1 /* 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator (MP SAFE) 3 * 4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.32 2005/06/03 22:55:58 dillon Exp $ 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * API REQUIREMENTS AND SIDE EFFECTS 82 * 83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 84 * have remained compatible with the following API requirements: 85 * 86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 88 * + malloc(0) is allowed and returns non-NULL (ahc driver) 89 * + ability to allocate arbitrarily large chunks of memory 90 */ 91 92 #include "opt_vm.h" 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kernel.h> 97 #include <sys/slaballoc.h> 98 #include <sys/mbuf.h> 99 #include <sys/vmmeter.h> 100 #include <sys/lock.h> 101 #include <sys/thread.h> 102 #include <sys/globaldata.h> 103 #include <sys/sysctl.h> 104 105 #include <vm/vm.h> 106 #include <vm/vm_param.h> 107 #include <vm/vm_kern.h> 108 #include <vm/vm_extern.h> 109 #include <vm/vm_object.h> 110 #include <vm/pmap.h> 111 #include <vm/vm_map.h> 112 #include <vm/vm_page.h> 113 #include <vm/vm_pageout.h> 114 115 #include <machine/cpu.h> 116 117 #include <sys/thread2.h> 118 119 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 120 121 /* 122 * Fixed globals (not per-cpu) 123 */ 124 static int ZoneSize; 125 static int ZoneLimit; 126 static int ZonePageCount; 127 static int ZoneMask; 128 static struct malloc_type *kmemstatistics; 129 static struct kmemusage *kmemusage; 130 static int32_t weirdary[16]; 131 132 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 133 static void kmem_slab_free(void *ptr, vm_size_t bytes); 134 135 /* 136 * Misc constants. Note that allocations that are exact multiples of 137 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 138 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 139 */ 140 #define MIN_CHUNK_SIZE 8 /* in bytes */ 141 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 142 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 143 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 144 145 /* 146 * The WEIRD_ADDR is used as known text to copy into free objects to 147 * try to create deterministic failure cases if the data is accessed after 148 * free. 149 */ 150 #define WEIRD_ADDR 0xdeadc0de 151 #define MAX_COPY sizeof(weirdary) 152 #define ZERO_LENGTH_PTR ((void *)-8) 153 154 /* 155 * Misc global malloc buckets 156 */ 157 158 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 159 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 160 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 161 162 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 163 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 164 165 /* 166 * Initialize the slab memory allocator. We have to choose a zone size based 167 * on available physical memory. We choose a zone side which is approximately 168 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 169 * 128K. The zone size is limited to the bounds set in slaballoc.h 170 * (typically 32K min, 128K max). 171 */ 172 static void kmeminit(void *dummy); 173 174 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 175 176 #ifdef INVARIANTS 177 /* 178 * If enabled any memory allocated without M_ZERO is initialized to -1. 179 */ 180 static int use_malloc_pattern; 181 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 182 &use_malloc_pattern, 0, ""); 183 #endif 184 185 static void 186 kmeminit(void *dummy) 187 { 188 vm_poff_t limsize; 189 int usesize; 190 int i; 191 vm_pindex_t npg; 192 193 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 194 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) 195 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 196 197 usesize = (int)(limsize / 1024); /* convert to KB */ 198 199 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 200 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 201 ZoneSize <<= 1; 202 ZoneLimit = ZoneSize / 4; 203 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 204 ZoneLimit = ZALLOC_ZONE_LIMIT; 205 ZoneMask = ZoneSize - 1; 206 ZonePageCount = ZoneSize / PAGE_SIZE; 207 208 npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE; 209 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_WAITOK|M_ZERO); 210 211 for (i = 0; i < arysize(weirdary); ++i) 212 weirdary[i] = WEIRD_ADDR; 213 214 if (bootverbose) 215 printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 216 } 217 218 /* 219 * Initialize a malloc type tracking structure. 