1 /* 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 3 * 4 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.3 2003/08/28 17:24:38 dillon Exp $ 29 * 30 * This module implements a slab allocator drop-in replacement for the 31 * kernel malloc(). 32 * 33 * A slab allocator reserves a ZONE for each chunk size, then lays the 34 * chunks out in an array within the zone. Allocation and deallocation 35 * is nearly instantanious, and fragmentation/overhead losses are limited 36 * to a fixed worst-case amount. 37 * 38 * The downside of this slab implementation is in the chunk size 39 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 40 * In a kernel implementation all this memory will be physical so 41 * the zone size is adjusted downward on machines with less physical 42 * memory. The upside is that overhead is bounded... this is the *worst* 43 * case overhead. 44 * 45 * Slab management is done on a per-cpu basis and no locking or mutexes 46 * are required, only a critical section. When one cpu frees memory 47 * belonging to another cpu's slab manager an asynchronous IPI message 48 * will be queued to execute the operation. In addition, both the 49 * high level slab allocator and the low level zone allocator optimize 50 * M_ZERO requests, and the slab allocator does not have to pre initialize 51 * the linked list of chunks. 52 * 53 * XXX Balancing is needed between cpus. Balance will be handled through 54 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 55 * 56 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 57 * the new zone should be restricted to M_USE_RESERVE requests only. 58 * 59 * Alloc Size Chunking Number of zones 60 * 0-127 8 16 61 * 128-255 16 8 62 * 256-511 32 8 63 * 512-1023 64 8 64 * 1024-2047 128 8 65 * 2048-4095 256 8 66 * 4096-8191 512 8 67 * 8192-16383 1024 8 68 * 16384-32767 2048 8 69 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 70 * 71 * Allocations >= ZALLOC_ZONE_LIMIT go directly to kmem. 72 * 73 * API REQUIREMENTS AND SIDE EFFECTS 74 * 75 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 76 * have remained compatible with the following API requirements: 77 * 78 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 79 * + malloc(0) is allowed and returns non-NULL (ahc driver) 80 * + ability to allocate arbitrarily large chunks of memory 81 */ 82 83 #include "opt_vm.h" 84 85 #if defined(USE_SLAB_ALLOCATOR) 86 87 #if !defined(NO_KMEM_MAP) 88 #error "NO_KMEM_MAP must be defined when USE_SLAB_ALLOCATOR is defined" 89 #endif 90 91 #include <sys/param.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/slaballoc.h> 95 #include <sys/mbuf.h> 96 #include <sys/vmmeter.h> 97 #include <sys/lock.h> 98 #include <sys/thread.h> 99 #include <sys/globaldata.h> 100 101 #include <vm/vm.h> 102 #include <vm/vm_param.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_extern.h> 105 #include <vm/vm_object.h> 106 #include <vm/pmap.h> 107 #include <vm/vm_map.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_pageout.h> 110 111 #include <machine/cpu.h> 112 113 #include <sys/thread2.h> 114 115 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 116 117 /* 118 * Fixed globals (not per-cpu) 119 */ 120 static int ZoneSize; 121 static int ZonePageCount; 122 static int ZonePageLimit; 123 static int ZoneMask; 124 static struct malloc_type *kmemstatistics; 125 static struct kmemusage *kmemusage; 126 static int32_t weirdary[16]; 127 128 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 129 static void kmem_slab_free(void *ptr, vm_size_t bytes); 130 131 /* 132 * Misc constants. Note that allocations that are exact multiples of 133 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 134 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 135 */ 136 #define MIN_CHUNK_SIZE 8 /* in bytes */ 137 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 138 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 139 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 140 141 /* 142 * The WEIRD_ADDR is used as known text to copy into free objects to 143 * try to create deterministic failure cases if