1 /* 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 3 * 4 * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $ 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * API REQUIREMENTS AND SIDE EFFECTS 82 * 83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 84 * have remained compatible with the following API requirements: 85 * 86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 88 * + malloc(0) is allowed and returns non-NULL (ahc driver) 89 * + ability to allocate arbitrarily large chunks of memory 90 */ 91 92 #include "opt_vm.h" 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kernel.h> 97 #include <sys/slaballoc.h> 98 #include <sys/mbuf.h> 99 #include <sys/vmmeter.h> 100 #include <sys/lock.h> 101 #include <sys/thread.h> 102 #include <sys/globaldata.h> 103 #include <sys/sysctl.h> 104 #include <sys/ktr.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_object.h> 111 #include <vm/pmap.h> 112 #include <vm/vm_map.h> 113 #include <vm/vm_page.h> 114 #include <vm/vm_pageout.h> 115 116 #include <machine/cpu.h> 117 118 #include <sys/thread2.h> 119 #include <sys/mplock2.h> 120 121 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 122 123 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x" 124 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \ 125 sizeof(int)) 126 127 #if !defined(KTR_MEMORY) 128 #define KTR_MEMORY KTR_ALL 129 #endif 130 KTR_INFO_MASTER(memory); 131 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE); 132 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE); 133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE); 134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE); 135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE); 136 #ifdef SMP 137 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE); 138 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE); 139 #endif 140 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0); 141 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0); 142 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0); 143 144 #define logmemory(name, ptr, type, size, flags) \ 145 KTR_LOG(memory_ ## name, ptr, type, size, flags) 146 #define logmemory_quick(name) \ 147 KTR_LOG(memory_ ## name) 148 149 /* 150 * Fixed globals (not per-cpu) 151 */ 152 static int ZoneSize; 153 static int ZoneLimit; 154 static int ZonePageCount; 155 static int ZoneMask; 156 struct malloc_type *kmemstatistics; /* exported to vmstat */ 157 static struct kmemusage *kmemusage; 158 static int32_t weirdary[16]; 159 160 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 161 static void kmem_slab_free(void *ptr, vm_size_t bytes); 162 #if defined(INVARIANTS) 163 static void chunk_mark_allocated(SLZone *z, void *chunk); 164 static void chunk_mark_free(SLZone *z, void *chunk); 165 #endif 166 167 /* 168 * Misc constants. Note that allocations that are exact multiples of 169 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 170 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 171 */ 172 #define MIN_CHUNK_SIZE 8 /* in bytes */ 173 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 174 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 175 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 176 177 /* 178 * The WEIRD_ADDR is used as known text to copy into free objects to 179 * try to create deterministic failure cases if the data is accessed after 180 * free. 181 */ 182 #define WEIRD_ADDR 0xdeadc0de 183 #define MAX_COPY sizeof(weirdary) 184 #define ZERO_LENGTH_PTR ((void *)-8) 185 186 /* 187 * Misc global malloc buckets 188 */ 189 190 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 191 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 192 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 193 194 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 195 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 196 197 /* 198 * Initialize the slab memory allocator. We have to choose a zone size based 199 * on available physical memory. We choose a zone side which is approximately 200 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 201 * 128K. The zone size is limited to the bounds set in slaballoc.h 202 * (typically 32K min, 128K max). 