220 */ 221 void 222 malloc_init(void *data) 223 { 224 struct malloc_type *type = data; 225 vm_poff_t limsize; 226 227 if (type->ks_magic != M_MAGIC) 228 panic("malloc type lacks magic"); 229 230 if (type->ks_limit != 0) 231 return; 232 233 if (vmstats.v_page_count == 0) 234 panic("malloc_init not allowed before vm init"); 235 236 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 237 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) 238 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 239 type->ks_limit = limsize / 10; 240 241 type->ks_next = kmemstatistics; 242 kmemstatistics = type; 243 } 244 245 void 246 malloc_uninit(void *data) 247 { 248 struct malloc_type *type = data; 249 struct malloc_type *t; 250 #ifdef INVARIANTS 251 int i; 252 long ttl; 253 #endif 254 255 if (type->ks_magic != M_MAGIC) 256 panic("malloc type lacks magic"); 257 258 if (vmstats.v_page_count == 0) 259 panic("malloc_uninit not allowed before vm init"); 260 261 if (type->ks_limit == 0) 262 panic("malloc_uninit on uninitialized type"); 263 264 #ifdef INVARIANTS 265 /* 266 * memuse is only correct in aggregation. Due to memory being allocated 267 * on one cpu and freed on another individual array entries may be 268 * negative or positive (canceling each other out). 269 */ 270 for (i = ttl = 0; i < ncpus; ++i) 271 ttl += type->ks_memuse[i]; 272 if (ttl) { 273 printf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 274 ttl, type->ks_shortdesc, i); 275 } 276 #endif 277 if (type == kmemstatistics) { 278 kmemstatistics = type->ks_next; 279 } else { 280 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 281 if (t->ks_next == type) { 282 t->ks_next = type->ks_next; 283 break; 284 } 285 } 286 } 287 type->ks_next = NULL; 288 type->ks_limit = 0; 289 } 290 291 /* 292 * Calculate the zone index for the allocation request size and set the 293 * allocation request size to that particular zone's chunk size. 294 */ 295 static __inline int 296 zoneindex(unsigned long *bytes) 297 { 298 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 299 if (n < 128) { 300 *bytes = n = (n + 7) & ~7; 301 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 302 } 303 if (n < 256) { 304 *bytes = n = (n + 15) & ~15; 305 return(n / 16 + 7); 306 } 307 if (n < 8192) { 308 if (n < 512) { 309 *bytes = n = (n + 31) & ~31; 310 return(n / 32 + 15); 311 } 312 if (n < 1024) { 313 *bytes = n = (n + 63) & ~63; 314 return(n / 64 + 23); 315 } 316 if (n < 2048) { 317 *bytes = n = (n + 127) & ~127; 318 return(n / 128 + 31); 319 } 320 if (n < 4096) { 321 *bytes = n = (n + 255) & ~255; 322 return(n / 256 + 39); 323 } 324 *bytes = n = (n + 511) & ~511; 325 return(n / 512 + 47); 326 } 327 #if ZALLOC_ZONE_LIMIT > 8192 328 if (n < 16384) { 329 *bytes = n = (n + 1023) & ~1023; 330 return(n / 1024 + 55); 331 } 332 #endif 333 #if ZALLOC_ZONE_LIMIT > 16384 334 if (n < 32768) { 335 *bytes = n = (n + 2047) & ~2047; 336 return(n / 2048 + 63); 337 } 338 #endif 339 panic("Unexpected byte count %d", n); 340 return(0); 341 } 342 343 /* 344 * malloc() (SLAB ALLOCATOR) (MP SAFE) 345 * 346 * Allocate memory via the slab allocator. If the request is too large, 347 * or if it page-aligned beyond a certain size, we fall back to the 348 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 349 * &SlabMisc if you don't care. 350 * 351 * M_RNOWAIT - don't block. 352 * M_NULLOK - return NULL instead of blocking. 353 * M_ZERO - zero the returned memory. 