool would shrink.
343  */
344 void
345 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
346 {
347     if (type->ks_limit == 0)
348 	malloc_init(type);
349     if (bytes == 0)
350 	bytes = KvaSize;
351     if (type->ks_limit < bytes)
352 	type->ks_limit = bytes;
353 }
354 
355 /*
356  * Dynamically create a malloc pool.  This function is a NOP if *typep is
357  * already non-NULL.
358  */
359 void
360 kmalloc_create(struct malloc_type **typep, const char *descr)
361 {
362 	struct malloc_type *type;
363 
364 	if (*typep == NULL) {
365 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
366 		type->ks_magic = M_MAGIC;
367 		type->ks_shortdesc = descr;
368 		malloc_init(type);
369 		*typep = type;
370 	}
371 }
372 
373 /*
374  * Destroy a dynamically created malloc pool.  This function is a NOP if
375  * the pool has already been destroyed.
376  */
377 void
378 kmalloc_destroy(struct malloc_type **typep)
379 {
380 	if (*typep != NULL) {
381 		malloc_uninit(*typep);
382 		kfree(*typep, M_TEMP);
383 		*typep = NULL;
384 	}
385 }
386 
387 /*
388  * Calculate the zone index for the allocation request size and set the
389  * allocation request size to that particular zone's chunk size.
390  */
391 static __inline int
392 zoneindex(unsigned long *bytes)
393 {
394     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
395     if (n < 128) {
396 	*bytes = n = (n + 7) & ~7;
397 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
398     }
399     if (n < 256) {
400 	*bytes = n = (n + 15) & ~15;
401 	return(n / 16 + 7);
402     }
403     if (n < 8192) {
404 	if (n < 512) {
405 	    *bytes = n = (n + 31) & ~31;
406 	    return(n / 32 + 15);
407 	}
408 	if (n < 1024) {
409 	    *bytes = n = (n + 63) & ~63;
410 	    return(n / 64 + 23);
411 	}
412 	if (n < 2048) {
413 	    *bytes = n = (n + 127) & ~127;
414 	    return(n / 128 + 31);
415 	}
416 	if (n < 4096) {
417 	    *bytes = n = (n + 255) & ~255;
418 	    return(n / 256 + 39);
419 	}
420 	*bytes = n = (n + 511) & ~511;
421 	return(n / 512 + 47);
422     }
423 #if ZALLOC_ZONE_LIMIT > 8192
424     if (n < 16384) {
425 	*bytes = n = (n + 1023) & ~1023;
426 	return(n / 1024 + 55);
427     }
428 #endif
429 #if ZALLOC_ZONE_LIMIT > 16384
430     if (n < 32768) {
431 	*bytes = n = (n + 2047) & ~2047;
432 	return(n / 2048 + 63);
433     }
434 #endif
435     panic("Unexpected byte count %d", n);
436     return(0);
437 }
438 
439 /*
440  * kmalloc()	(SLAB ALLOCATOR)
441  *
442  *	Allocate memory via the slab allocator.  If the request is too large,
443  *	or if it page-aligned beyond a certain size, we fall back to the
444  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
445  *	&SlabMisc if you don't care.
446  *
447  *	M_RNOWAIT	- don't block.
448  *	M_NULLOK	- return NULL instead of blocking.
449  *	M_ZERO		- zero the returned memory.
450  *	M_USE_RESERVE	- allow greater drawdown of the free list
451  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
452  *
453  * MPSAFE
454  */
455 void *
456 kmalloc(unsigned long size, struct malloc_type *type, int flags)
457 {
458     SLZone *z;
459     SLChunk *chunk;
460 #ifdef SMP
461     SLChunk *bchunk;
462 #endif
463     SLGlobalData *slgd;
464     struct globaldata *gd;
465     int zi;
466 #ifdef INVARIANTS
467     int i;
468 #endif
469 
470     logmemory_quick(malloc_beg);
471     gd = mycpu;
472     slgd = &gd->gd_slab;
473 
474     /*
475      * XXX silly to have this in the critical path.
476      */
477     if (type->ks_limit == 0) {
478 	crit_enter();
479 	if (type->ks_limit == 0)
480 	    malloc_init(type);
481 	crit_exit();
482     }
483     ++type->ks_calls;
484 
485     /*
486      * Handle the case where the limit is reached.  Panic if we can't return
487      * NULL.  The original malloc code looped, but this tended to
488      * simply deadlock the computer.
489      *
490      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
491      * to determine if a more complete limit check should be done.  The
492      * actual memory use is tracked via ks_memuse[cpu].
