xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 6693db176654a0f25095ec64d0a74d58dcf0e47e)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.55 2008/10/22 01:42:17 dillon Exp $
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 #include <sys/mplock2.h>
120 
121 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
122 
123 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
124 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
125 			sizeof(int))
126 
127 #if !defined(KTR_MEMORY)
128 #define KTR_MEMORY	KTR_ALL
129 #endif
130 KTR_INFO_MASTER(memory);
131 KTR_INFO(KTR_MEMORY, memory, malloc, 0, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_zero, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
136 #ifdef SMP
137 KTR_INFO(KTR_MEMORY, memory, free_request, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
138 KTR_INFO(KTR_MEMORY, memory, free_remote, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
139 #endif
140 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
141 KTR_INFO(KTR_MEMORY, memory, free_beg, 0, "free begin", 0);
142 KTR_INFO(KTR_MEMORY, memory, free_end, 0, "free end", 0);
143 
144 #define logmemory(name, ptr, type, size, flags)				\
145 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
146 #define logmemory_quick(name)						\
147 	KTR_LOG(memory_ ## name)
148 
149 /*
150  * Fixed globals (not per-cpu)
151  */
152 static int ZoneSize;
153 static int ZoneLimit;
154 static int ZonePageCount;
155 static int ZoneMask;
156 struct malloc_type *kmemstatistics;	/* exported to vmstat */
157 static struct kmemusage *kmemusage;
158 static int32_t weirdary[16];
159 
160 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
161 static void kmem_slab_free(void *ptr, vm_size_t bytes);
162 #if defined(INVARIANTS)
163 static void chunk_mark_allocated(SLZone *z, void *chunk);
164 static void chunk_mark_free(SLZone *z, void *chunk);
165 #endif
166 
167 /*
168  * Misc constants.  Note that allocations that are exact multiples of
169  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
170  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
171  */
172 #define MIN_CHUNK_SIZE		8		/* in bytes */
173 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
174 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
175 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
176 
177 /*
178  * The WEIRD_ADDR is used as known text to copy into free objects to
179  * try to create deterministic failure cases if the data is accessed after
180  * free.
181  */
182 #define WEIRD_ADDR      0xdeadc0de
183 #define MAX_COPY        sizeof(weirdary)
184 #define ZERO_LENGTH_PTR	((void *)-8)
185 
186 /*
187  * Misc global malloc buckets
188  */
189 
190 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
191 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
192 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
193 
194 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
195 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
196 
197 /*
198  * Initialize the slab memory allocator.  We have to choose a zone size based
199  * on available physical memory.  We choose a zone side which is approximately
200  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
201  * 128K.  The zone size is limited to the bounds set in slaballoc.h
202  * (typically 32K min, 128K max).
203  */
204 static void kmeminit(void *dummy);
205 
206 char *ZeroPage;
207 
208 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
209 
210 #ifdef INVARIANTS
211 /*
212  * If enabled any memory allocated without M_ZERO is initialized to -1.
213  */
214 static int  use_malloc_pattern;
215 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
216 		&use_malloc_pattern, 0, "");
217 #endif
218 
219 static void
220 kmeminit(void *dummy)
221 {
222     vm_poff_t limsize;
223     int usesize;
224     int i;
225     vm_pindex_t npg;
226 
227     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
228     if (limsize > KvaSize)
229 	limsize = KvaSize;
230 
231     usesize = (int)(limsize / 1024);	/* convert to KB */
232 
233     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
234     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
235 	ZoneSize <<= 1;
236     ZoneLimit = ZoneSize / 4;
237     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
238 	ZoneLimit = ZALLOC_ZONE_LIMIT;
239     ZoneMask = ZoneSize - 1;
240     ZonePageCount = ZoneSize / PAGE_SIZE;
241 
242     npg = KvaSize / PAGE_SIZE;
243     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage),
244 				PAGE_SIZE, M_WAITOK|M_ZERO);
245 
246     for (i = 0; i < arysize(weirdary); ++i)
247 	weirdary[i] = WEIRD_ADDR;
248 
249     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
250 
251     if (bootverbose)
252 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
253 }
254 
255 /*
256  * Initialize a malloc type tracking structure.
