xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 9dbf638f09a3ee45768de45e3d72f7a2b87281b9)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.3 2003/08/28 17:24:38 dillon Exp $
29  *
30  * This module implements a slab allocator drop-in replacement for the
31  * kernel malloc().
32  *
33  * A slab allocator reserves a ZONE for each chunk size, then lays the
34  * chunks out in an array within the zone.  Allocation and deallocation
35  * is nearly instantanious, and fragmentation/overhead losses are limited
36  * to a fixed worst-case amount.
37  *
38  * The downside of this slab implementation is in the chunk size
39  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
40  * In a kernel implementation all this memory will be physical so
41  * the zone size is adjusted downward on machines with less physical
42  * memory.  The upside is that overhead is bounded... this is the *worst*
43  * case overhead.
44  *
45  * Slab management is done on a per-cpu basis and no locking or mutexes
46  * are required, only a critical section.  When one cpu frees memory
47  * belonging to another cpu's slab manager an asynchronous IPI message
48  * will be queued to execute the operation.   In addition, both the
49  * high level slab allocator and the low level zone allocator optimize
50  * M_ZERO requests, and the slab allocator does not have to pre initialize
51  * the linked list of chunks.
52  *
53  * XXX Balancing is needed between cpus.  Balance will be handled through
54  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
55  *
56  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
57  * the new zone should be restricted to M_USE_RESERVE requests only.
58  *
59  *	Alloc Size	Chunking        Number of zones
60  *	0-127		8		16
61  *	128-255		16		8
62  *	256-511		32		8
63  *	512-1023	64		8
64  *	1024-2047	128		8
65  *	2048-4095	256		8
66  *	4096-8191	512		8
67  *	8192-16383	1024		8
68  *	16384-32767	2048		8
69  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
70  *
71  *	Allocations >= ZALLOC_ZONE_LIMIT go directly to kmem.
72  *
73  *			API REQUIREMENTS AND SIDE EFFECTS
74  *
75  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
76  *    have remained compatible with the following API requirements:
77  *
78  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
79  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
80  *    + ability to allocate arbitrarily large chunks of memory
81  */
82 
83 #include "opt_vm.h"
84 
85 #if defined(USE_SLAB_ALLOCATOR)
86 
87 #if !defined(NO_KMEM_MAP)
88 #error "NO_KMEM_MAP must be defined when USE_SLAB_ALLOCATOR is defined"
89 #endif
90 
91 #include <sys/param.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/slaballoc.h>
95 #include <sys/mbuf.h>
96 #include <sys/vmmeter.h>
97 #include <sys/lock.h>
98 #include <sys/thread.h>
99 #include <sys/globaldata.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_param.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_extern.h>
105 #include <vm/vm_object.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_pageout.h>
110 
111 #include <machine/cpu.h>
112 
113 #include <sys/thread2.h>
114 
115 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
116 
117 /*
118  * Fixed globals (not per-cpu)
119  */
120 static int ZoneSize;
121 static int ZonePageCount;
122 static int ZonePageLimit;
123 static int ZoneMask;
124 static struct malloc_type *kmemstatistics;
125 static struct kmemusage *kmemusage;
126 static int32_t weirdary[16];
127 
128 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
129 static void kmem_slab_free(void *ptr, vm_size_t bytes);
130 
131 /*
132  * Misc constants.  Note that allocations that are exact multiples of
133  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
134  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
135  */
136 #define MIN_CHUNK_SIZE		8		/* in bytes */
137 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
138 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
139 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
140 
141 /*
142  * The WEIRD_ADDR is used as known text to copy into free objects to
143  * try to create deterministic failure cases if the data is accessed after
144  * free.
145  */
146 #define WEIRD_ADDR      0xdeadc0de
147 #define MAX_COPY        sizeof(weirdary)
148 #define ZERO_LENGTH_PTR	((void *)-8)
149 
150 /*
151  * Misc global malloc buckets
152  */
153 
154 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
155 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
156 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
157 
158 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
159 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
160 
161 /*
162  * Initialize the slab memory allocator.  We have to choose a zone size based
163  * on available physical memory.  We choose a zone side which is approximately
164  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
165  * 128K.  The zone size is limited to the bounds set in slaballoc.h
166  * (typically 32K min, 128K max).