493      */
494     while (type->ks_loosememuse >= type->ks_limit) {
495 	int i;
496 	long ttl;
497 
498 	for (i = ttl = 0; i < ncpus; ++i)
499 	    ttl += type->ks_memuse[i];
500 	type->ks_loosememuse = ttl;	/* not MP synchronized */
501 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
502 		ttl = 0;
503 	if (ttl >= type->ks_limit) {
504 	    if (flags & M_NULLOK) {
505 		logmemory(malloc_end, NULL, type, size, flags);
506 		return(NULL);
507 	    }
508 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
509 	}
510     }
511 
512     /*
513      * Handle the degenerate size == 0 case.  Yes, this does happen.
514      * Return a special pointer.  This is to maintain compatibility with
515      * the original malloc implementation.  Certain devices, such as the
516      * adaptec driver, not only allocate 0 bytes, they check for NULL and
517      * also realloc() later on.  Joy.
518      */
519     if (size == 0) {
520 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
521 	return(ZERO_LENGTH_PTR);
522     }
523 
524     /*
525      * Handle hysteresis from prior frees here in malloc().  We cannot
526      * safely manipulate the kernel_map in free() due to free() possibly
527      * being called via an IPI message or from sensitive interrupt code.
528      *
529      * NOTE: ku_pagecnt must be cleared before we free the slab or we
530      *	     might race another cpu allocating the kva and setting
531      *	     ku_pagecnt.
532      */
533     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
534 	crit_enter();
535 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
536 	    int *kup;
537 
538 	    z = slgd->FreeZones;
539 	    slgd->FreeZones = z->z_Next;
540 	    --slgd->NFreeZones;
541 	    kup = btokup(z);
542 	    *kup = 0;
543 	    kmem_slab_free(z, ZoneSize);	/* may block */
544 	    atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
545 	}
546 	crit_exit();
547     }
548 
549     /*
550      * XXX handle oversized frees that were queued from kfree().
551      */
552     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
553 	crit_enter();
554 	if ((z = slgd->FreeOvZones) != NULL) {
555 	    vm_size_t tsize;
556 
557 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
558 	    slgd->FreeOvZones = z->z_Next;
559 	    tsize = z->z_ChunkSize;
560 	    kmem_slab_free(z, tsize);	/* may block */
561 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
562 	}
563 	crit_exit();
564     }
565 
566     /*
567      * Handle large allocations directly.  There should not be very many of
568      * these so performance is not a big issue.
569      *
570      * The backend allocator is pretty nasty on a SMP system.   Use the
571      * slab allocator for one and two page-sized chunks even though we lose
572      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
573      */
574     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
575 	int *kup;
576 
577 	size = round_page(size);
578 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
579 	if (chunk == NULL) {
580 	    logmemory(malloc_end, NULL, type, size, flags);
581 	    return(NULL);
582 	}
583 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
584 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
585 	flags |= M_PASSIVE_ZERO;
586 	kup = btokup(chunk);
587 	*kup = size / PAGE_SIZE;
588 	crit_enter();
589 	goto done;
590     }
591 
592     /*
593      * Attempt to allocate out of an existing zone.  First try the free list,
594      * then allocate out of unallocated space.  If we find a good zone move
595      * it to the head of the list so later allocations find it quickly
596      * (we might have thousands of zones in the list).
597      *
598      * Note: zoneindex() will panic of size is too large.
599      */
600     zi = zoneindex(&size);
601     KKASSERT(zi < NZONES);
602     crit_enter();
603 
604     if ((z = slgd->ZoneAry[zi]) != NULL) {
605 	/*
606 	 * Locate a chunk - we have to have at least one.  If this is the
607 	 * last chunk go ahead and do the work to retrieve chunks freed
608 	 * from remote cpus, and if the zone is still empty move it off
609 	 * the ZoneAry.
610 	 */
611 	if (--z->z_NFree <= 0) {
612 	    KKASSERT(z->z_NFree == 0);
613 
614 #ifdef SMP
615 	    /*
616 	     * WARNING! This code competes with other cpus.  It is ok
617 	     * for us to not drain RChunks here but we might as well, and
618 	     * it is ok if more accumulate after we're done.
619 	     *
620 	     * Set RSignal before pulling rchunks off, indicating that we
621 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
622 	     * read RSignal before putting rchunks on thus interlocking
623 	     * their IPI signaling.