257  */
258 void
259 malloc_init(void *data)
260 {
261     struct malloc_type *type = data;
262     vm_poff_t limsize;
263 
264     if (type->ks_magic != M_MAGIC)
265 	panic("malloc type lacks magic");
266 
267     if (type->ks_limit != 0)
268 	return;
269 
270     if (vmstats.v_page_count == 0)
271 	panic("malloc_init not allowed before vm init");
272 
273     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
274     if (limsize > KvaSize)
275 	limsize = KvaSize;
276     type->ks_limit = limsize / 10;
277 
278     type->ks_next = kmemstatistics;
279     kmemstatistics = type;
280 }
281 
282 void
283 malloc_uninit(void *data)
284 {
285     struct malloc_type *type = data;
286     struct malloc_type *t;
287 #ifdef INVARIANTS
288     int i;
289     long ttl;
290 #endif
291 
292     if (type->ks_magic != M_MAGIC)
293 	panic("malloc type lacks magic");
294 
295     if (vmstats.v_page_count == 0)
296 	panic("malloc_uninit not allowed before vm init");
297 
298     if (type->ks_limit == 0)
299 	panic("malloc_uninit on uninitialized type");
300 
301 #ifdef SMP
302     /* Make sure that all pending kfree()s are finished. */
303     lwkt_synchronize_ipiqs("muninit");
304 #endif
305 
306 #ifdef INVARIANTS
307     /*
308      * memuse is only correct in aggregation.  Due to memory being allocated
309      * on one cpu and freed on another individual array entries may be
310      * negative or positive (canceling each other out).
311      */
312     for (i = ttl = 0; i < ncpus; ++i)
313 	ttl += type->ks_memuse[i];
314     if (ttl) {
315 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
316 	    ttl, type->ks_shortdesc, i);
317     }
318 #endif
319     if (type == kmemstatistics) {
320 	kmemstatistics = type->ks_next;
321     } else {
322 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
323 	    if (t->ks_next == type) {
324 		t->ks_next = type->ks_next;
325 		break;
326 	    }
327 	}
328     }
329     type->ks_next = NULL;
330     type->ks_limit = 0;
331 }
332 
333 /*
334  * Increase the kmalloc pool limit for the specified pool.  No changes
335  * are the made if the pool would shrink.
336  */
337 void
338 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
339 {
340     if (type->ks_limit == 0)
341 	malloc_init(type);
342     if (type->ks_limit < bytes)
343 	type->ks_limit = bytes;
344 }
345 
346 /*
347  * Dynamically create a malloc pool.  This function is a NOP if *typep is
348  * already non-NULL.
349  */
350 void
351 kmalloc_create(struct malloc_type **typep, const char *descr)
352 {
353 	struct malloc_type *type;
354 
355 	if (*typep == NULL) {
356 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
357 		type->ks_magic = M_MAGIC;
358 		type->ks_shortdesc = descr;
359 		malloc_init(type);
360 		*typep = type;
361 	}
362 }
363 
364 /*
365  * Destroy a dynamically created malloc pool.  This function is a NOP if
366  * the pool has already been destroyed.
367  */
368 void
369 kmalloc_destroy(struct malloc_type **typep)
370 {
371 	if (*typep != NULL) {
372 		malloc_uninit(*typep);
373 		kfree(*typep, M_TEMP);
374 		*typep = NULL;
375 	}
376 }
377 
378 /*
379  * Calculate the zone index for the allocation request size and set the
380  * allocation request size to that particular zone's chunk size.