203 */ 204 static void kmeminit(void *dummy); 205 206 char *ZeroPage; 207 208 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 209 210 #ifdef INVARIANTS 211 /* 212 * If enabled any memory allocated without M_ZERO is initialized to -1. 213 */ 214 static int use_malloc_pattern; 215 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 216 &use_malloc_pattern, 0, ""); 217 #endif 218 219 static void 220 kmeminit(void *dummy) 221 { 222 vm_poff_t limsize; 223 int usesize; 224 int i; 225 vm_pindex_t npg; 226 227 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 228 if (limsize > KvaSize) 229 limsize = KvaSize; 230 231 usesize = (int)(limsize / 1024); /* convert to KB */ 232 233 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 234 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 235 ZoneSize <<= 1; 236 ZoneLimit = ZoneSize / 4; 237 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 238 ZoneLimit = ZALLOC_ZONE_LIMIT; 239 ZoneMask = ZoneSize - 1; 240 ZonePageCount = ZoneSize / PAGE_SIZE; 241 242 npg = KvaSize / PAGE_SIZE; 243 kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), 244 PAGE_SIZE, M_WAITOK|M_ZERO); 245 246 for (i = 0; i < arysize(weirdary); ++i) 247 weirdary[i] = WEIRD_ADDR; 248 249 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 250 251 if (bootverbose) 252 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 253 } 254 255 /* 256 * Initialize a malloc type tracking structure. 257 */ 258 void 259 malloc_init(void *data) 260 { 261 struct malloc_type *type = data; 262 vm_poff_t limsize; 263 264 if (type->ks_magic != M_MAGIC) 265 panic("malloc type lacks magic"); 266 267 if (type->ks_limit != 0) 268 return; 269 270 if (vmstats.v_page_count == 0) 271 panic("malloc_init not allowed before vm init"); 272 273 limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE; 274 if (limsize > KvaSize) 275 limsize = KvaSize; 276 type->ks_limit = limsize / 10; 277 278 type->ks_next = kmemstatistics; 279 kmemstatistics = type; 280 } 281 282 void 283 malloc_uninit(void *data) 284 { 285 struct malloc_type *type = data; 286 struct malloc_type *t; 287 #ifdef INVARIANTS 288 int i; 289 long ttl; 290 #endif 291 292 if (type->ks_magic != M_MAGIC) 293 panic("malloc type lacks magic"); 294 295 if (vmstats.v_page_count == 0) 296 panic("malloc_uninit not allowed before vm init"); 297 298 if (type->ks_limit == 0) 299 panic("malloc_uninit on uninitialized type"); 300 301 #ifdef SMP 302 /* Make sure that all pending kfree()s are finished. */ 303 lwkt_synchronize_ipiqs("muninit"); 304 #endif 305 306 #ifdef INVARIANTS 307 /* 308 * memuse is only correct in aggregation. Due to memory being allocated 309 * on one cpu and freed on another individual array entries may be 310 * negative or positive (canceling each other out). 311 */ 312 for (i = ttl = 0; i < ncpus; ++i) 313 ttl += type->ks_memuse[i]; 314 if (ttl) { 315 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 316 ttl, type->ks_shortdesc, i); 317 } 318 #endif 319 if (type == kmemstatistics) { 320 kmemstatistics = type->ks_next; 321 } else { 322 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 323 if (t->ks_next == type) { 324 t->ks_next = type->ks_next; 325 break; 326 } 327 } 328 } 329 type->ks_next = NULL; 330 type->ks_limit = 0; 331 } 332 333 /* 334 * Increase the kmalloc pool limit for the specified pool. No changes 335 * are the made if the pool would shrink. 336 */ 337 void 338 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 339 { 340 if (type->ks_limit == 0) 341 malloc_init(type); 342 if (type->ks_limit < bytes) 343 type->ks_limit = bytes; 344 } 345 346 /* 347 * Dynamically create a malloc pool. This function is a NOP if *typep is 348 * already non-NULL. 349 */ 350 void 351 kmalloc_create(struct malloc_type **typep, const char *descr) 352 { 353 struct malloc_type *type; 354 355 if (*typep == NULL) { 356 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 357 type->ks_magic = M_MAGIC; 358 type->ks_shortdesc = descr; 359 malloc_init(type); 360 *typep = type; 361 } 362 } 363 364 /* 365 * Destroy a dynamically created malloc pool. This function is a NOP if 366 * the pool has already been destroyed. 