354 * M_USE_RESERVE - allow greater drawdown of the free list 355 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 356 */ 357 void * 358 malloc(unsigned long size, struct malloc_type *type, int flags) 359 { 360 SLZone *z; 361 SLChunk *chunk; 362 SLGlobalData *slgd; 363 struct globaldata *gd; 364 int zi; 365 #ifdef INVARIANTS 366 int i; 367 #endif 368 369 gd = mycpu; 370 slgd = &gd->gd_slab; 371 372 /* 373 * XXX silly to have this in the critical path. 374 */ 375 if (type->ks_limit == 0) { 376 crit_enter(); 377 if (type->ks_limit == 0) 378 malloc_init(type); 379 crit_exit(); 380 } 381 ++type->ks_calls; 382 383 /* 384 * Handle the case where the limit is reached. Panic if we can't return 385 * NULL. The original malloc code looped, but this tended to 386 * simply deadlock the computer. 387 * 388 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 389 * to determine if a more complete limit check should be done. The 390 * actual memory use is tracked via ks_memuse[cpu]. 391 */ 392 while (type->ks_loosememuse >= type->ks_limit) { 393 int i; 394 long ttl; 395 396 for (i = ttl = 0; i < ncpus; ++i) 397 ttl += type->ks_memuse[i]; 398 type->ks_loosememuse = ttl; /* not MP synchronized */ 399 if (ttl >= type->ks_limit) { 400 if (flags & M_NULLOK) 401 return(NULL); 402 panic("%s: malloc limit exceeded", type->ks_shortdesc); 403 } 404 } 405 406 /* 407 * Handle the degenerate size == 0 case. Yes, this does happen. 408 * Return a special pointer. This is to maintain compatibility with 409 * the original malloc implementation. Certain devices, such as the 410 * adaptec driver, not only allocate 0 bytes, they check for NULL and 411 * also realloc() later on. Joy. 412 */ 413 if (size == 0) 414 return(ZERO_LENGTH_PTR); 415 416 /* 417 * Handle hysteresis from prior frees here in malloc(). We cannot 418 * safely manipulate the kernel_map in free() due to free() possibly 419 * being called via an IPI message or from sensitive interrupt code. 420 */ 421 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 422 crit_enter(); 423 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 424 z = slgd->FreeZones; 425 slgd->FreeZones = z->z_Next; 426 --slgd->NFreeZones; 427 kmem_slab_free(z, ZoneSize); /* may block */ 428 } 429 crit_exit(); 430 } 431 /* 432 * XXX handle oversized frees that were queued from free(). 433 */ 434 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 435 crit_enter(); 436 if ((z = slgd->FreeOvZones) != NULL) { 437 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 438 slgd->FreeOvZones = z->z_Next; 439 kmem_slab_free(z, z->z_ChunkSize); /* may block */ 440 } 441 crit_exit(); 442 } 443 444 /* 445 * Handle large allocations directly. There should not be very many of 446 * these so performance is not a big issue. 447 * 448 * Guarentee page alignment for allocations in multiples of PAGE_SIZE 449 */ 450 if (size >= ZoneLimit || (size & PAGE_MASK) == 0) { 451 struct kmemusage *kup; 452 453 size = round_page(size); 454 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 455 if (chunk == NULL) 456 return(NULL); 457 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 458 flags |= M_PASSIVE_ZERO; 459 kup = btokup(chunk); 460 kup->ku_pagecnt = size / PAGE_SIZE; 461 kup->ku_cpu = gd->gd_cpuid; 462 crit_enter(); 463 goto done; 464 } 465 466 /* 467 * Attempt to allocate out of an existing zone. First try the free list, 468 * then allocate out of unallocated space. If we find a good zone move 469 * it to the head of the list so later allocations find it quickly 470 * (we might have thousands of zones in the list). 471 * 472 * Note: zoneindex() will panic of size is too large. 473 */ 474 zi = zoneindex(&size); 475 KKASSERT(zi < NZONES); 476 crit_enter(); 477 if ((z = slgd->ZoneAry[zi]) != NULL) { 478 KKASSERT(z->z_NFree > 0); 479 480 /* 481 * Remove us from the ZoneAry[] when we become empty 482 */ 483 if (--z->z_NFree == 0) { 484 slgd->ZoneAry[zi] = z->z_Next; 485 z->z_Next = NULL; 486 } 487 488 /* 489 * Locate a chunk in a free page. This attempts to localize 490 * reallocations into earlier pages without us having to sort 491 * the chunk list. A chunk may still overlap a page boundary. 492 */ 493 while (z->z_FirstFreePg < ZonePageCount) { 494 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) { 495 #ifdef DIAGNOSTIC 496 /* 497 * Diagnostic: c_Next is not total garbage. 