381  */
382 static __inline int
383 zoneindex(unsigned long *bytes)
384 {
385     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
386     if (n < 128) {
387 	*bytes = n = (n + 7) & ~7;
388 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
389     }
390     if (n < 256) {
391 	*bytes = n = (n + 15) & ~15;
392 	return(n / 16 + 7);
393     }
394     if (n < 8192) {
395 	if (n < 512) {
396 	    *bytes = n = (n + 31) & ~31;
397 	    return(n / 32 + 15);
398 	}
399 	if (n < 1024) {
400 	    *bytes = n = (n + 63) & ~63;
401 	    return(n / 64 + 23);
402 	}
403 	if (n < 2048) {
404 	    *bytes = n = (n + 127) & ~127;
405 	    return(n / 128 + 31);
406 	}
407 	if (n < 4096) {
408 	    *bytes = n = (n + 255) & ~255;
409 	    return(n / 256 + 39);
410 	}
411 	*bytes = n = (n + 511) & ~511;
412 	return(n / 512 + 47);
413     }
414 #if ZALLOC_ZONE_LIMIT > 8192
415     if (n < 16384) {
416 	*bytes = n = (n + 1023) & ~1023;
417 	return(n / 1024 + 55);
418     }
419 #endif
420 #if ZALLOC_ZONE_LIMIT > 16384
421     if (n < 32768) {
422 	*bytes = n = (n + 2047) & ~2047;
423 	return(n / 2048 + 63);
424     }
425 #endif
426     panic("Unexpected byte count %d", n);
427     return(0);
428 }
429 
430 /*
431  * malloc()	(SLAB ALLOCATOR)
432  *
433  *	Allocate memory via the slab allocator.  If the request is too large,
434  *	or if it page-aligned beyond a certain size, we fall back to the
435  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
436  *	&SlabMisc if you don't care.
437  *
438  *	M_RNOWAIT	- don't block.
439  *	M_NULLOK	- return NULL instead of blocking.
440  *	M_ZERO		- zero the returned memory.
441  *	M_USE_RESERVE	- allow greater drawdown of the free list
442  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
443  *
444  * MPSAFE
445  */
446 
447 void *
448 kmalloc(unsigned long size, struct malloc_type *type, int flags)
449 {
450     SLZone *z;
451     SLChunk *chunk;
452     SLGlobalData *slgd;
453     struct globaldata *gd;
454     int zi;
455 #ifdef INVARIANTS
456     int i;
457 #endif
458 
459     logmemory_quick(malloc_beg);
460     gd = mycpu;
461     slgd = &gd->gd_slab;
462 
463     /*
464      * XXX silly to have this in the critical path.
465      */
466     if (type->ks_limit == 0) {
467 	crit_enter();
468 	if (type->ks_limit == 0)
469 	    malloc_init(type);
470 	crit_exit();
471     }
472     ++type->ks_calls;
473 
474     /*
475      * Handle the case where the limit is reached.  Panic if we can't return
476      * NULL.  The original malloc code looped, but this tended to
477      * simply deadlock the computer.
478      *
479      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
480      * to determine if a more complete limit check should be done.  The
481      * actual memory use is tracked via ks_memuse[cpu].
482      */
483     while (type->ks_loosememuse >= type->ks_limit) {
484 	int i;
485 	long ttl;
486 
487 	for (i = ttl = 0; i < ncpus; ++i)
488 	    ttl += type->ks_memuse[i];
489 	type->ks_loosememuse = ttl;	/* not MP synchronized */
490 	if (ttl >= type->ks_limit) {
491 	    if (flags & M_NULLOK) {
492 		logmemory(malloc, NULL, type, size, flags);
493 		return(NULL);
494 	    }
495 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
496 	}
497     }
498 
499     /*
500      * Handle the degenerate size == 0 case.  Yes, this does happen.
501      * Return a special pointer.  This is to maintain compatibility with
502      * the original malloc implementation.  Certain devices, such as the
503      * adaptec driver, not only allocate 0 bytes, they check for NULL and
504      * also realloc() later on.  Joy.