624 	     */
625 	    if (z->z_RChunks == NULL)
626 		atomic_swap_int(&z->z_RSignal, 1);
627 
628 	    while ((bchunk = z->z_RChunks) != NULL) {
629 		cpu_ccfence();
630 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
631 		    *z->z_LChunksp = bchunk;
632 		    while (bchunk) {
633 			chunk_mark_free(z, bchunk);
634 			z->z_LChunksp = &bchunk->c_Next;
635 			bchunk = bchunk->c_Next;
636 			++z->z_NFree;
637 		    }
638 		    break;
639 		}
640 	    }
641 #endif
642 	    /*
643 	     * Remove from the zone list if no free chunks remain.
644 	     * Clear RSignal
645 	     */
646 	    if (z->z_NFree == 0) {
647 		slgd->ZoneAry[zi] = z->z_Next;
648 		z->z_Next = NULL;
649 	    } else {
650 		z->z_RSignal = 0;
651 	    }
652 	}
653 
654 	/*
655 	 * Fast path, we have chunks available in z_LChunks.
656 	 */
657 	chunk = z->z_LChunks;
658 	if (chunk) {
659 		chunk_mark_allocated(z, chunk);
660 		z->z_LChunks = chunk->c_Next;
661 		if (z->z_LChunks == NULL)
662 			z->z_LChunksp = &z->z_LChunks;
663 		goto done;
664 	}
665 
666 	/*
667 	 * No chunks are available in LChunks, the free chunk MUST be
668 	 * in the never-before-used memory area, controlled by UIndex.
669 	 *
670 	 * The consequences are very serious if our zone got corrupted so
671 	 * we use an explicit panic rather than a KASSERT.
672 	 */
673 	if (z->z_UIndex + 1 != z->z_NMax)
674 	    ++z->z_UIndex;
675 	else
676 	    z->z_UIndex = 0;
677 
678 	if (z->z_UIndex == z->z_UEndIndex)
679 	    panic("slaballoc: corrupted zone");
680 
681 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
682 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
683 	    flags &= ~M_ZERO;
684 	    flags |= M_PASSIVE_ZERO;
685 	}
686 	chunk_mark_allocated(z, chunk);
687 	goto done;
688     }
689 
690     /*
691      * If all zones are exhausted we need to allocate a new zone for this
692      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
693      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
694      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
695      * we do not pre-zero it because we do not want to mess up the L1 cache.
696      *
697      * At least one subsystem, the tty code (see CROUND) expects power-of-2
698      * allocations to be power-of-2 aligned.  We maintain compatibility by
699      * adjusting the base offset below.
700      */
701     {
702 	int off;
703 	int *kup;
704 
705 	if ((z = slgd->FreeZones) != NULL) {
706 	    slgd->FreeZones = z->z_Next;
707 	    --slgd->NFreeZones;
708 	    bzero(z, sizeof(SLZone));
709 	    z->z_Flags |= SLZF_UNOTZEROD;
710 	} else {
711 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
712 	    if (z == NULL)
713 		goto fail;
714 	    atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
715 	}
716 
717 	/*
718 	 * How big is the base structure?
719 	 */
720 #if defined(INVARIANTS)
721 	/*
722 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
723 	 * complicated so don't make an exact calculation.
724 	 */
725 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
726 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
727 #else
728 	off = sizeof(SLZone);
729 #endif
730 
731 	/*
732 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
733 	 * Otherwise just 8-byte align the data.
734 	 */
735 	if ((size | (size - 1)) + 1 == (size << 1))
736 	    off = (off + size - 1) & ~(size - 1);
737 	else
738 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
739 	z->z_Magic = ZALLOC_SLAB_MAGIC;
740 	z->z_ZoneIndex = zi;
741 	z->z_NMax = (ZoneSize - off) / size;
742 	z->z_NFree = z->z_NMax - 1;
743 	z->z_BasePtr = (char *)z + off;
744 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
745 	z->z_ChunkSize = size;
746 	z->z_CpuGd = gd;
747 	z->z_Cpu = gd->gd_cpuid;
748 	z->z_LChunksp = &z->z_LChunks;
749 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
750 	z->z_Next = slgd->ZoneAry[zi];
751 	slgd->ZoneAry[zi] = z;
752 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
753 	    flags &= ~M_ZERO;	/* already zero'd */
754 	    flags |= M_PASSIVE_ZERO;
755 	}
756 	kup = btokup(z);
757 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
758 	chunk_mark_allocated(z, chunk);
759 
760 	/*
761 	 * Slide the base index for initial allocations out of the next
762 	 * zone we create so we do not over-weight the lower part of the
763 	 * cpu memory caches.