167  */
168 static void kmeminit(void *dummy);
169 
170 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
171 
172 static void
173 kmeminit(void *dummy)
174 {
175     vm_poff_t limsize;
176     int usesize;
177     int i;
178     vm_pindex_t npg;
179 
180     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
181     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
182 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
183 
184     usesize = (int)(limsize / 1024);	/* convert to KB */
185 
186     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
187     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
188 	ZoneSize <<= 1;
189     ZoneMask = ZoneSize - 1;
190     ZonePageLimit = PAGE_SIZE * 4;
191     ZonePageCount = ZoneSize / PAGE_SIZE;
192 
193     npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE;
194     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_ZERO);
195 
196     for (i = 0; i < arysize(weirdary); ++i)
197 	weirdary[i] = WEIRD_ADDR;
198 
199     if (bootverbose)
200 	printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
201 }
202 
203 /*
204  * Initialize a malloc type tracking structure.  NOTE! counters and such
205  * need to be made per-cpu (maybe with a MAXCPU array).
206  */
207 void
208 malloc_init(void *data)
209 {
210     struct malloc_type *type = data;
211     vm_poff_t limsize;
212 
213     if (type->ks_magic != M_MAGIC)
214 	panic("malloc type lacks magic");
215 
216     if (type->ks_limit != 0)
217 	return;
218 
219     if (vmstats.v_page_count == 0)
220 	panic("malloc_init not allowed before vm init");
221 
222     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
223     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
224 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
225     type->ks_limit = limsize / 10;
226 
227     type->ks_next = kmemstatistics;
228     kmemstatistics = type;
229 }
230 
231 void
232 malloc_uninit(void *data)
233 {
234     struct malloc_type *type = data;
235     struct malloc_type *t;
236 
237     if (type->ks_magic != M_MAGIC)
238 	panic("malloc type lacks magic");
239 
240     if (vmstats.v_page_count == 0)
241 	panic("malloc_uninit not allowed before vm init");
242 
243     if (type->ks_limit == 0)
244 	panic("malloc_uninit on uninitialized type");
245 
246 #ifdef INVARIANTS
247     if (type->ks_memuse != 0) {
248 	printf("malloc_uninit: %ld bytes of '%s' still allocated\n",
249 		type->ks_memuse, type->ks_shortdesc);
250     }
251 #endif
252     if (type == kmemstatistics) {
253 	kmemstatistics = type->ks_next;
254     } else {
255 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
256 	    if (t->ks_next == type) {
257 		t->ks_next = type->ks_next;
258 		break;
259 	    }
260 	}
261     }
262     type->ks_next = NULL;
263     type->ks_limit = 0;
264 }
265 
266 /*
267  * Calculate the zone index for the allocation request size and set the
268  * allocation request size to that particular zone's chunk size.
269  */
270 static __inline int
271 zoneindex(unsigned long *bytes)
272 {
273     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
274     if (n < 128) {
275 	*bytes = n = (n + 7) & ~7;
276 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
277     }
278     if (n < 256) {
279 	*bytes = n = (n + 15) & ~15;
280 	return(n / 16 + 7);
281     }
282     if (n < 8192) {
283 	if (n < 512) {
284 	    *bytes = n = (n + 31) & ~31;
285 	    return(n / 32 + 15);
286 	}
287 	if (n < 1024) {
288 	    *bytes = n = (n + 63) & ~63;
289 	    return(n / 64 + 23);
290 	}
291 	if (n < 2048) {
292 	    *bytes = n = (n + 127) & ~127;
293 	    return(n / 128 + 31);
294 	}
295 	if (n < 4096) {
296 	    *bytes = n = (n + 255) & ~255;
297 	    return(n / 256 + 39);
298 	}
299 	*bytes = n = (n + 511) & ~511;
300 	return(n / 512 + 47);
301     }
302 #if ZALLOC_ZONE_LIMIT > 8192
303     if (n < 16384) {
304 	*bytes = n = (n + 1023) & ~1023;
305 	return(n / 1024 + 55);
306     }
307 #endif
308 #if ZALLOC_ZONE_LIMIT > 16384
309     if (n < 32768) {
310 	*bytes = n = (n + 2047) & ~2047;
311 	return(n / 2048 + 63);
312     }
313 #endif
314     panic("Unexpected byte count %d", n);
315     return(0);
316 }
317 
318 /*
319  * malloc()	(SLAB ALLOCATOR)
320  *
321  *	Allocate memory via the slab allocator.  If the request is too large,
322  *	or if it page-aligned beyond a certain size, we fall back to the
323  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
324  *	&SlabMisc if you don't care.