367 */ 368 void 369 kmalloc_destroy(struct malloc_type **typep) 370 { 371 if (*typep != NULL) { 372 malloc_uninit(*typep); 373 kfree(*typep, M_TEMP); 374 *typep = NULL; 375 } 376 } 377 378 /* 379 * Calculate the zone index for the allocation request size and set the 380 * allocation request size to that particular zone's chunk size. 381 */ 382 static __inline int 383 zoneindex(unsigned long *bytes) 384 { 385 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 386 if (n < 128) { 387 *bytes = n = (n + 7) & ~7; 388 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 389 } 390 if (n < 256) { 391 *bytes = n = (n + 15) & ~15; 392 return(n / 16 + 7); 393 } 394 if (n < 8192) { 395 if (n < 512) { 396 *bytes = n = (n + 31) & ~31; 397 return(n / 32 + 15); 398 } 399 if (n < 1024) { 400 *bytes = n = (n + 63) & ~63; 401 return(n / 64 + 23); 402 } 403 if (n < 2048) { 404 *bytes = n = (n + 127) & ~127; 405 return(n / 128 + 31); 406 } 407 if (n < 4096) { 408 *bytes = n = (n + 255) & ~255; 409 return(n / 256 + 39); 410 } 411 *bytes = n = (n + 511) & ~511; 412 return(n / 512 + 47); 413 } 414 #if ZALLOC_ZONE_LIMIT > 8192 415 if (n < 16384) { 416 *bytes = n = (n + 1023) & ~1023; 417 return(n / 1024 + 55); 418 } 419 #endif 420 #if ZALLOC_ZONE_LIMIT > 16384 421 if (n < 32768) { 422 *bytes = n = (n + 2047) & ~2047; 423 return(n / 2048 + 63); 424 } 425 #endif 426 panic("Unexpected byte count %d", n); 427 return(0); 428 } 429 430 /* 431 * malloc() (SLAB ALLOCATOR) 432 * 433 * Allocate memory via the slab allocator. If the request is too large, 434 * or if it page-aligned beyond a certain size, we fall back to the 435 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 436 * &SlabMisc if you don't care. 437 * 438 * M_RNOWAIT - don't block. 439 * M_NULLOK - return NULL instead of blocking. 440 * M_ZERO - zero the returned memory. 441 * M_USE_RESERVE - allow greater drawdown of the free list 442 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 443 * 444 * MPSAFE 445 */ 446 447 void * 448 kmalloc(unsigned long size, struct malloc_type *type, int flags) 449 { 450 SLZone *z; 451 SLChunk *chunk; 452 SLGlobalData *slgd; 453 struct globaldata *gd; 454 int zi; 455 #ifdef INVARIANTS 456 int i; 457 #endif 458 459 logmemory_quick(malloc_beg); 460 gd = mycpu; 461 slgd = &gd->gd_slab; 462 463 /* 464 * XXX silly to have this in the critical path. 465 */ 466 if (type->ks_limit == 0) { 467 crit_enter(); 468 if (type->ks_limit == 0) 469 malloc_init(type); 470 crit_exit(); 471 } 472 ++type->ks_calls; 473 474 /* 475 * Handle the case where the limit is reached. Panic if we can't return 476 * NULL. The original malloc code looped, but this tended to 477 * simply deadlock the computer. 478 * 479 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 480 * to determine if a more complete limit check should be done. The 481 * actual memory use is tracked via ks_memuse[cpu]. 482 */ 483 while (type->ks_loosememuse >= type->ks_limit) { 484 int i; 485 long ttl; 486 487 for (i = ttl = 0; i < ncpus; ++i) 488 ttl += type->ks_memuse[i]; 489 type->ks_loosememuse = ttl; /* not MP synchronized */ 490 if (ttl >= type->ks_limit) { 491 if (flags & M_NULLOK) { 492 logmemory(malloc, NULL, type, size, flags); 493 return(NULL); 494 } 495 panic("%s: malloc limit exceeded", type->ks_shortdesc); 496 } 497 } 498 499 /* 500 * Handle the degenerate size == 0 case. Yes, this does happen. 501 * Return a special pointer. This is to maintain compatibility with 502 * the original malloc implementation. Certain devices, such as the 503 * adaptec driver, not only allocate 0 bytes, they check for NULL and 504 * also realloc() later on. Joy. 505 */ 506 if (size == 0) { 507 logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags); 508 return(ZERO_LENGTH_PTR); 509 } 510 511 /* 512 * Handle hysteresis from prior frees here in malloc(). We cannot 513 * safely manipulate the kernel_map in free() due to free() possibly 514 * being called via an IPI message or from sensitive interrupt code. 515 */ 516 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 517 crit_enter(); 518 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 519 z = slgd->FreeZones; 520 slgd->FreeZones = z->z_Next; 521 --slgd->NFreeZones; 522 kmem_slab_free(z, ZoneSize); /* may block */ 523 } 524 crit_exit(); 525 } 526 /* 527 * XXX handle oversized frees that were queued from free(). 528 */ 529 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 530 crit_enter(); 531 if ((z = slgd->FreeOvZones) != NULL) { 532 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 533 slgd->FreeOvZones = z->z_Next; 534 kmem_slab_free(z, z->z_ChunkSize); /* may block */ 535 } 536 crit_exit(); 537 } 538 539 /* 540 * Handle large allocations directly. There should not be very many of 541 * these so performance is not a big issue. 