764 	 */
765 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
766 				& (ZALLOC_MAX_ZONE_SIZE - 1);
767     }
768 
769 done:
770     ++type->ks_inuse[gd->gd_cpuid];
771     type->ks_memuse[gd->gd_cpuid] += size;
772     type->ks_loosememuse += size;	/* not MP synchronized */
773     crit_exit();
774 
775     if (flags & M_ZERO)
776 	bzero(chunk, size);
777 #ifdef INVARIANTS
778     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
779 	if (use_malloc_pattern) {
780 	    for (i = 0; i < size; i += sizeof(int)) {
781 		*(int *)((char *)chunk + i) = -1;
782 	    }
783 	}
784 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
785     }
786 #endif
787     logmemory(malloc_end, chunk, type, size, flags);
788     return(chunk);
789 fail:
790     crit_exit();
791     logmemory(malloc_end, NULL, type, size, flags);
792     return(NULL);
793 }
794 
795 /*
796  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
797  *
798  * Generally speaking this routine is not called very often and we do
799  * not attempt to optimize it beyond reusing the same pointer if the
800  * new size fits within the chunking of the old pointer's zone.
801  */
802 void *
803 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
804 {
805     unsigned long osize;
806     SLZone *z;
807     void *nptr;
808     int *kup;
809 
810     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
811 
812     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
813 	return(kmalloc(size, type, flags));
814     if (size == 0) {
815 	kfree(ptr, type);
816 	return(NULL);
817     }
818 
819     /*
820      * Handle oversized allocations.  XXX we really should require that a
821      * size be passed to free() instead of this nonsense.
822      */
823     kup = btokup(ptr);
824     if (*kup > 0) {
825 	osize = *kup << PAGE_SHIFT;
826 	if (osize == round_page(size))
827 	    return(ptr);
828 	if ((nptr = kmalloc(size, type, flags)) == NULL)
829 	    return(NULL);
830 	bcopy(ptr, nptr, min(size, osize));
831 	kfree(ptr, type);
832 	return(nptr);
833     }
834 
835     /*
836      * Get the original allocation's zone.  If the new request winds up
837      * using the same chunk size we do not have to do anything.
838      */
839     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
840     kup = btokup(z);
841     KKASSERT(*kup < 0);
842     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
843 
844     /*
845      * Allocate memory for the new request size.  Note that zoneindex has
846      * already adjusted the request size to the appropriate chunk size, which
847      * should optimize our bcopy().  Then copy and return the new pointer.
848      *
849      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
850      * necessary align the result.
851      *
852      * We can only zoneindex (to align size to the chunk size) if the new
853      * size is not too large.
854      */
855     if (size < ZoneLimit) {
856 	zoneindex(&size);
857 	if (z->z_ChunkSize == size)
858 	    return(ptr);
859     }
860     if ((nptr = kmalloc(size, type, flags)) == NULL)
861 	return(NULL);
862     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
863     kfree(ptr, type);
864     return(nptr);
865 }
866 
867 /*
868  * Return the kmalloc limit for this type, in bytes.
869  */
870 long
871 kmalloc_limit(struct malloc_type *type)
872 {
873     if (type->ks_limit == 0) {
874 	crit_enter();
875 	if (type->ks_limit == 0)
876 	    malloc_init(type);
877 	crit_exit();
878     }
879     return(type->ks_limit);
880 }
881 
882 /*
883  * Allocate a copy of the specified string.
884  *
885  * (MP SAFE) (MAY BLOCK)
886  */
887 char *
888 kstrdup(const char *str, struct malloc_type *type)
889 {
890     int zlen;	/* length inclusive of terminating NUL */
891     char *nstr;
892 
893     if (str == NULL)
894 	return(NULL);
895     zlen = strlen(str) + 1;
896     nstr = kmalloc(zlen, type, M_WAITOK);
897     bcopy(str, nstr, zlen);
898     return(nstr);
899 }
900 
901 #ifdef SMP
902 /*
903  * Notify our cpu that a remote cpu has freed some chunks in a zone that
904  * we own.  RCount will be bumped so the memory should be good, but validate
905  * that it really is.
906  */
907 static
908 void
909 kfree_remote(void *ptr)
910 {
911     SLGlobalData *slgd;
912     SLChunk *bchunk;
913     SLZone *z;
914     int nfree;
915     int *kup;
916 
917     slgd = &mycpu->gd_slab;
918     z = ptr;
919     kup = btokup(z);
920     KKASSERT(*kup == -((int)mycpuid + 1));
921     KKASSERT(z->z_RCount > 0);
922     atomic_subtract_int(&z->z_RCount, 1);
923 
924     logmemory(free_rem_beg, z, NULL, 0, 0);
925     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
926     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
927     nfree = z->z_NFree;
928 
929     /*
930      * Indicate that we will no longer be off of the ZoneAry by
931      * clearing RSignal.