498 */ 499 KKASSERT(chunk->c_Next == NULL || 500 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) == 501 ((intptr_t)chunk & IN_SAME_PAGE_MASK)); 502 #endif 503 #ifdef INVARIANTS 504 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS) 505 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount); 506 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS) 507 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount); 508 #endif 509 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next; 510 goto done; 511 } 512 ++z->z_FirstFreePg; 513 } 514 515 /* 516 * No chunks are available but NFree said we had some memory, so 517 * it must be available in the never-before-used-memory area 518 * governed by UIndex. The consequences are very serious if our zone 519 * got corrupted so we use an explicit panic rather then a KASSERT. 520 */ 521 if (z->z_UIndex + 1 != z->z_NMax) 522 z->z_UIndex = z->z_UIndex + 1; 523 else 524 z->z_UIndex = 0; 525 if (z->z_UIndex == z->z_UEndIndex) 526 panic("slaballoc: corrupted zone"); 527 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 528 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 529 flags &= ~M_ZERO; 530 flags |= M_PASSIVE_ZERO; 531 } 532 goto done; 533 } 534 535 /* 536 * If all zones are exhausted we need to allocate a new zone for this 537 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 538 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 539 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 540 * we do not pre-zero it because we do not want to mess up the L1 cache. 541 * 542 * At least one subsystem, the tty code (see CROUND) expects power-of-2 543 * allocations to be power-of-2 aligned. We maintain compatibility by 544 * adjusting the base offset below. 545 */ 546 { 547 int off; 548 549 if ((z = slgd->FreeZones) != NULL) { 550 slgd->FreeZones = z->z_Next; 551 --slgd->NFreeZones; 552 bzero(z, sizeof(SLZone)); 553 z->z_Flags |= SLZF_UNOTZEROD; 554 } else { 555 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 556 if (z == NULL) 557 goto fail; 558 } 559 560 /* 561 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 562 * Otherwise just 8-byte align the data. 563 */ 564 if ((size | (size - 1)) + 1 == (size << 1)) 565 off = (sizeof(SLZone) + size - 1) & ~(size - 1); 566 else 567 off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 568 z->z_Magic = ZALLOC_SLAB_MAGIC; 569 z->z_ZoneIndex = zi; 570 z->z_NMax = (ZoneSize - off) / size; 571 z->z_NFree = z->z_NMax - 1; 572 z->z_BasePtr = (char *)z + off; 573 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 574 z->z_ChunkSize = size; 575 z->z_FirstFreePg = ZonePageCount; 576 z->z_CpuGd = gd; 577 z->z_Cpu = gd->gd_cpuid; 578 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 579 z->z_Next = slgd->ZoneAry[zi]; 580 slgd->ZoneAry[zi] = z; 581 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 582 flags &= ~M_ZERO; /* already zero'd */ 583 flags |= M_PASSIVE_ZERO; 584 } 585 586 /* 587 * Slide the base index for initial allocations out of the next 588 * zone we create so we do not over-weight the lower part of the 589 * cpu memory caches. 590 */ 591 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 592 & (ZALLOC_MAX_ZONE_SIZE - 1); 593 } 594 done: 595 ++type->ks_inuse[gd->gd_cpuid]; 596 type->ks_memuse[gd->gd_cpuid] += size; 597 type->ks_loosememuse += size; /* not MP synchronized */ 598 crit_exit(); 599 if (flags & M_ZERO) 600 bzero(chunk, size); 601 #ifdef INVARIANTS 602 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 603 if (use_malloc_pattern) { 604 for (i = 0; i < size; i += sizeof(int)) { 605 *(int *)((char *)chunk + i) = -1; 606 } 607 } 608 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 609 } 610 #endif 611 return(chunk); 612 fail: 613 crit_exit(); 614 return(NULL); 615 } 616 617 /* 618 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 619 * 620 * Generally speaking this routine is not called very often and we do 621 * not attempt to optimize it beyond reusing the same pointer if the 622 * new size fits within the chunking of the old pointer's zone. 623 */ 624 void * 625 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 626 { 627 SLZone *z; 628 void *nptr; 629 unsigned long osize; 630 631 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 632 633 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 634 return(malloc(size, type, flags)); 635 if (size == 0) { 636 free(ptr, type); 637 return(NULL); 638 } 639 640 /* 641 * Handle oversized allocations. XXX we really should require that a 642 * size be passed to free() instead of this nonsense. 