542 * 543 * The backend allocator is pretty nasty on a SMP system. Use the 544 * slab allocator for one and two page-sized chunks even though we lose 545 * some efficiency. XXX maybe fix mmio and the elf loader instead. 546 */ 547 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 548 struct kmemusage *kup; 549 550 size = round_page(size); 551 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 552 if (chunk == NULL) { 553 logmemory(malloc, NULL, type, size, flags); 554 return(NULL); 555 } 556 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 557 flags |= M_PASSIVE_ZERO; 558 kup = btokup(chunk); 559 kup->ku_pagecnt = size / PAGE_SIZE; 560 kup->ku_cpu = gd->gd_cpuid; 561 crit_enter(); 562 goto done; 563 } 564 565 /* 566 * Attempt to allocate out of an existing zone. First try the free list, 567 * then allocate out of unallocated space. If we find a good zone move 568 * it to the head of the list so later allocations find it quickly 569 * (we might have thousands of zones in the list). 570 * 571 * Note: zoneindex() will panic of size is too large. 572 */ 573 zi = zoneindex(&size); 574 KKASSERT(zi < NZONES); 575 crit_enter(); 576 if ((z = slgd->ZoneAry[zi]) != NULL) { 577 KKASSERT(z->z_NFree > 0); 578 579 /* 580 * Remove us from the ZoneAry[] when we become empty 581 */ 582 if (--z->z_NFree == 0) { 583 slgd->ZoneAry[zi] = z->z_Next; 584 z->z_Next = NULL; 585 } 586 587 /* 588 * Locate a chunk in a free page. This attempts to localize 589 * reallocations into earlier pages without us having to sort 590 * the chunk list. A chunk may still overlap a page boundary. 591 */ 592 while (z->z_FirstFreePg < ZonePageCount) { 593 if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) { 594 #ifdef DIAGNOSTIC 595 /* 596 * Diagnostic: c_Next is not total garbage. 597 */ 598 KKASSERT(chunk->c_Next == NULL || 599 ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) == 600 ((intptr_t)chunk & IN_SAME_PAGE_MASK)); 601 #endif 602 #ifdef INVARIANTS 603 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 604 panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount); 605 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 606 panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount); 607 chunk_mark_allocated(z, chunk); 608 #endif 609 z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next; 610 goto done; 611 } 612 ++z->z_FirstFreePg; 613 } 614 615 /* 616 * No chunks are available but NFree said we had some memory, so 617 * it must be available in the never-before-used-memory area 618 * governed by UIndex. The consequences are very serious if our zone 619 * got corrupted so we use an explicit panic rather then a KASSERT. 620 */ 621 if (z->z_UIndex + 1 != z->z_NMax) 622 z->z_UIndex = z->z_UIndex + 1; 623 else 624 z->z_UIndex = 0; 625 if (z->z_UIndex == z->z_UEndIndex) 626 panic("slaballoc: corrupted zone"); 627 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 628 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 629 flags &= ~M_ZERO; 630 flags |= M_PASSIVE_ZERO; 631 } 632 #if defined(INVARIANTS) 633 chunk_mark_allocated(z, chunk); 634 #endif 635 goto done; 636 } 637 638 /* 639 * If all zones are exhausted we need to allocate a new zone for this 640 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 641 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 642 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 643 * we do not pre-zero it because we do not want to mess up the L1 cache. 644 * 645 * At least one subsystem, the tty code (see CROUND) expects power-of-2 646 * allocations to be power-of-2 aligned. We maintain compatibility by 647 * adjusting the base offset below. 648 */ 649 { 650 int off; 651 652 if ((z = slgd->FreeZones) != NULL) { 653 slgd->FreeZones = z->z_Next; 654 --slgd->NFreeZones; 655 bzero(z, sizeof(SLZone)); 656 z->z_Flags |= SLZF_UNOTZEROD; 657 } else { 658 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 659 if (z == NULL) 660 goto fail; 661 } 662 663 /* 664 * How big is the base structure? 665 */ 666 #if defined(INVARIANTS) 667 /* 668 * Make room for z_Bitmap. An exact calculation is somewhat more 669 * complicated so don't make an exact calculation. 