325  *
326  *	M_NOWAIT	- return NULL instead of blocking.
327  *	M_ZERO		- zero the returned memory.
328  *	M_USE_RESERVE	- allocate out of the system reserve if necessary
329  */
330 void *
331 malloc(unsigned long size, struct malloc_type *type, int flags)
332 {
333     SLZone *z;
334     SLChunk *chunk;
335     SLGlobalData *slgd;
336     int zi;
337 
338     slgd = &mycpu->gd_slab;
339 
340     /*
341      * XXX silly to have this in the critical path.
342      */
343     if (type->ks_limit == 0) {
344 	crit_enter();
345 	if (type->ks_limit == 0)
346 	    malloc_init(type);
347 	crit_exit();
348     }
349     ++type->ks_calls;
350 
351     /*
352      * Handle the case where the limit is reached.  Panic if can't return
353      * NULL.  XXX the original malloc code looped, but this tended to
354      * simply deadlock the computer.
355      */
356     while (type->ks_memuse >= type->ks_limit) {
357 	if (flags & (M_NOWAIT|M_NULLOK))
358 	    return(NULL);
359 	panic("%s: malloc limit exceeded", type->ks_shortdesc);
360     }
361 
362     /*
363      * Handle the degenerate size == 0 case.  Yes, this does happen.
364      * Return a special pointer.  This is to maintain compatibility with
365      * the original malloc implementation.  Certain devices, such as the
366      * adaptec driver, not only allocate 0 bytes, they check for NULL and
367      * also realloc() later on.  Joy.
368      */
369     if (size == 0)
370 	return(ZERO_LENGTH_PTR);
371 
372     /*
373      * Handle large allocations directly.  There should not be very many of
374      * these so performance is not a big issue.
375      *
376      * Guarentee page alignment for allocations in multiples of PAGE_SIZE
377      */
378     if (size >= ZALLOC_ZONE_LIMIT || (size & PAGE_MASK) == 0) {
379 	struct kmemusage *kup;
380 
381 	size = round_page(size);
382 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
383 	if (chunk == NULL)
384 	    return(NULL);
385 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
386 	kup = btokup(chunk);
387 	kup->ku_pagecnt = size / PAGE_SIZE;
388 	crit_enter();
389 	goto done;
390     }
391 
392     /*
393      * Attempt to allocate out of an existing zone.  First try the free list,
394      * then allocate out of unallocated space.  If we find a good zone move
395      * it to the head of the list so later allocations find it quickly
396      * (we might have thousands of zones in the list).
397      *
398      * Note: zoneindex() will panic of size is too large.
399      */
400     zi = zoneindex(&size);
401     KKASSERT(zi < NZONES);
402     crit_enter();
403     if ((z = slgd->ZoneAry[zi]) != NULL) {
404 	KKASSERT(z->z_NFree > 0);
405 
406 	/*
407 	 * Remove us from the ZoneAry[] when we become empty
408 	 */
409 	if (--z->z_NFree == 0) {
410 	    slgd->ZoneAry[zi] = z->z_Next;
411 	    z->z_Next = NULL;
412 	}
413 
414 	/*
415 	 * Locate a chunk in a free page.  This attempts to localize
416 	 * reallocations into earlier pages without us having to sort
417 	 * the chunk list.  A chunk may still overlap a page boundary.
418 	 */
419 	while (z->z_FirstFreePg < ZonePageCount) {
420 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
421 #ifdef DIAGNOSTIC
422 		/*
423 		 * Diagnostic: c_Next is not total garbage.
424 		 */
425 		KKASSERT(chunk->c_Next == NULL ||
426 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
427 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
428 #endif
429 #ifdef INVARIANTS
430 		if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
431 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
432 		if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
433 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
434 #endif
435 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
436 		goto done;
437 	    }
438 	    ++z->z_FirstFreePg;
439 	}
440 
441 	/*
442 	 * No chunks are available but NFree said we had some memory, so
443 	 * it must be available in the never-before-used-memory area
444 	 * governed by UIndex.  The consequences are very serious if our zone
445 	 * got corrupted so we use an explicit panic rather then a KASSERT.