932      */
933     if (z->z_RChunks)
934 	z->z_RSignal = 0;
935 
936     /*
937      * Atomically extract the bchunks list and then process it back
938      * into the lchunks list.  We want to append our bchunks to the
939      * lchunks list and not prepend since we likely do not have
940      * cache mastership of the related data (not that it helps since
941      * we are using c_Next).
942      */
943     while ((bchunk = z->z_RChunks) != NULL) {
944 	cpu_ccfence();
945 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
946 	    *z->z_LChunksp = bchunk;
947 	    while (bchunk) {
948 		    chunk_mark_free(z, bchunk);
949 		    z->z_LChunksp = &bchunk->c_Next;
950 		    bchunk = bchunk->c_Next;
951 		    ++z->z_NFree;
952 	    }
953 	    break;
954 	}
955     }
956     if (z->z_NFree && nfree == 0) {
957 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
958 	slgd->ZoneAry[z->z_ZoneIndex] = z;
959     }
960 
961     /*
962      * If the zone becomes totally free, and there are other zones we
963      * can allocate from, move this zone to the FreeZones list.  Since
964      * this code can be called from an IPI callback, do *NOT* try to mess
965      * with kernel_map here.  Hysteresis will be performed at malloc() time.
966      *
967      * Do not move the zone if there is an IPI inflight, otherwise MP
968      * races can result in our free_remote code accessing a destroyed
969      * zone.
970      */
971     if (z->z_NFree == z->z_NMax &&
972 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
973 	z->z_RCount == 0
974     ) {
975 	SLZone **pz;
976 	int *kup;
977 
978 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
979 	     z != *pz;
980 	     pz = &(*pz)->z_Next) {
981 	    ;
982 	}
983 	*pz = z->z_Next;
984 	z->z_Magic = -1;
985 	z->z_Next = slgd->FreeZones;
986 	slgd->FreeZones = z;
987 	++slgd->NFreeZones;
988 	kup = btokup(z);
989 	*kup = 0;
990     }
991     logmemory(free_rem_end, z, bchunk, 0, 0);
992 }
993 
994 #endif
995 
996 /*
997  * free (SLAB ALLOCATOR)
998  *
999  * Free a memory block previously allocated by malloc.  Note that we do not
1000  * attempt to update ks_loosememuse as MP races could prevent us from
1001  * checking memory limits in malloc.
1002  *
1003  * MPSAFE
1004  */
1005 void
1006 kfree(void *ptr, struct malloc_type *type)
1007 {
1008     SLZone *z;
1009     SLChunk *chunk;
1010     SLGlobalData *slgd;
1011     struct globaldata *gd;
1012     int *kup;
1013     unsigned long size;
1014 #ifdef SMP
1015     SLChunk *bchunk;
1016     int rsignal;
1017 #endif
1018 
1019     logmemory_quick(free_beg);
1020     gd = mycpu;
1021     slgd = &gd->gd_slab;
1022 
1023     if (ptr == NULL)
1024 	panic("trying to free NULL pointer");
1025 
1026     /*
1027      * Handle special 0-byte allocations
1028      */
1029     if (ptr == ZERO_LENGTH_PTR) {
1030 	logmemory(free_zero, ptr, type, -1, 0);
1031 	logmemory_quick(free_end);
1032 	return;
1033     }
1034 
1035     /*
1036      * Panic on bad malloc type
1037      */
1038     if (type->ks_magic != M_MAGIC)
1039 	panic("free: malloc type lacks magic");
1040 
1041     /*
1042      * Handle oversized allocations.  XXX we really should require that a
1043      * size be passed to free() instead of this nonsense.
1044      *
1045      * This code is never called via an ipi.
1046      */
1047     kup = btokup(ptr);
1048     if (*kup > 0) {
1049 	size = *kup << PAGE_SHIFT;
1050 	*kup = 0;
1051 #ifdef INVARIANTS
1052 	KKASSERT(sizeof(weirdary) <= size);
1053 	bcopy(weirdary, ptr, sizeof(weirdary));
1054 #endif
1055 	/*
1056 	 * NOTE: For oversized allocations we do not record the
1057 	 *	     originating cpu.  It gets freed on the cpu calling
1058 	 *	     kfree().  The statistics are in aggregate.