670 */ 671 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 672 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 673 #else 674 off = sizeof(SLZone); 675 #endif 676 677 /* 678 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 679 * Otherwise just 8-byte align the data. 680 */ 681 if ((size | (size - 1)) + 1 == (size << 1)) 682 off = (off + size - 1) & ~(size - 1); 683 else 684 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 685 z->z_Magic = ZALLOC_SLAB_MAGIC; 686 z->z_ZoneIndex = zi; 687 z->z_NMax = (ZoneSize - off) / size; 688 z->z_NFree = z->z_NMax - 1; 689 z->z_BasePtr = (char *)z + off; 690 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 691 z->z_ChunkSize = size; 692 z->z_FirstFreePg = ZonePageCount; 693 z->z_CpuGd = gd; 694 z->z_Cpu = gd->gd_cpuid; 695 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 696 z->z_Next = slgd->ZoneAry[zi]; 697 slgd->ZoneAry[zi] = z; 698 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 699 flags &= ~M_ZERO; /* already zero'd */ 700 flags |= M_PASSIVE_ZERO; 701 } 702 #if defined(INVARIANTS) 703 chunk_mark_allocated(z, chunk); 704 #endif 705 706 /* 707 * Slide the base index for initial allocations out of the next 708 * zone we create so we do not over-weight the lower part of the 709 * cpu memory caches. 710 */ 711 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 712 & (ZALLOC_MAX_ZONE_SIZE - 1); 713 } 714 done: 715 ++type->ks_inuse[gd->gd_cpuid]; 716 type->ks_memuse[gd->gd_cpuid] += size; 717 type->ks_loosememuse += size; /* not MP synchronized */ 718 crit_exit(); 719 if (flags & M_ZERO) 720 bzero(chunk, size); 721 #ifdef INVARIANTS 722 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 723 if (use_malloc_pattern) { 724 for (i = 0; i < size; i += sizeof(int)) { 725 *(int *)((char *)chunk + i) = -1; 726 } 727 } 728 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 729 } 730 #endif 731 logmemory(malloc, chunk, type, size, flags); 732 return(chunk); 733 fail: 734 crit_exit(); 735 logmemory(malloc, NULL, type, size, flags); 736 return(NULL); 737 } 738 739 /* 740 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 741 * 742 * Generally speaking this routine is not called very often and we do 743 * not attempt to optimize it beyond reusing the same pointer if the 744 * new size fits within the chunking of the old pointer's zone. 745 */ 746 void * 747 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 748 { 749 SLZone *z; 750 void *nptr; 751 unsigned long osize; 752 753 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 754 755 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 756 return(kmalloc(size, type, flags)); 757 if (size == 0) { 758 kfree(ptr, type); 759 return(NULL); 760 } 761 762 /* 763 * Handle oversized allocations. XXX we really should require that a 764 * size be passed to free() instead of this nonsense. 765 */ 766 { 767 struct kmemusage *kup; 768 769 kup = btokup(ptr); 770 if (kup->ku_pagecnt) { 771 osize = kup->ku_pagecnt << PAGE_SHIFT; 772 if (osize == round_page(size)) 773 return(ptr); 774 if ((nptr = kmalloc(size, type, flags)) == NULL) 775 return(NULL); 776 bcopy(ptr, nptr, min(size, osize)); 777 kfree(ptr, type); 778 return(nptr); 779 } 780 } 781 782 /* 783 * Get the original allocation's zone. If the new request winds up 784 * using the same chunk size we do not have to do anything. 785 */ 786 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 787 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 788 789 /* 790 * Allocate memory for the new request size. Note that zoneindex has 791 * already adjusted the request size to the appropriate chunk size, which 792 * should optimize our bcopy(). Then copy and return the new pointer. 793 * 794 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 795 * necessary align the result. 796 * 797 * We can only zoneindex (to align size to the chunk size) if the new 798 * size is not too large. 799 */ 800 if (size < ZoneLimit) { 801 zoneindex(&size); 802 if (z->z_ChunkSize == size) 803 return(ptr); 804 } 805 if ((nptr = kmalloc(size, type, flags)) == NULL) 806 return(NULL); 807 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 808 kfree(ptr, type); 809 return(nptr); 810 } 811 812 /* 813 * Return the kmalloc limit for this type, in bytes. 