446 	 */
447 	if (z->z_UIndex + 1 != z->z_NMax)
448 	    z->z_UIndex = z->z_UIndex + 1;
449 	else
450 	    z->z_UIndex = 0;
451 	if (z->z_UIndex == z->z_UEndIndex)
452 	    panic("slaballoc: corrupted zone");
453 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
454 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0)
455 	    flags &= ~M_ZERO;
456 	goto done;
457     }
458 
459     /*
460      * If all zones are exhausted we need to allocate a new zone for this
461      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
462      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
463      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
464      * we do not pre-zero it because we do not want to mess up the L1 cache.
465      *
466      * At least one subsystem, the tty code (see CROUND) expects power-of-2
467      * allocations to be power-of-2 aligned.  We maintain compatibility by
468      * adjusting the base offset below.
469      */
470     {
471 	int off;
472 
473 	if ((z = slgd->FreeZones) != NULL) {
474 	    slgd->FreeZones = z->z_Next;
475 	    --slgd->NFreeZones;
476 	    bzero(z, sizeof(SLZone));
477 	    z->z_Flags |= SLZF_UNOTZEROD;
478 	} else {
479 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
480 	    if (z == NULL)
481 		goto fail;
482 	}
483 
484 	/*
485 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
486 	 * Otherwise just 8-byte align the data.
487 	 */
488 	if ((size | (size - 1)) + 1 == (size << 1))
489 	    off = (sizeof(SLZone) + size - 1) & ~(size - 1);
490 	else
491 	    off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
492 	z->z_Magic = ZALLOC_SLAB_MAGIC;
493 	z->z_ZoneIndex = zi;
494 	z->z_NMax = (ZoneSize - off) / size;
495 	z->z_NFree = z->z_NMax - 1;
496 	z->z_BasePtr = (char *)z + off;
497 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
498 	z->z_ChunkSize = size;
499 	z->z_FirstFreePg = ZonePageCount;
500 	z->z_Cpu = mycpu->gd_cpuid;
501 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
502 	z->z_Next = slgd->ZoneAry[zi];
503 	slgd->ZoneAry[zi] = z;
504 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0)
505 	    flags &= ~M_ZERO;	/* already zero'd */
506 
507 	/*
508 	 * Slide the base index for initial allocations out of the next
509 	 * zone we create so we do not over-weight the lower part of the
510 	 * cpu memory caches.
511 	 */
512 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
513 				& (ZALLOC_MAX_ZONE_SIZE - 1);
514     }
515 done:
516     crit_exit();
517     if (flags & M_ZERO)
518 	bzero(chunk, size);
519     ++type->ks_inuse;
520     type->ks_memuse += size;
521     return(chunk);
522 fail:
523     crit_exit();
524     return(NULL);
525 }
526 
527 void *
528 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
529 {
530     SLZone *z;
531     void *nptr;
532     unsigned long osize;
533 
534     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
535 	return(malloc(size, type, flags));
536     if (size == 0) {
537 	free(ptr, type);
538 	return(NULL);
539     }
540 
541     /*
542      * Handle oversized allocations.  XXX we really should require that a
543      * size be passed to free() instead of this nonsense.
544      */
545     {
546 	struct kmemusage *kup;
547 
548 	kup = btokup(ptr);
549 	if (kup->ku_pagecnt) {
550 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
551 	    if (osize == round_page(size))
552 		return(ptr);
553 	    if ((nptr = malloc(size, type, flags)) == NULL)
554 		return(NULL);
555 	    bcopy(ptr, nptr, min(size, osize));
556 	    free(ptr, type);
557 	    return(nptr);
558 	}
559     }
560 
561     /*
562      * Get the original allocation's zone.  If the new request winds up
563      * using the same chunk size we do not have to do anything.
564      */
565     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
566     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
567 
568     zoneindex(&size);
569     if (z->z_ChunkSize == size)
570 	return(ptr);
571 
572     /*
573      * Allocate memory for the new request size.  Note that zoneindex has
574      * already adjusted the request size to the appropriate chunk size, which
575      * should optimize our bcopy().  Then copy and return the new pointer.
576      */
577     if ((nptr = malloc(size, type, flags)) == NULL)
578 	return(NULL);
579     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
580     free(ptr, type);
581     return(nptr);
582 }
583 
584 /*
585  * free()	(SLAB ALLOCATOR)
586  *
587  *	Free the specified chunk of memory.  The byte count is not strictly
588  *	required but if DIAGNOSTIC is set we use it as a sanity check.