1059 	 *
1060 	 * note: XXX we have still inherited the interrupts-can't-block
1061 	 * assumption.  An interrupt thread does not bump
1062 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1063 	 * primarily until we can fix softupdate's assumptions about free().
1064 	 */
1065 	crit_enter();
1066 	--type->ks_inuse[gd->gd_cpuid];
1067 	type->ks_memuse[gd->gd_cpuid] -= size;
1068 	if (mycpu->gd_intr_nesting_level ||
1069 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1070 	{
1071 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1072 	    z = (SLZone *)ptr;
1073 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1074 	    z->z_Next = slgd->FreeOvZones;
1075 	    z->z_ChunkSize = size;
1076 	    slgd->FreeOvZones = z;
1077 	    crit_exit();
1078 	} else {
1079 	    crit_exit();
1080 	    logmemory(free_ovsz, ptr, type, size, 0);
1081 	    kmem_slab_free(ptr, size);	/* may block */
1082 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1083 	}
1084 	logmemory_quick(free_end);
1085 	return;
1086     }
1087 
1088     /*
1089      * Zone case.  Figure out the zone based on the fact that it is
1090      * ZoneSize aligned.
1091      */
1092     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1093     kup = btokup(z);
1094     KKASSERT(*kup < 0);
1095     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1096 
1097     /*
1098      * If we do not own the zone then use atomic ops to free to the
1099      * remote cpu linked list and notify the target zone using a
1100      * passive message.
1101      *
1102      * The target zone cannot be deallocated while we own a chunk of it,
1103      * so the zone header's storage is stable until the very moment
1104      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1105      *
1106      * (no critical section needed)
1107      */
1108     if (z->z_CpuGd != gd) {
1109 #ifdef SMP
1110 	/*
1111 	 * Making these adjustments now allow us to avoid passing (type)
1112 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1113 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1114 	 * sum up properly and cancel out.
1115 	 */
1116 	crit_enter();
1117 	--type->ks_inuse[gd->gd_cpuid];
1118 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1119 	crit_exit();
1120 
1121 	/*
1122 	 * WARNING! This code competes with other cpus.  Once we
1123 	 *	    successfully link the chunk to RChunks the remote
1124 	 *	    cpu can rip z's storage out from under us.
1125 	 *
1126 	 *	    Bumping RCount prevents z's storage from getting
1127 	 *	    ripped out.
1128 	 */
1129 	rsignal = z->z_RSignal;
1130 	cpu_lfence();
1131 	if (rsignal)
1132 		atomic_add_int(&z->z_RCount, 1);
1133 
1134 	chunk = ptr;
1135 	for (;;) {
1136 	    bchunk = z->z_RChunks;
1137 	    cpu_ccfence();
1138 	    chunk->c_Next = bchunk;
1139 	    cpu_sfence();
1140 
1141 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1142 		break;
1143 	}
1144 
1145 	/*
1146 	 * We have to signal the remote cpu if our actions will cause
1147 	 * the remote zone to be placed back on ZoneAry so it can
1148 	 * move the zone back on.
1149 	 *
1150 	 * We only need to deal with NULL->non-NULL RChunk transitions
1151 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1152 	 * before adding our chunk to RChunks.  This should result in
1153 	 * virtually no IPI traffic.
1154 	 *
1155 	 * We can use a passive IPI to reduce overhead even further.
1156 	 */
1157 	if (bchunk == NULL && rsignal) {
1158 	    logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1159 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1160 	    /* z can get ripped out from under us from this point on */
1161 	} else if (rsignal) {
1162 	    atomic_subtract_int(&z->z_RCount, 1);
1163 	    /* z can get ripped out from under us from this point on */
1164 	}
1165 #else
1166 	panic("Corrupt SLZone");
1167 #endif
1168 	logmemory_quick(free_end);
1169 	return;
1170     }
1171 
1172     /*
1173      * kfree locally
1174      */
1175     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1176 
1177     crit_enter();
1178     chunk = ptr;
1179     chunk_mark_free(z, chunk);
1180 
1181     /*
1182      * Put weird data into the memory to detect modifications after freeing,
1183      * illegal pointer use after freeing (we should fault on the odd address),
1184      * and so forth.  XXX needs more work, see the old malloc code.
1185      */
1186 #ifdef INVARIANTS
1187     if (z->z_ChunkSize < sizeof(weirdary))
1188 	bcopy(weirdary, chunk, z->z_ChunkSize);
1189     else
1190 	bcopy(weirdary, chunk, sizeof(weirdary));
1191 #endif
1192 
1193     /*
1194      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1195      * to the front of the linked list so it is more likely to be
1196      * reallocated, since it is already in our L1 cache.