814 */ 815 long 816 kmalloc_limit(struct malloc_type *type) 817 { 818 if (type->ks_limit == 0) { 819 crit_enter(); 820 if (type->ks_limit == 0) 821 malloc_init(type); 822 crit_exit(); 823 } 824 return(type->ks_limit); 825 } 826 827 /* 828 * Allocate a copy of the specified string. 829 * 830 * (MP SAFE) (MAY BLOCK) 831 */ 832 char * 833 kstrdup(const char *str, struct malloc_type *type) 834 { 835 int zlen; /* length inclusive of terminating NUL */ 836 char *nstr; 837 838 if (str == NULL) 839 return(NULL); 840 zlen = strlen(str) + 1; 841 nstr = kmalloc(zlen, type, M_WAITOK); 842 bcopy(str, nstr, zlen); 843 return(nstr); 844 } 845 846 #ifdef SMP 847 /* 848 * free() (SLAB ALLOCATOR) 849 * 850 * Free the specified chunk of memory. 851 */ 852 static 853 void 854 free_remote(void *ptr) 855 { 856 logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0); 857 kfree(ptr, *(struct malloc_type **)ptr); 858 } 859 860 #endif 861 862 /* 863 * free (SLAB ALLOCATOR) 864 * 865 * Free a memory block previously allocated by malloc. Note that we do not 866 * attempt to uplodate ks_loosememuse as MP races could prevent us from 867 * checking memory limits in malloc. 868 * 869 * MPSAFE 870 */ 871 void 872 kfree(void *ptr, struct malloc_type *type) 873 { 874 SLZone *z; 875 SLChunk *chunk; 876 SLGlobalData *slgd; 877 struct globaldata *gd; 878 int pgno; 879 880 logmemory_quick(free_beg); 881 gd = mycpu; 882 slgd = &gd->gd_slab; 883 884 if (ptr == NULL) 885 panic("trying to free NULL pointer"); 886 887 /* 888 * Handle special 0-byte allocations 889 */ 890 if (ptr == ZERO_LENGTH_PTR) { 891 logmemory(free_zero, ptr, type, -1, 0); 892 logmemory_quick(free_end); 893 return; 894 } 895 896 /* 897 * Handle oversized allocations. XXX we really should require that a 898 * size be passed to free() instead of this nonsense. 899 * 900 * This code is never called via an ipi. 901 */ 902 { 903 struct kmemusage *kup; 904 unsigned long size; 905 906 kup = btokup(ptr); 907 if (kup->ku_pagecnt) { 908 size = kup->ku_pagecnt << PAGE_SHIFT; 909 kup->ku_pagecnt = 0; 910 #ifdef INVARIANTS 911 KKASSERT(sizeof(weirdary) <= size); 912 bcopy(weirdary, ptr, sizeof(weirdary)); 913 #endif 914 /* 915 * note: we always adjust our cpu's slot, not the originating 916 * cpu (kup->ku_cpuid). The statistics are in aggregate. 917 * 918 * note: XXX we have still inherited the interrupts-can't-block 919 * assumption. An interrupt thread does not bump 920 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 921 * primarily until we can fix softupdate's assumptions about free(). 922 */ 923 crit_enter(); 924 --type->ks_inuse[gd->gd_cpuid]; 925 type->ks_memuse[gd->gd_cpuid] -= size; 926 if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) { 927 logmemory(free_ovsz_delayed, ptr, type, size, 0); 928 z = (SLZone *)ptr; 929 z->z_Magic = ZALLOC_OVSZ_MAGIC; 930 z->z_Next = slgd->FreeOvZones; 931 z->z_ChunkSize = size; 932 slgd->FreeOvZones = z; 933 crit_exit(); 934 } else { 935 crit_exit(); 936 logmemory(free_ovsz, ptr, type, size, 0); 937 kmem_slab_free(ptr, size); /* may block */ 938 } 939 logmemory_quick(free_end); 940 return; 941 } 942 } 943 944 /* 945 * Zone case. Figure out the zone based on the fact that it is 946 * ZoneSize aligned. 947 */ 948 z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask); 949 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 950 951 /* 952 * If we do not own the zone then forward the request to the 953 * cpu that does. Since the timing is non-critical, a passive 954 * message is sent. 955 */ 956 if (z->z_CpuGd != gd) { 957 *(struct malloc_type **)ptr = type; 958 #ifdef SMP 959 logmemory(free_request, ptr, type, z->z_ChunkSize, 0); 960 lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr); 961 #else 962 panic("Corrupt SLZone"); 963 #endif 964 logmemory_quick(free_end); 965 return; 966 } 967 968 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0); 969 970 if (type->ks_magic != M_MAGIC) 971 panic("free: malloc type lacks magic"); 972 973 crit_enter(); 974 pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT; 975 chunk = ptr; 976 977 #ifdef INVARIANTS 978 /* 979 * Attempt to detect a double-free. To reduce overhead we only check 980 * if there appears to be link pointer at the base of the data. 981 */ 982 if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) { 