589  */
590 static
591 void
592 free_remote(void *ptr)
593 {
594     free(ptr, *(struct malloc_type **)ptr);
595 }
596 
597 void
598 free(void *ptr, struct malloc_type *type)
599 {
600     SLZone *z;
601     SLChunk *chunk;
602     SLGlobalData *slgd;
603     int pgno;
604 
605     slgd = &mycpu->gd_slab;
606 
607     /*
608      * Handle special 0-byte allocations
609      */
610     if (ptr == ZERO_LENGTH_PTR)
611 	return;
612 
613     /*
614      * Handle oversized allocations.  XXX we really should require that a
615      * size be passed to free() instead of this nonsense.
616      */
617     {
618 	struct kmemusage *kup;
619 	unsigned long size;
620 
621 	kup = btokup(ptr);
622 	if (kup->ku_pagecnt) {
623 	    size = kup->ku_pagecnt << PAGE_SHIFT;
624 	    kup->ku_pagecnt = 0;
625 	    --type->ks_inuse;
626 	    type->ks_memuse -= size;
627 #ifdef INVARIANTS
628 	    KKASSERT(sizeof(weirdary) <= size);
629 	    bcopy(weirdary, ptr, sizeof(weirdary));
630 #endif
631 	    kmem_slab_free(ptr, size);	/* may block */
632 	    return;
633 	}
634     }
635 
636     /*
637      * Zone case.  Figure out the zone based on the fact that it is
638      * ZoneSize aligned.
639      */
640     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
641     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
642 
643     /*
644      * If we do not own the zone then forward the request to the
645      * cpu that does.  The freeing code does not need the byte count
646      * unless DIAGNOSTIC is set.
647      */
648     if (z->z_Cpu != mycpu->gd_cpuid) {
649 	*(struct malloc_type **)ptr = type;
650 	lwkt_send_ipiq(z->z_Cpu, free_remote, ptr);
651 	return;
652     }
653 
654     if (type->ks_magic != M_MAGIC)
655 	panic("free: malloc type lacks magic");
656 
657     crit_enter();
658     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
659     chunk = ptr;
660 
661 #ifdef DIAGNOSTIC
662     /*
663      * Diagnostic: attempt to detect a double-free (not perfect).
664      */
665     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
666 	SLChunk *scan;
667 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
668 	    if (scan == chunk)
669 		panic("Double free at %p", chunk);
670 	}
671     }
672 #endif
673 
674     /*
675      * Put weird data into the memory to detect modifications after freeing,
676      * illegal pointer use after freeing (we should fault on the odd address),
677      * and so forth.  XXX needs more work, see the old malloc code.
678      */
679 #ifdef INVARIANTS
680     if (z->z_ChunkSize < sizeof(weirdary))
681 	bcopy(weirdary, chunk, z->z_ChunkSize);
682     else
683 	bcopy(weirdary, chunk, sizeof(weirdary));
684 #endif
685 
686     /*
687      * Add this free non-zero'd chunk to a linked list for reuse, adjust
688      * z_FirstFreePg.
689      */
690 #ifdef INVARIANTS
691     if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
692 	panic("BADFREE %p\n", chunk);
693 #endif
694     chunk->c_Next = z->z_PageAry[pgno];
695     z->z_PageAry[pgno] = chunk;
696 #ifdef INVARIANTS
697     if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
698 	panic("BADFREE2");
699 #endif
700     if (z->z_FirstFreePg > pgno)
701 	z->z_FirstFreePg = pgno;
702 
703     /*
704      * Bump the number of free chunks.  If it becomes non-zero the zone
705      * must be added back onto the appropriate list.
706      */
707     if (z->z_NFree++ == 0) {
708 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
709 	slgd->ZoneAry[z->z_ZoneIndex] = z;
710     }
711 
712     --type->ks_inuse;
713     type->ks_memuse -= z->z_ChunkSize;
714 
715     /*
716      * If the zone becomes totally free, and there are other zones we
717      * can allocate from, move this zone to the FreeZones list.  Implement
718      * hysteresis on the FreeZones list to improve performance.
719      *
720      * XXX try not to block on the kernel_map lock.