1197      */
1198 #ifdef INVARIANTS
1199     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1200 	panic("BADFREE %p", chunk);
1201 #endif
1202     chunk->c_Next = z->z_LChunks;
1203     z->z_LChunks = chunk;
1204     if (chunk->c_Next == NULL)
1205 	    z->z_LChunksp = &chunk->c_Next;
1206 
1207 #ifdef INVARIANTS
1208     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1209 	panic("BADFREE2");
1210 #endif
1211 
1212     /*
1213      * Bump the number of free chunks.  If it becomes non-zero the zone
1214      * must be added back onto the appropriate list.
1215      */
1216     if (z->z_NFree++ == 0) {
1217 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1218 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1219     }
1220 
1221     --type->ks_inuse[z->z_Cpu];
1222     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1223 
1224     /*
1225      * If the zone becomes totally free, and there are other zones we
1226      * can allocate from, move this zone to the FreeZones list.  Since
1227      * this code can be called from an IPI callback, do *NOT* try to mess
1228      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1229      */
1230     if (z->z_NFree == z->z_NMax &&
1231 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1232 	z->z_RCount == 0
1233     ) {
1234 	SLZone **pz;
1235 	int *kup;
1236 
1237 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1238 	    ;
1239 	*pz = z->z_Next;
1240 	z->z_Magic = -1;
1241 	z->z_Next = slgd->FreeZones;
1242 	slgd->FreeZones = z;
1243 	++slgd->NFreeZones;
1244 	kup = btokup(z);
1245 	*kup = 0;
1246     }
1247     logmemory_quick(free_end);
1248     crit_exit();
1249 }
1250 
1251 #if defined(INVARIANTS)
1252 
1253 /*
1254  * Helper routines for sanity checks
1255  */
1256 static
1257 void
1258 chunk_mark_allocated(SLZone *z, void *chunk)
1259 {
1260     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1261     __uint32_t *bitptr;
1262 
1263     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1264     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1265 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1266     bitptr = &z->z_Bitmap[bitdex >> 5];
1267     bitdex &= 31;
1268     KASSERT((*bitptr & (1 << bitdex)) == 0,
1269 	    ("memory chunk %p is already allocated!", chunk));
1270     *bitptr |= 1 << bitdex;
1271 }
1272 
1273 static
1274 void
1275 chunk_mark_free(SLZone *z, void *chunk)
1276 {
1277     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1278     __uint32_t *bitptr;
1279 
1280     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1281     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1282 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1283     bitptr = &z->z_Bitmap[bitdex >> 5];
1284     bitdex &= 31;
1285     KASSERT((*bitptr & (1 << bitdex)) != 0,
1286 	    ("memory chunk %p is already free!", chunk));
1287     *bitptr &= ~(1 << bitdex);
1288 }
1289 
1290 #endif
1291 
1292 /*
1293  * kmem_slab_alloc()
1294  *
1295  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1296  *	specified alignment.  M_* flags are expected in the flags field.
1297  *
1298  *	Alignment must be a multiple of PAGE_SIZE.
1299  *
1300  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1301  *	but when we move zalloc() over to use this function as its backend
1302  *	we will have to switch to kreserve/krelease and call reserve(0)
1303  *	after the new space is made available.
1304  *
1305  *	Interrupt code which has preempted other code is not allowed to
1306  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1307  *	non-preemptively or blocks and then runs non-preemptively, then
1308  *	it is free to use PQ_CACHE pages.
1309  */
1310 static void *
1311 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1312 {
1313     vm_size_t i;
1314     vm_offset_t addr;
1315     int count, vmflags, base_vmflags;
1316     thread_t td;
1317 
1318     size = round_page(size);
1319     addr = vm_map_min(&kernel_map);
1320 
1321     /*
1322      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1323      * cannot block.
1324      */
1325     if (flags & M_RNOWAIT) {
1326 	if (lwkt_trytoken(&vm_token) == 0)
1327 	    return(NULL);
1328     } else {
1329 	lwkt_gettoken(&vm_token);
1330     }
1331     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1332     crit_enter();
1333     vm_map_lock(&kernel_map);
1334     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1335 	vm_map_unlock(&kernel_map);
1336 	if ((flags & M_NULLOK) == 0)
1337 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1338 	vm_map_entry_release(count);
1339 	crit_exit();
1340 	lwkt_reltoken(&vm_token);
1341 	return(NULL);
1342     }
1343 
1344     /*
1345      * kernel_object maps 1:1 to kernel_map.