643 */ 644 { 645 struct kmemusage *kup; 646 647 kup = btokup(ptr); 648 if (kup->ku_pagecnt) { 649 osize = kup->ku_pagecnt << PAGE_SHIFT; 650 if (osize == round_page(size)) 651 return(ptr); 652 if ((nptr = malloc(size, type, flags)) == NULL) 653 return(NULL); 654 bcopy(ptr, nptr, min(size, osize)); 655 free(ptr, type); 656 return(nptr); 657 } 658 } 659 660 /* 661 * Get the original allocation's zone. If the new request winds up 662 * using the same chunk size we do not have to do anything. 663 */ 664 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 665 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 666 667 zoneindex(&size); 668 if (z->z_ChunkSize == size) 669 return(ptr); 670 671 /* 672 * Allocate memory for the new request size. Note that zoneindex has 673 * already adjusted the request size to the appropriate chunk size, which 674 * should optimize our bcopy(). Then copy and return the new pointer. 675 */ 676 if ((nptr = malloc(size, type, flags)) == NULL) 677 return(NULL); 678 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 679 free(ptr, type); 680 return(nptr); 681 } 682 683 /* 684 * Allocate a copy of the specified string. 685 * 686 * (MP SAFE) (MAY BLOCK) 687 */ 688 char * 689 strdup(const char *str, struct malloc_type *type) 690 { 691 int zlen; /* length inclusive of terminating NUL */ 692 char *nstr; 693 694 if (str == NULL) 695 return(NULL); 696 zlen = strlen(str) + 1; 697 nstr = malloc(zlen, type, M_WAITOK); 698 bcopy(str, nstr, zlen); 699 return(nstr); 700 } 701 702 #ifdef SMP 703 /* 704 * free() (SLAB ALLOCATOR) 705 * 706 * Free the specified chunk of memory. 707 */ 708 static 709 void 710 free_remote(void *ptr) 711 { 712 free(ptr, *(struct malloc_type **)ptr); 713 } 714 715 #endif 716 717 /* 718 * free (SLAB ALLOCATOR) (MP SAFE) 719 * 720 * Free a memory block previously allocated by malloc. Note that we do not 721 * attempt to uplodate ks_loosememuse as MP races could prevent us from 722 * checking memory limits in malloc. 723 */ 724 void 725 free(void *ptr, struct malloc_type *type) 726 { 727 SLZone *z; 728 SLChunk *chunk; 729 SLGlobalData *slgd; 730 struct globaldata *gd; 731 int pgno; 732 733 gd = mycpu; 734 slgd = &gd->gd_slab; 735 736 if (ptr == NULL) 737 panic("trying to free NULL pointer"); 738 739 /* 740 * Handle special 0-byte allocations 741 */ 742 if (ptr == ZERO_LENGTH_PTR) 743 return; 744 745 /* 746 * Handle oversized allocations. XXX we really should require that a 747 * size be passed to free() instead of this nonsense. 748 * 749 * This code is never called via an ipi. 750 */ 751 { 752 struct kmemusage *kup; 753 unsigned long size; 754 755 kup = btokup(ptr); 756 if (kup->ku_pagecnt) { 757 size = kup->ku_pagecnt << PAGE_SHIFT; 758 kup->ku_pagecnt = 0; 759 #ifdef INVARIANTS 760 KKASSERT(sizeof(weirdary) <= size); 761 bcopy(weirdary, ptr, sizeof(weirdary)); 762 #endif 763 /* 764 * note: we always adjust our cpu's slot, not the originating 765 * cpu (kup->ku_cpuid). The statistics are in aggregate. 766 * 767 * note: XXX we have still inherited the interrupts-can't-block 768 * assumption. An interrupt thread does not bump 769 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 770 * primarily until we can fix softupdate's assumptions about free(). 771 */ 772 crit_enter(); 773 --type->ks_inuse[gd->gd_cpuid]; 774 type->ks_memuse[gd->gd_cpuid] -= size; 775 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) { 776 z = (SLZone *)ptr; 777 z->z_Magic = ZALLOC_OVSZ_MAGIC; 778 z->z_Next = slgd->FreeOvZones; 779 z->z_ChunkSize = size; 780 slgd->FreeOvZones = z; 781 crit_exit(); 782 } else { 783 crit_exit(); 784 kmem_slab_free(ptr, size); /* may block */ 785 } 786 return; 787 } 788 } 789 790 /* 791 * Zone case. Figure out the zone based on the fact that it is 792 * ZoneSize aligned. 