the data is accessed after 144 * free. 145 */ 146 #define WEIRD_ADDR 0xdeadc0de 147 #define MAX_COPY sizeof(weirdary) 148 #define ZERO_LENGTH_PTR ((void *)-8) 149 150 /* 151 * Misc global malloc buckets 152 */ 153 154 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 155 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 156 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 157 158 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 159 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 160 161 /* 162 * Initialize the slab memory allocator. We have to choose a zone size based 163 * on available physical memory. We choose a zone side which is approximately 164 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 165 * 128K. The zone size is limited to the bounds set in slaballoc.h 166 * (typically 32K min, 128K max). 167 */ 168 static void kmeminit(void *dummy); 169 170 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) 171 172 static void 173 kmeminit(void *dummy) 174 { 175 vm_poff_t limsize; 176 int usesize; 177 int i; 178 vm_pindex_t npg; 179 180 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 181 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) 182 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 183 184 usesize = (int)(limsize / 1024); /* convert to KB */ 185 186 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 187 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 188 ZoneSize <<= 1; 189 ZoneMask = ZoneSize - 1; 190 ZonePageLimit = PAGE_SIZE * 4; 191 ZonePageCount = ZoneSize / PAGE_SIZE; 192 193 npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE; 194 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_ZERO); 195 196 for (i = 0; i < arysize(weirdary); ++i) 197 weirdary[i] = WEIRD_ADDR; 198 199 if (bootverbose) 200 printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 201 } 202 203 /* 204 * Initialize a malloc type tracking structure. NOTE! counters and such 205 * need to be made per-cpu (maybe with a MAXCPU array). 206 */ 207 void 208 malloc_init(void *data) 209 { 210 struct malloc_type *type = data; 211 vm_poff_t limsize; 212 213 if (type->ks_magic != M_MAGIC) 214 panic("malloc type lacks magic"); 215 216 if (type->ks_limit != 0) 217 return; 218 219 if (vmstats.v_page_count == 0) 220 panic("malloc_init not allowed before vm init"); 221 222 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 223 if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) 224 limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS; 225 type->ks_limit = limsize / 10; 226 227 type->ks_next = kmemstatistics; 228 kmemstatistics = type; 229 } 230 231 void 232 malloc_uninit(void *data) 233 { 234 struct malloc_type *type = data; 235 struct malloc_type *t; 236 237 if (type->ks_magic != M_MAGIC) 238 panic("malloc type lacks magic"); 239 240 if (vmstats.v_page_count == 0) 241 panic("malloc_uninit not allowed before vm init"); 242 243 if (type->ks_limit == 0) 244 panic("malloc_uninit on uninitialized type"); 245 246 #ifdef INVARIANTS 247 if (type->ks_memuse != 0) { 248 printf("malloc_uninit: %ld bytes of '%s' still allocated\n", 249 type->ks_memuse, type->ks_shortdesc); 250 } 251 #endif 252 if (type == kmemstatistics) { 253 kmemstatistics = type->ks_next; 254 } else { 255 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 256 if (t->ks_next == type) { 257 t->ks_next = type->ks_next; 258 break; 259 } 260 } 261 } 262 type->ks_next = NULL; 263 type->ks_limit = 0; 264 } 265 266 /* 267 * Calculate the zone index for the allocation request size and set the 268 * allocation request size to that particular zone's chunk size. 269 */ 270 static __inline int 271 zoneindex(unsigned long *bytes) 272 { 273 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 274 if (n < 128) { 275 *bytes = n = (n + 7) & ~7; 276 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 277 } 278 if (n < 256) { 279 *bytes = n = (n + 15) & ~15; 280 return(n / 16 + 7); 281 } 282 if (n < 8192) { 283 if (n < 512) { 284 *bytes = n = (n + 31) & ~31; 285 return(n / 32 + 15); 286 } 287 if (n < 1024) { 288 *bytes = n = (n + 