505      */
506     if (size == 0) {
507 	logmemory(malloc, ZERO_LENGTH_PTR, type, size, flags);
508 	return(ZERO_LENGTH_PTR);
509     }
510 
511     /*
512      * Handle hysteresis from prior frees here in malloc().  We cannot
513      * safely manipulate the kernel_map in free() due to free() possibly
514      * being called via an IPI message or from sensitive interrupt code.
515      */
516     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
517 	crit_enter();
518 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
519 	    z = slgd->FreeZones;
520 	    slgd->FreeZones = z->z_Next;
521 	    --slgd->NFreeZones;
522 	    kmem_slab_free(z, ZoneSize);	/* may block */
523 	}
524 	crit_exit();
525     }
526     /*
527      * XXX handle oversized frees that were queued from free().
528      */
529     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
530 	crit_enter();
531 	if ((z = slgd->FreeOvZones) != NULL) {
532 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
533 	    slgd->FreeOvZones = z->z_Next;
534 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
535 	}
536 	crit_exit();
537     }
538 
539     /*
540      * Handle large allocations directly.  There should not be very many of
541      * these so performance is not a big issue.
542      *
543      * The backend allocator is pretty nasty on a SMP system.   Use the
544      * slab allocator for one and two page-sized chunks even though we lose
545      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
546      */
547     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
548 	struct kmemusage *kup;
549 
550 	size = round_page(size);
551 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
552 	if (chunk == NULL) {
553 	    logmemory(malloc, NULL, type, size, flags);
554 	    return(NULL);
555 	}
556 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
557 	flags |= M_PASSIVE_ZERO;
558 	kup = btokup(chunk);
559 	kup->ku_pagecnt = size / PAGE_SIZE;
560 	kup->ku_cpu = gd->gd_cpuid;
561 	crit_enter();
562 	goto done;
563     }
564 
565     /*
566      * Attempt to allocate out of an existing zone.  First try the free list,
567      * then allocate out of unallocated space.  If we find a good zone move
568      * it to the head of the list so later allocations find it quickly
569      * (we might have thousands of zones in the list).
570      *
571      * Note: zoneindex() will panic of size is too large.
572      */
573     zi = zoneindex(&size);
574     KKASSERT(zi < NZONES);
575     crit_enter();
576     if ((z = slgd->ZoneAry[zi]) != NULL) {
577 	KKASSERT(z->z_NFree > 0);
578 
579 	/*
580 	 * Remove us from the ZoneAry[] when we become empty
581 	 */
582 	if (--z->z_NFree == 0) {
583 	    slgd->ZoneAry[zi] = z->z_Next;
584 	    z->z_Next = NULL;
585 	}
586 
587 	/*
588 	 * Locate a chunk in a free page.  This attempts to localize
589 	 * reallocations into earlier pages without us having to sort
590 	 * the chunk list.  A chunk may still overlap a page boundary.
591 	 */
592 	while (z->z_FirstFreePg < ZonePageCount) {
593 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
594 #ifdef DIAGNOSTIC
595 		/*
596 		 * Diagnostic: c_Next is not total garbage.
597 		 */
598 		KKASSERT(chunk->c_Next == NULL ||
599 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
600 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
601 #endif
602 #ifdef INVARIANTS
603 		if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
604 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
605 		if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
606 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
607 		chunk_mark_allocated(z, chunk);
608 #endif
609 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
610 		goto done;
611 	    }
612 	    ++z->z_FirstFreePg;
613 	}
614 
615 	/*
616 	 * No chunks are available but NFree said we had some memory, so
617 	 * it must be available in the never-before-used-memory area
618 	 * governed by UIndex.  The consequences are very serious if our zone
619 	 * got corrupted so we use an explicit panic rather then a KASSERT.