793 */ 794 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 795 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 796 797 /* 798 * If we do not own the zone then forward the request to the 799 * cpu that does. Since the timing is non-critical, a passive 800 * message is sent. 801 */ 802 if (z->z_CpuGd != gd) { 803 *(struct malloc_type **)ptr = type; 804 #ifdef SMP 805 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr); 806 #else 807 panic("Corrupt SLZone"); 808 #endif 809 return; 810 } 811 812 if (type->ks_magic != M_MAGIC) 813 panic("free: malloc type lacks magic"); 814 815 crit_enter(); 816 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT; 817 chunk = ptr; 818 819 #ifdef INVARIANTS 820 /* 821 * Attempt to detect a double-free. To reduce overhead we only check 822 * if there appears to be link pointer at the base of the data. 823 */ 824 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) { 825 SLChunk *scan; 826 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) { 827 if (scan == chunk) 828 panic("Double free at %p", chunk); 829 } 830 } 831 #endif 832 833 /* 834 * Put weird data into the memory to detect modifications after freeing, 835 * illegal pointer use after freeing (we should fault on the odd address), 836 * and so forth. XXX needs more work, see the old malloc code. 837 */ 838 #ifdef INVARIANTS 839 if (z->z_ChunkSize < sizeof(weirdary)) 840 bcopy(weirdary, chunk, z->z_ChunkSize); 841 else 842 bcopy(weirdary, chunk, sizeof(weirdary)); 843 #endif 844 845 /* 846 * Add this free non-zero'd chunk to a linked list for reuse, adjust 847 * z_FirstFreePg. 848 */ 849 #ifdef INVARIANTS 850 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS) 851 panic("BADFREE %p", chunk); 852 #endif 853 chunk->c_Next = z->z_PageAry[pgno]; 854 z->z_PageAry[pgno] = chunk; 855 #ifdef INVARIANTS 856 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS) 857 panic("BADFREE2"); 858 #endif 859 if (z->z_FirstFreePg > pgno) 860 z->z_FirstFreePg = pgno; 861 862 /* 863 * Bump the number of free chunks. If it becomes non-zero the zone 864 * must be added back onto the appropriate list. 865 */ 866 if (z->z_NFree++ == 0) { 867 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 868 slgd->ZoneAry[z->z_ZoneIndex] = z; 869 } 870 871 --type->ks_inuse[z->z_Cpu]; 872 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 873 874 /* 875 * If the zone becomes totally free, and there are other zones we 876 * can allocate from, move this zone to the FreeZones list. Since 877 * this code can be called from an IPI callback, do *NOT* try to mess 878 * with kernel_map here. Hysteresis will be performed at malloc() time. 879 */ 880 if (z->z_NFree == z->z_NMax && 881 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 882 ) { 883 SLZone **pz; 884 885 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 886 ; 887 *pz = z->z_Next; 888 z->z_Magic = -1; 889 z->z_Next = slgd->FreeZones; 890 slgd->FreeZones = z; 891 ++slgd->NFreeZones; 892 } 893 crit_exit(); 894 } 895 896 /* 897 * kmem_slab_alloc() (MP SAFE) (GETS BGL) 898 * 899 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 900 * specified alignment. M_* flags are expected in the flags field. 901 * 902 * Alignment must be a multiple of PAGE_SIZE. 903 * 904 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 905 * but when we move zalloc() over to use this function as its backend 906 * we will have to switch to kreserve/krelease and call reserve(0) 907 * after the new space is made available. 908 * 909 * Interrupt code which has preempted other code is not allowed to 910 * use PQ_CACHE pages. However, if an interrupt thread is run 911 * non-preemptively or blocks and then runs non-preemptively, then 912 * it is free to use PQ_CACHE pages. 913 * 914 * This routine will currently obtain the BGL. 915 */ 916 static void * 917 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 918 { 919 vm_size_t i; 920 vm_offset_t addr; 921 vm_offset_t offset; 922 int count, vmflags, base_vmflags; 923 thread_t td; 924 vm_map_t map = kernel_map; 925 926 size = round_page(size); 927 addr = vm_map_min(map); 928 929 /* 930 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 931 * cannot block. 