63) & ~63; 289 return(n / 64 + 23); 290 } 291 if (n < 2048) { 292 *bytes = n = (n + 127) & ~127; 293 return(n / 128 + 31); 294 } 295 if (n < 4096) { 296 *bytes = n = (n + 255) & ~255; 297 return(n / 256 + 39); 298 } 299 *bytes = n = (n + 511) & ~511; 300 return(n / 512 + 47); 301 } 302 #if ZALLOC_ZONE_LIMIT > 8192 303 if (n < 16384) { 304 *bytes = n = (n + 1023) & ~1023; 305 return(n / 1024 + 55); 306 } 307 #endif 308 #if ZALLOC_ZONE_LIMIT > 16384 309 if (n < 32768) { 310 *bytes = n = (n + 2047) & ~2047; 311 return(n / 2048 + 63); 312 } 313 #endif 314 panic("Unexpected byte count %d", n); 315 return(0); 316 } 317 318 /* 319 * malloc() (SLAB ALLOCATOR) 320 * 321 * Allocate memory via the slab allocator. If the request is too large, 322 * or if it page-aligned beyond a certain size, we fall back to the 323 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 324 * &SlabMisc if you don't care. 325 * 326 * M_NOWAIT - return NULL instead of blocking. 327 * M_ZERO - zero the returned memory. 328 * M_USE_RESERVE - allocate out of the system reserve if necessary 329 */ 330 void * 331 malloc(unsigned long size, struct malloc_type *type, int flags) 332 { 333 SLZone *z; 334 SLChunk *chunk; 335 SLGlobalData *slgd; 336 int zi; 337 338 slgd = &mycpu->gd_slab; 339 340 /* 341 * XXX silly to have this in the critical path. 342 */ 343 if (type->ks_limit == 0) { 344 crit_enter(); 345 if (type->ks_limit == 0) 346 malloc_init(type); 347 crit_exit(); 348 } 349 ++type->ks_calls; 350 351 /* 352 * Handle the case where the limit is reached. Panic if can't return 353 * NULL. XXX the original malloc code looped, but this tended to 354 * simply deadlock the computer. 355 */ 356 while (type->ks_memuse >= type->ks_limit) { 357 if (flags & (M_NOWAIT|M_NULLOK)) 358 return(NULL); 359 panic("%s: malloc limit exceeded", type->ks_shortdesc); 360 } 361 362 /* 363 * Handle the degenerate size == 0 case. Yes, this does happen. 364 * Return a special pointer. This is to maintain compatibility with 365 * the original malloc implementation. Certain devices, such as the 366 * adaptec driver, not only allocate 0 bytes, they check for NULL and 367 * also realloc() later on. Joy. 368 */ 369 if (size == 0) 370 return(ZERO_LENGTH_PTR); 371 372 /* 373 * Handle large allocations directly. There should not be very many of 374 * these so performance is not a big issue. 375 * 376 * Guarentee page alignment for allocations in multiples of PAGE_SIZE 377 */ 378 if (size >= ZALLOC_ZONE_LIMIT || (size & PAGE_MASK) == 0) { 379 struct kmemusage *kup; 380 381 size = round_page(size); 382 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 383 if (chunk == NULL) 384 return(NULL); 385 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 386 kup = btokup(chunk); 387 kup->ku_pagecnt = size / PAGE_SIZE; 388 crit_enter(); 389 goto done; 390 } 391 392 /* 393 * Attempt to allocate out of an existing zone. First try the free list, 394 * then allocate out of unallocated space. If we find a good zone move 395 * it to the head of the list so later allocations find it quickly 396 * (we might have thousands of zones in the list). 397 * 398 * Note: zoneindex() will panic of size is too large. 399 */ 400 zi = zoneindex(&size); 401 KKASSERT(zi < NZONES); 402 crit_enter(); 403 if ((z = slgd->ZoneAry[zi]) != NULL) { 404 KKASSERT(z->z_NFree > 0); 405 406 /* 407 * Remove us from the ZoneAry[] when we become empty 408 */ 409 if (--z->z_NFree == 0) { 410 slgd->ZoneAry[zi] = z->z_Next; 411 z->z_Next = NULL; 412 } 413 414 /* 415 * Locate a chunk in a free page. This attempts to localize 416 * reallocations into earlier pages without us having to sort 417 * the chunk list. A chunk may still overlap a page boundary. 418 */ 419 while (z->z_FirstFreePg < ZonePageCount) { 420 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) { 421 #ifdef DIAGNOSTIC 422 /* 423 * Diagnostic: c_Next is not total garbage. 