1346      */
1347     vm_object_reference(&kernel_object);
1348     vm_map_insert(&kernel_map, &count,
1349 		    &kernel_object, addr, addr, addr + size,
1350 		    VM_MAPTYPE_NORMAL,
1351 		    VM_PROT_ALL, VM_PROT_ALL,
1352 		    0);
1353 
1354     td = curthread;
1355 
1356     base_vmflags = 0;
1357     if (flags & M_ZERO)
1358         base_vmflags |= VM_ALLOC_ZERO;
1359     if (flags & M_USE_RESERVE)
1360 	base_vmflags |= VM_ALLOC_SYSTEM;
1361     if (flags & M_USE_INTERRUPT_RESERVE)
1362         base_vmflags |= VM_ALLOC_INTERRUPT;
1363     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1364 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1365 	      flags, ((int **)&size)[-1]);
1366     }
1367 
1368 
1369     /*
1370      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1371      */
1372     for (i = 0; i < size; i += PAGE_SIZE) {
1373 	vm_page_t m;
1374 
1375 	/*
1376 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1377 	 *
1378 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1379 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1380 	 * implied in this case), though I'm not sure if we really need to
1381 	 * do that.
1382 	 */
1383 	vmflags = base_vmflags;
1384 	if (flags & M_WAITOK) {
1385 	    if (td->td_preempted)
1386 		vmflags |= VM_ALLOC_SYSTEM;
1387 	    else
1388 		vmflags |= VM_ALLOC_NORMAL;
1389 	}
1390 
1391 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1392 
1393 	/*
1394 	 * If the allocation failed we either return NULL or we retry.
1395 	 *
1396 	 * If M_WAITOK is specified we wait for more memory and retry.
1397 	 * If M_WAITOK is specified from a preemption we yield instead of
1398 	 * wait.  Livelock will not occur because the interrupt thread
1399 	 * will not be preempting anyone the second time around after the
1400 	 * yield.
1401 	 */
1402 	if (m == NULL) {
1403 	    if (flags & M_WAITOK) {
1404 		if (td->td_preempted) {
1405 		    vm_map_unlock(&kernel_map);
1406 		    lwkt_switch();
1407 		    vm_map_lock(&kernel_map);
1408 		} else {
1409 		    vm_map_unlock(&kernel_map);
1410 		    vm_wait(0);
1411 		    vm_map_lock(&kernel_map);
1412 		}
1413 		i -= PAGE_SIZE;	/* retry */
1414 		continue;
1415 	    }
1416 
1417 	    /*
1418 	     * We were unable to recover, cleanup and return NULL
1419 	     *
1420 	     * (vm_token already held)
1421 	     */
1422 	    while (i != 0) {
1423 		i -= PAGE_SIZE;
1424 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1425 		/* page should already be busy */
1426 		vm_page_free(m);
1427 	    }
1428 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1429 	    vm_map_unlock(&kernel_map);
1430 	    vm_map_entry_release(count);
1431 	    crit_exit();
1432 	    lwkt_reltoken(&vm_token);
1433 	    return(NULL);
1434 	}
1435     }
1436 
1437     /*
1438      * Success!
1439      *
1440      * Mark the map entry as non-pageable using a routine that allows us to
1441      * populate the underlying pages.
1442      *
1443      * The pages were busied by the allocations above.
1444      */
1445     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1446     crit_exit();
1447 
1448     /*
1449      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1450      */
1451     lwkt_gettoken(&vm_token);
1452     for (i = 0; i < size; i += PAGE_SIZE) {
1453 	vm_page_t m;
1454 
1455 	m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1456 	m->valid = VM_PAGE_BITS_ALL;
1457 	/* page should already be busy */
1458 	vm_page_wire(m);
1459 	vm_page_wakeup(m);
1460 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1461 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1462 	    bzero((char *)addr + i, PAGE_SIZE);
1463 	vm_page_flag_clear(m, PG_ZERO);
1464 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1465 	vm_page_flag_set(m, PG_REFERENCED);
1466     }
1467     lwkt_reltoken(&vm_token);
1468     vm_map_unlock(&kernel_map);
1469     vm_map_entry_release(count);
1470     lwkt_reltoken(&vm_token);
1471     return((void *)addr);
1472 }
1473 
1474 /*
1475  * kmem_slab_free()
1476  */
1477 static void
1478 kmem_slab_free(void *ptr, vm_size_t size)
1479 {
1480     crit_enter();
1481     lwkt_gettoken(&vm_token);
1482     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1483     lwkt_reltoken(&vm_token);
1484     crit_exit();
1485 }
1486 
1487