983 SLChunk *scan; 984 for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) { 985 if (scan == chunk) 986 panic("Double free at %p", chunk); 987 } 988 } 989 chunk_mark_free(z, chunk); 990 #endif 991 992 /* 993 * Put weird data into the memory to detect modifications after freeing, 994 * illegal pointer use after freeing (we should fault on the odd address), 995 * and so forth. XXX needs more work, see the old malloc code. 996 */ 997 #ifdef INVARIANTS 998 if (z->z_ChunkSize < sizeof(weirdary)) 999 bcopy(weirdary, chunk, z->z_ChunkSize); 1000 else 1001 bcopy(weirdary, chunk, sizeof(weirdary)); 1002 #endif 1003 1004 /* 1005 * Add this free non-zero'd chunk to a linked list for reuse, adjust 1006 * z_FirstFreePg. 1007 */ 1008 #ifdef INVARIANTS 1009 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1010 panic("BADFREE %p", chunk); 1011 #endif 1012 chunk->c_Next = z->z_PageAry[pgno]; 1013 z->z_PageAry[pgno] = chunk; 1014 #ifdef INVARIANTS 1015 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1016 panic("BADFREE2"); 1017 #endif 1018 if (z->z_FirstFreePg > pgno) 1019 z->z_FirstFreePg = pgno; 1020 1021 /* 1022 * Bump the number of free chunks. If it becomes non-zero the zone 1023 * must be added back onto the appropriate list. 1024 */ 1025 if (z->z_NFree++ == 0) { 1026 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1027 slgd->ZoneAry[z->z_ZoneIndex] = z; 1028 } 1029 1030 --type->ks_inuse[z->z_Cpu]; 1031 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1032 1033 /* 1034 * If the zone becomes totally free, and there are other zones we 1035 * can allocate from, move this zone to the FreeZones list. Since 1036 * this code can be called from an IPI callback, do *NOT* try to mess 1037 * with kernel_map here. Hysteresis will be performed at malloc() time. 1038 */ 1039 if (z->z_NFree == z->z_NMax && 1040 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) 1041 ) { 1042 SLZone **pz; 1043 1044 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 1045 ; 1046 *pz = z->z_Next; 1047 z->z_Magic = -1; 1048 z->z_Next = slgd->FreeZones; 1049 slgd->FreeZones = z; 1050 ++slgd->NFreeZones; 1051 } 1052 logmemory_quick(free_end); 1053 crit_exit(); 1054 } 1055 1056 #if defined(INVARIANTS) 1057 /* 1058 * Helper routines for sanity checks 1059 */ 1060 static 1061 void 1062 chunk_mark_allocated(SLZone *z, void *chunk) 1063 { 1064 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1065 __uint32_t *bitptr; 1066 1067 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1068 bitptr = &z->z_Bitmap[bitdex >> 5]; 1069 bitdex &= 31; 1070 KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk)); 1071 *bitptr |= 1 << bitdex; 1072 } 1073 1074 static 1075 void 1076 chunk_mark_free(SLZone *z, void *chunk) 1077 { 1078 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1079 __uint32_t *bitptr; 1080 1081 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1082 bitptr = &z->z_Bitmap[bitdex >> 5]; 1083 bitdex &= 31; 1084 KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk)); 1085 *bitptr &= ~(1 << bitdex); 1086 } 1087 1088 #endif 1089 1090 /* 1091 * kmem_slab_alloc() 1092 * 1093 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1094 * specified alignment. M_* flags are expected in the flags field. 1095 * 1096 * Alignment must be a multiple of PAGE_SIZE. 1097 * 1098 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1099 * but when we move zalloc() over to use this function as its backend 1100 * we will have to switch to kreserve/krelease and call reserve(0) 1101 * after the new space is made available. 1102 * 1103 * Interrupt code which has preempted other code is not allowed to 1104 * use PQ_CACHE pages. However, if an interrupt thread is run 1105 * non-preemptively or blocks and then runs non-preemptively, then 1106 * it is free to use PQ_CACHE pages. 1107 * 1108 * This routine will currently obtain the BGL. 1109 * 1110 * MPALMOSTSAFE - acquires mplock 1111 */ 1112 static void * 1113 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1114 { 1115 vm_size_t i; 1116 vm_offset_t addr; 1117 int count, vmflags, base_vmflags; 1118 thread_t td; 1119 1120 size = round_page(size); 1121 addr = vm_map_min(&kernel_map); 1122 1123 /* 1124 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 1125 * cannot block. 