721      */
722     if (z->z_NFree == z->z_NMax &&
723 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
724     ) {
725 	SLZone **pz;
726 
727 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
728 	    ;
729 	*pz = z->z_Next;
730 	z->z_Magic = -1;
731 	if (slgd->NFreeZones == ZONE_RELS_THRESH &&
732 	    lockstatus(&kernel_map->lock, NULL) == 0) {
733 	    SLZone *oz;
734 
735 	    z->z_Next = slgd->FreeZones->z_Next;
736  	    oz = slgd->FreeZones;
737 	    slgd->FreeZones = z;
738 	    kmem_slab_free(oz, ZoneSize);	/* may block */
739 	} else {
740 	    z->z_Next = slgd->FreeZones;
741 	    slgd->FreeZones = z;
742 	    ++slgd->NFreeZones;
743 	}
744     }
745     crit_exit();
746 }
747 
748 /*
749  * kmem_slab_alloc()
750  *
751  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
752  *	specified alignment.  M_* flags are expected in the flags field.
753  *
754  *	Alignment must be a multiple of PAGE_SIZE.
755  *
756  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
757  *	but when we move zalloc() over to use this function as its backend
758  *	we will have to switch to kreserve/krelease and call reserve(0)
759  *	after the new space is made available.
760  */
761 static void *
762 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
763 {
764     vm_size_t i;
765     vm_offset_t addr;
766     vm_offset_t offset;
767     int count;
768     vm_map_t map = kernel_map;
769 
770     size = round_page(size);
771     addr = vm_map_min(map);
772 
773     /*
774      * Reserve properly aligned space from kernel_map
775      */
776     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
777     crit_enter();
778     vm_map_lock(map);
779     if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) {
780 	vm_map_unlock(map);
781 	if ((flags & (M_NOWAIT|M_NULLOK)) == 0)
782 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
783 	crit_exit();
784 	vm_map_entry_release(count);
785 	return(NULL);
786     }
787     offset = addr - VM_MIN_KERNEL_ADDRESS;
788     vm_object_reference(kernel_object);
789     vm_map_insert(map, &count,
790 		    kernel_object, offset, addr, addr + size,
791 		    VM_PROT_ALL, VM_PROT_ALL, 0);
792 
793     /*
794      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
795      */
796     for (i = 0; i < size; i += PAGE_SIZE) {
797 	vm_page_t m;
798 	vm_pindex_t idx = OFF_TO_IDX(offset + i);
799 	int zero = (flags & M_ZERO) ? VM_ALLOC_ZERO : 0;
800 
801 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
802 	    m = vm_page_alloc(kernel_object, idx, VM_ALLOC_INTERRUPT|zero);
803 	else
804 	    m = vm_page_alloc(kernel_object, idx, VM_ALLOC_SYSTEM|zero);
805 	if (m == NULL) {
806 	    if ((flags & M_NOWAIT) == 0) {
807 		vm_map_unlock(map);
808 		vm_wait();
809 		vm_map_lock(map);
810 		i -= PAGE_SIZE;	/* retry */
811 		continue;
812 	    }
813 	    while (i != 0) {
814 		i -= PAGE_SIZE;
815 		m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
816 		vm_page_free(m);
817 	    }
818 	    vm_map_delete(map, addr, addr + size, &count);
819 	    vm_map_unlock(map);
820 	    crit_exit();
821 	    vm_map_entry_release(count);
822 	    return(NULL);
823 	}
824     }
825 
826     /*
827      * Mark the map entry as non-pageable using a routine that allows us to
828      * populate the underlying pages.
829      */
830     vm_map_set_wired_quick(map, addr, size, &count);
831     crit_exit();
832 
833     /*
834      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
835      */
836     for (i = 0; i < size; i += PAGE_SIZE) {
837 	vm_page_t m;
838 
839 	m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
840 	m->valid = VM_PAGE_BITS_ALL;
841 	vm_page_wire(m);
842 	vm_page_wakeup(m);
843 	pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
844 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
845 	    bzero((char *)addr + i, PAGE_SIZE);
846 	vm_page_flag_clear(m, PG_ZERO);
847 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
848     }
849     vm_map_unlock(map);
850     vm_map_entry_release(count);
851     return((void *)addr);
852 }
853 
854 static void
855 kmem_slab_free(void *ptr, vm_size_t size)
856 {
857     crit_enter();
858     vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
859     crit_exit();
860 }
861 
862 #endif
863