424 */ 425 KKASSERT(chunk->c_Next == NULL || 426 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) == 427 ((intptr_t)chunk & IN_SAME_PAGE_MASK)); 428 #endif 429 #ifdef INVARIANTS 430 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS) 431 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount); 432 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS) 433 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount); 434 #endif 435 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next; 436 goto done; 437 } 438 ++z->z_FirstFreePg; 439 } 440 441 /* 442 * No chunks are available but NFree said we had some memory, so 443 * it must be available in the never-before-used-memory area 444 * governed by UIndex. The consequences are very serious if our zone 445 * got corrupted so we use an explicit panic rather then a KASSERT. 446 */ 447 if (z->z_UIndex + 1 != z->z_NMax) 448 z->z_UIndex = z->z_UIndex + 1; 449 else 450 z->z_UIndex = 0; 451 if (z->z_UIndex == z->z_UEndIndex) 452 panic("slaballoc: corrupted zone"); 453 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 454 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) 455 flags &= ~M_ZERO; 456 goto done; 457 } 458 459 /* 460 * If all zones are exhausted we need to allocate a new zone for this 461 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 462 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 463 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 464 * we do not pre-zero it because we do not want to mess up the L1 cache. 465 * 466 * At least one subsystem, the tty code (see CROUND) expects power-of-2 467 * allocations to be power-of-2 aligned. We maintain compatibility by 468 * adjusting the base offset below. 469 */ 470 { 471 int off; 472 473 if ((z = slgd->FreeZones) != NULL) { 474 slgd->FreeZones = z->z_Next; 475 --slgd->NFreeZones; 476 bzero(z, sizeof(SLZone)); 477 z->z_Flags |= SLZF_UNOTZEROD; 478 } else { 479 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 480 if (z == NULL) 481 goto fail; 482 } 483 484 /* 485 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 486 * Otherwise just 8-byte align the data. 487 */ 488 if ((size | (size - 1)) + 1 == (size << 1)) 489 off = (sizeof(SLZone) + size - 1) & ~(size - 1); 490 else 491 off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 492 z->z_Magic = ZALLOC_SLAB_MAGIC; 493 z->z_ZoneIndex = zi; 494 z->z_NMax = (ZoneSize - off) / size; 495 z->z_NFree = z->z_NMax - 1; 496 z->z_BasePtr = (char *)z + off; 497 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 498 z->z_ChunkSize = size; 499 z->z_FirstFreePg = ZonePageCount; 500 z->z_Cpu = mycpu->gd_cpuid; 501 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 502 z->z_Next = slgd->ZoneAry[zi]; 503 slgd->ZoneAry[zi] = z; 504 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) 505 flags &= ~M_ZERO; /* already zero'd */ 506 507 /* 508 * Slide the base index for initial allocations out of the next 509 * zone we create so we do not over-weight the lower part of the 510 * cpu memory caches. 511 */ 512 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 513 & (ZALLOC_MAX_ZONE_SIZE - 1); 514 } 515 done: 516 crit_exit(); 517 if (flags & M_ZERO) 518 bzero(chunk, size); 519 ++type->ks_inuse; 520 type->ks_memuse += size; 521 return(chunk); 522 fail: 523 crit_exit(); 524 return(NULL); 525 } 526 527 void * 528 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 529 { 530 SLZone *z; 531 void *nptr; 532 unsigned long osize; 533 534 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 535 return(malloc(size, type, flags)); 536 if (size == 0) { 537 free(ptr, type); 538 return(NULL); 539 } 540 541 /* 542 * Handle oversized allocations. XXX we really should require that a 543 * size be passed to free() instead of this nonsense. 544 */ 545 { 546 struct kmemusage *kup; 547 548 kup = btokup(ptr); 549 if (kup->ku_pagecnt) { 550 osize = kup->ku_pagecnt << PAGE_SHIFT; 551 if (osize == round_page(size)) 552 return(ptr); 553 if ((nptr = malloc(size, type, flags)) == NULL) 554 return(NULL); 555 bcopy(ptr, nptr, min(size, osize)); 556 free(ptr, type); 557 return(nptr); 558 } 559 } 560 561 /* 562 * Get the original allocation's zone. If the new request winds up 563 * using the same chunk size we do not have to do anything. 