932 */ 933 if (flags & M_RNOWAIT) { 934 if (try_mplock() == 0) 935 return(NULL); 936 } else { 937 get_mplock(); 938 } 939 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 940 crit_enter(); 941 vm_map_lock(map); 942 if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) { 943 vm_map_unlock(map); 944 if ((flags & M_NULLOK) == 0) 945 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 946 crit_exit(); 947 vm_map_entry_release(count); 948 rel_mplock(); 949 return(NULL); 950 } 951 offset = addr - VM_MIN_KERNEL_ADDRESS; 952 vm_object_reference(kernel_object); 953 vm_map_insert(map, &count, 954 kernel_object, offset, addr, addr + size, 955 VM_PROT_ALL, VM_PROT_ALL, 0); 956 957 td = curthread; 958 959 base_vmflags = 0; 960 if (flags & M_ZERO) 961 base_vmflags |= VM_ALLOC_ZERO; 962 if (flags & M_USE_RESERVE) 963 base_vmflags |= VM_ALLOC_SYSTEM; 964 if (flags & M_USE_INTERRUPT_RESERVE) 965 base_vmflags |= VM_ALLOC_INTERRUPT; 966 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) 967 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]); 968 969 970 /* 971 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 972 */ 973 for (i = 0; i < size; i += PAGE_SIZE) { 974 vm_page_t m; 975 vm_pindex_t idx = OFF_TO_IDX(offset + i); 976 977 /* 978 * VM_ALLOC_NORMAL can only be set if we are not preempting. 979 * 980 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 981 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 982 * implied in this case), though I'm sure if we really need to do 983 * that. 984 */ 985 vmflags = base_vmflags; 986 if (flags & M_WAITOK) { 987 if (td->td_preempted) 988 vmflags |= VM_ALLOC_SYSTEM; 989 else 990 vmflags |= VM_ALLOC_NORMAL; 991 } 992 993 m = vm_page_alloc(kernel_object, idx, vmflags); 994 995 /* 996 * If the allocation failed we either return NULL or we retry. 997 * 998 * If M_WAITOK is specified we wait for more memory and retry. 999 * If M_WAITOK is specified from a preemption we yield instead of 1000 * wait. Livelock will not occur because the interrupt thread 1001 * will not be preempting anyone the second time around after the 1002 * yield. 1003 */ 1004 if (m == NULL) { 1005 if (flags & M_WAITOK) { 1006 if (td->td_preempted) { 1007 vm_map_unlock(map); 1008 lwkt_yield(); 1009 vm_map_lock(map); 1010 } else { 1011 vm_map_unlock(map); 1012 vm_wait(); 1013 vm_map_lock(map); 1014 } 1015 i -= PAGE_SIZE; /* retry */ 1016 continue; 1017 } 1018 1019 /* 1020 * We were unable to recover, cleanup and return NULL 1021 */ 1022 while (i != 0) { 1023 i -= PAGE_SIZE; 1024 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i)); 1025 vm_page_free(m); 1026 } 1027 vm_map_delete(map, addr, addr + size, &count); 1028 vm_map_unlock(map); 1029 crit_exit(); 1030 vm_map_entry_release(count); 1031 rel_mplock(); 1032 return(NULL); 1033 } 1034 } 1035 1036 /* 1037 * Success! 1038 * 1039 * Mark the map entry as non-pageable using a routine that allows us to 1040 * populate the underlying pages. 1041 */ 1042 vm_map_set_wired_quick(map, addr, size, &count); 1043 crit_exit(); 1044 1045 /* 1046 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1047 */ 1048 for (i = 0; i < size; i += PAGE_SIZE) { 1049 vm_page_t m; 1050 1051 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i)); 1052 m->valid = VM_PAGE_BITS_ALL; 1053 vm_page_wire(m); 1054 vm_page_wakeup(m); 1055 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1056 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1057 bzero((char *)addr + i, PAGE_SIZE); 1058 vm_page_flag_clear(m, PG_ZERO); 1059 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 1060 } 1061 vm_map_unlock(map); 1062 vm_map_entry_release(count); 1063 rel_mplock(); 1064 return((void *)addr); 1065 } 1066 1067 /* 1068 * kmem_slab_free() (MP SAFE) (GETS BGL) 1069 */ 1070 static void 1071 kmem_slab_free(void *ptr, vm_size_t size) 1072 { 1073 get_mplock(); 1074 crit_enter(); 1075 vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1076 crit_exit(); 1077 rel_mplock(); 1078 } 1079 1080