1126 */ 1127 if (flags & M_RNOWAIT) { 1128 if (try_mplock() == 0) 1129 return(NULL); 1130 } else { 1131 get_mplock(); 1132 } 1133 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1134 crit_enter(); 1135 vm_map_lock(&kernel_map); 1136 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1137 vm_map_unlock(&kernel_map); 1138 if ((flags & M_NULLOK) == 0) 1139 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1140 crit_exit(); 1141 vm_map_entry_release(count); 1142 rel_mplock(); 1143 return(NULL); 1144 } 1145 1146 /* 1147 * kernel_object maps 1:1 to kernel_map. 1148 */ 1149 vm_object_reference(&kernel_object); 1150 vm_map_insert(&kernel_map, &count, 1151 &kernel_object, addr, addr, addr + size, 1152 VM_MAPTYPE_NORMAL, 1153 VM_PROT_ALL, VM_PROT_ALL, 1154 0); 1155 1156 td = curthread; 1157 1158 base_vmflags = 0; 1159 if (flags & M_ZERO) 1160 base_vmflags |= VM_ALLOC_ZERO; 1161 if (flags & M_USE_RESERVE) 1162 base_vmflags |= VM_ALLOC_SYSTEM; 1163 if (flags & M_USE_INTERRUPT_RESERVE) 1164 base_vmflags |= VM_ALLOC_INTERRUPT; 1165 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) 1166 panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]); 1167 1168 1169 /* 1170 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 1171 */ 1172 for (i = 0; i < size; i += PAGE_SIZE) { 1173 vm_page_t m; 1174 1175 /* 1176 * VM_ALLOC_NORMAL can only be set if we are not preempting. 1177 * 1178 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1179 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1180 * implied in this case), though I'm not sure if we really need to 1181 * do that. 1182 */ 1183 vmflags = base_vmflags; 1184 if (flags & M_WAITOK) { 1185 if (td->td_preempted) 1186 vmflags |= VM_ALLOC_SYSTEM; 1187 else 1188 vmflags |= VM_ALLOC_NORMAL; 1189 } 1190 1191 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1192 1193 /* 1194 * If the allocation failed we either return NULL or we retry. 1195 * 1196 * If M_WAITOK is specified we wait for more memory and retry. 1197 * If M_WAITOK is specified from a preemption we yield instead of 1198 * wait. Livelock will not occur because the interrupt thread 1199 * will not be preempting anyone the second time around after the 1200 * yield. 1201 */ 1202 if (m == NULL) { 1203 if (flags & M_WAITOK) { 1204 if (td->td_preempted) { 1205 vm_map_unlock(&kernel_map); 1206 lwkt_yield(); 1207 vm_map_lock(&kernel_map); 1208 } else { 1209 vm_map_unlock(&kernel_map); 1210 vm_wait(0); 1211 vm_map_lock(&kernel_map); 1212 } 1213 i -= PAGE_SIZE; /* retry */ 1214 continue; 1215 } 1216 1217 /* 1218 * We were unable to recover, cleanup and return NULL 1219 */ 1220 while (i != 0) { 1221 i -= PAGE_SIZE; 1222 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1223 /* page should already be busy */ 1224 vm_page_free(m); 1225 } 1226 vm_map_delete(&kernel_map, addr, addr + size, &count); 1227 vm_map_unlock(&kernel_map); 1228 crit_exit(); 1229 vm_map_entry_release(count); 1230 rel_mplock(); 1231 return(NULL); 1232 } 1233 } 1234 1235 /* 1236 * Success! 1237 * 1238 * Mark the map entry as non-pageable using a routine that allows us to 1239 * populate the underlying pages. 1240 * 1241 * The pages were busied by the allocations above. 1242 */ 1243 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1244 crit_exit(); 1245 1246 /* 1247 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1248 */ 1249 for (i = 0; i < size; i += PAGE_SIZE) { 1250 vm_page_t m; 1251 1252 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1253 m->valid = VM_PAGE_BITS_ALL; 1254 /* page should already be busy */ 1255 vm_page_wire(m); 1256 vm_page_wakeup(m); 1257 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1258 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1259 bzero((char *)addr + i, PAGE_SIZE); 1260 vm_page_flag_clear(m, PG_ZERO); 1261 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1262 vm_page_flag_set(m, PG_REFERENCED); 1263 } 1264 vm_map_unlock(&kernel_map); 1265 vm_map_entry_release(count); 1266 rel_mplock(); 1267 return((void *)addr); 1268 } 1269 1270 /* 1271 * kmem_slab_free() 1272 * 1273 * MPALMOSTSAFE - acquires mplock 1274 */ 1275 static void 1276 kmem_slab_free(void *ptr, vm_size_t size) 1277 { 1278 get_mplock(); 1279 crit_enter(); 1280 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1281 crit_exit(); 1282 rel_mplock(); 1283 } 1284 1285