564 */ 565 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 566 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 567 568 zoneindex(&size); 569 if (z->z_ChunkSize == size) 570 return(ptr); 571 572 /* 573 * Allocate memory for the new request size. Note that zoneindex has 574 * already adjusted the request size to the appropriate chunk size, which 575 * should optimize our bcopy(). Then copy and return the new pointer. 576 */ 577 if ((nptr = malloc(size, type, flags)) == NULL) 578 return(NULL); 579 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 580 free(ptr, type); 581 return(nptr); 582 } 583 584 /* 585 * free() (SLAB ALLOCATOR) 586 * 587 * Free the specified chunk of memory. The byte count is not strictly 588 * required but if DIAGNOSTIC is set we use it as a sanity check. 589 */ 590 static 591 void 592 free_remote(void *ptr) 593 { 594 free(ptr, *(struct malloc_type **)ptr); 595 } 596 597 void 598 free(void *ptr, struct malloc_type *type) 599 { 600 SLZone *z; 601 SLChunk *chunk; 602 SLGlobalData *slgd; 603 int pgno; 604 605 slgd = &mycpu->gd_slab; 606 607 /* 608 * Handle special 0-byte allocations 609 */ 610 if (ptr == ZERO_LENGTH_PTR) 611 return; 612 613 /* 614 * Handle oversized allocations. XXX we really should require that a 615 * size be passed to free() instead of this nonsense. 616 */ 617 { 618 struct kmemusage *kup; 619 unsigned long size; 620 621 kup = btokup(ptr); 622 if (kup->ku_pagecnt) { 623 size = kup->ku_pagecnt << PAGE_SHIFT; 624 kup->ku_pagecnt = 0; 625 --type->ks_inuse; 626 type->ks_memuse -= size; 627 #ifdef INVARIANTS 628 KKASSERT(sizeof(weirdary) <= size); 629 bcopy(weirdary, ptr, sizeof(weirdary)); 630 #endif 631 kmem_slab_free(ptr, size); /* may block */ 632 return; 633 } 634 } 635 636 /* 637 * Zone case. Figure out the zone based on the fact that it is 638 * ZoneSize aligned. 639 */ 640 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 641 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 642 643 /* 644 * If we do not own the zone then forward the request to the 645 * cpu that does. The freeing code does not need the byte count 646 * unless DIAGNOSTIC is set. 647 */ 648 if (z->z_Cpu != mycpu->gd_cpuid) { 649 *(struct malloc_type **)ptr = type; 650 lwkt_send_ipiq(z->z_Cpu, free_remote, ptr); 651 return; 652 } 653 654 if (type->ks_magic != M_MAGIC) 655 panic("free: malloc type lacks magic"); 656 657 crit_enter(); 658 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT; 659 chunk = ptr; 660 661 #ifdef DIAGNOSTIC 662 /* 663 * Diagnostic: attempt to detect a double-free (not perfect). 664 */ 665 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) { 666 SLChunk *scan; 667 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) { 668 if (scan == chunk) 669 panic("Double free at %p", chunk); 670 } 671 } 672 #endif 673 674 /* 675 * Put weird data into the memory to detect modifications after freeing, 676 * illegal pointer use after freeing (we should fault on the odd address), 677 * and so forth. XXX needs more work, see the old malloc code. 678 */ 679 #ifdef INVARIANTS 680 if (z->z_ChunkSize < sizeof(weirdary)) 681 bcopy(weirdary, chunk, z->z_ChunkSize); 682 else 683 bcopy(weirdary, chunk, sizeof(weirdary)); 684 #endif 685 686 /* 687 * Add this free non-zero'd chunk to a linked list for reuse, adjust 688 * z_FirstFreePg. 689 */ 690 #ifdef INVARIANTS 691 if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS) 692 panic("BADFREE %p\n", chunk); 693 #endif 694 chunk->c_Next = z->z_PageAry[pgno]; 695 z->z_PageAry[pgno] = chunk; 696 #ifdef INVARIANTS 697 if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS) 698 panic("BADFREE2"); 699 #endif 700 if (z->z_FirstFreePg > pgno) 701 z->z_FirstFreePg = pgno; 702 703 /* 704 * Bump the number of free chunks. If it becomes non-zero the zone 705 * must be added back onto the appropriate list. 706 */ 707 if (z->z_NFree++ == 0) { 708 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 709 slgd->ZoneAry[z->z_ZoneIndex] = z; 710 } 711 712 --type->ks_inuse; 713 type->ks_memuse -= z->z_ChunkSize; 714 715 /* 716 * If the zone becomes totally free, and there are other zones we 717 * can allocate from, move this zone to the FreeZones list. Implement 718 * hysteresis on the FreeZones list to improve performance. 719 * 720 * XXX try not to block on the kernel_map lock. 721 */ 722 if (z->z_NFree == z->z_NMax && 723 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 724 ) { 725 SLZone **pz; 726 727 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 728 ; 729 *pz = z->z_Next; 730 z->z_Magic = -1; 731 if (slgd->NFreeZones == ZONE_RELS_THRESH && 732 lockstatus(&kernel_map->lock, NULL) == 0) { 733 SLZone *oz; 734 735 z->z_Next = slgd->FreeZones->z_Next; 736 oz = slgd->FreeZones; 737 slgd->FreeZones = z; 738 kmem_slab_free(oz, ZoneSize); /* may block */ 739 } else { 740 z->z_Next = slgd->FreeZones; 741 slgd->FreeZones = z; 742 ++slgd->NFreeZones; 743 } 744 } 745 crit_exit(); 746 } 747 748 /* 749 * kmem_slab_alloc() 750 * 751 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 752 * specified alignment. M_* flags are expected in the flags field. 753 * 754 * Alignment must be a multiple of PAGE_SIZE. 755 * 756 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 757 * but when we move zalloc() over to use this function as its backend 758 * we will have to switch to kreserve/krelease and call reserve(0) 759 * after the new space is made available. 760 */ 761 static void * 762 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 763 { 764 vm_size_t i; 765 vm_offset_t addr; 766 vm_offset_t offset; 767 int count; 768 vm_map_t map = kernel_map; 769 770 size = round_page(size); 771 addr = vm_map_min(map); 772 773 /* 774 * Reserve properly aligned space from kernel_map 775 */ 776 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 777 crit_enter(); 778 vm_map_lock(map); 779 if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) { 780 vm_map_unlock(map); 781 if ((flags & (M_NOWAIT|M_NULLOK)) == 0) 782 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 783 crit_exit(); 784 vm_map_entry_release(count); 785 return(NULL); 786 } 787 offset = addr - VM_MIN_KERNEL_ADDRESS; 788 vm_object_reference(kernel_object); 789 vm_map_insert(map, &count, 790 kernel_object, offset, addr, addr + size, 791 VM_PROT_ALL, VM_PROT_ALL, 0); 792 793 /* 794 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 795 */ 796 for (i = 0; i < size; i += PAGE_SIZE) { 797 vm_page_t m; 798 vm_pindex_t idx = OFF_TO_IDX(offset + i); 799 int zero = (flags & M_ZERO) ? VM_ALLOC_ZERO : 0; 800 801 if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 802 m = vm_page_alloc(kernel_object, idx, VM_ALLOC_INTERRUPT|zero); 803 else 804 m = vm_page_alloc(kernel_object, idx, VM_ALLOC_SYSTEM|zero); 805 if (m == NULL) { 806 if ((flags & M_NOWAIT) == 0) { 807 vm_map_unlock(map); 808 vm_wait(); 809 vm_map_lock(map); 810 i -= PAGE_SIZE; /* retry */ 811 continue; 812 } 813 while (i != 0) { 814 i -= PAGE_SIZE; 815 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i)); 816 vm_page_free(m); 817 } 818 vm_map_delete(map, addr, addr + size, &count); 819 vm_map_unlock(map); 820 crit_exit(); 821 vm_map_entry_release(count); 822 return(NULL); 823 } 824 } 825 826 /* 827 * Mark the map entry as non-pageable using a routine that allows us to 828 * populate the underlying pages. 829 */ 830 vm_map_set_wired_quick(map, addr, size, &count); 831 crit_exit(); 832 833 /* 834 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 835 */ 836 for (i = 0; i < size; i += PAGE_SIZE) { 837 vm_page_t m; 838 839 m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i)); 840 m->valid = VM_PAGE_BITS_ALL; 841 vm_page_wire(m); 842 vm_page_wakeup(m); 843 pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 844 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 845 bzero((char *)addr + i, PAGE_SIZE); 846 vm_page_flag_clear(m, PG_ZERO); 847 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED); 848 } 849 vm_map_unlock(map); 850 vm_map_entry_release(count); 851 return((void *)addr); 852 } 853 854 static void 855 kmem_slab_free(void *ptr, vm_size_t size) 856 { 857 crit_enter(); 858 vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 859 crit_exit(); 860 } 861 862 #endif 863