620 	 */
621 	if (z->z_UIndex + 1 != z->z_NMax)
622 	    z->z_UIndex = z->z_UIndex + 1;
623 	else
624 	    z->z_UIndex = 0;
625 	if (z->z_UIndex == z->z_UEndIndex)
626 	    panic("slaballoc: corrupted zone");
627 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
628 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
629 	    flags &= ~M_ZERO;
630 	    flags |= M_PASSIVE_ZERO;
631 	}
632 #if defined(INVARIANTS)
633 	chunk_mark_allocated(z, chunk);
634 #endif
635 	goto done;
636     }
637 
638     /*
639      * If all zones are exhausted we need to allocate a new zone for this
640      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
641      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
642      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
643      * we do not pre-zero it because we do not want to mess up the L1 cache.
644      *
645      * At least one subsystem, the tty code (see CROUND) expects power-of-2
646      * allocations to be power-of-2 aligned.  We maintain compatibility by
647      * adjusting the base offset below.
648      */
649     {
650 	int off;
651 
652 	if ((z = slgd->FreeZones) != NULL) {
653 	    slgd->FreeZones = z->z_Next;
654 	    --slgd->NFreeZones;
655 	    bzero(z, sizeof(SLZone));
656 	    z->z_Flags |= SLZF_UNOTZEROD;
657 	} else {
658 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
659 	    if (z == NULL)
660 		goto fail;
661 	}
662 
663 	/*
664 	 * How big is the base structure?
665 	 */
666 #if defined(INVARIANTS)
667 	/*
668 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
669 	 * complicated so don't make an exact calculation.
670 	 */
671 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
672 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
673 #else
674 	off = sizeof(SLZone);
675 #endif
676 
677 	/*
678 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
679 	 * Otherwise just 8-byte align the data.
680 	 */
681 	if ((size | (size - 1)) + 1 == (size << 1))
682 	    off = (off + size - 1) & ~(size - 1);
683 	else
684 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
685 	z->z_Magic = ZALLOC_SLAB_MAGIC;
686 	z->z_ZoneIndex = zi;
687 	z->z_NMax = (ZoneSize - off) / size;
688 	z->z_NFree = z->z_NMax - 1;
689 	z->z_BasePtr = (char *)z + off;
690 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
691 	z->z_ChunkSize = size;
692 	z->z_FirstFreePg = ZonePageCount;
693 	z->z_CpuGd = gd;
694 	z->z_Cpu = gd->gd_cpuid;
695 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
696 	z->z_Next = slgd->ZoneAry[zi];
697 	slgd->ZoneAry[zi] = z;
698 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
699 	    flags &= ~M_ZERO;	/* already zero'd */
700 	    flags |= M_PASSIVE_ZERO;
701 	}
702 #if defined(INVARIANTS)
703 	chunk_mark_allocated(z, chunk);
704 #endif
705 
706 	/*
707 	 * Slide the base index for initial allocations out of the next
708 	 * zone we create so we do not over-weight the lower part of the
709 	 * cpu memory caches.
710 	 */
711 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
712 				& (ZALLOC_MAX_ZONE_SIZE - 1);
713     }
714 done:
715     ++type->ks_inuse[gd->gd_cpuid];
716     type->ks_memuse[gd->gd_cpuid] += size;
717     type->ks_loosememuse += size;	/* not MP synchronized */
718     crit_exit();
719     if (flags & M_ZERO)
720 	bzero(chunk, size);
721 #ifdef INVARIANTS
722     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
723 	if (use_malloc_pattern) {
724 	    for (i = 0; i < size; i += sizeof(int)) {
725 		*(int *)((char *)chunk + i) = -1;
726 	    }
727 	}
728 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
729     }
730 #endif
731     logmemory(malloc, chunk, type, size, flags);
732     return(chunk);
733 fail:
734     crit_exit();
735     logmemory(malloc, NULL, type, size, flags);
736     return(NULL);
737 }
738 
739 /*
740  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
741  *
742  * Generally speaking this routine is not called very often and we do
743  * not attempt to optimize it beyond reusing the same pointer if the
744  * new size fits within the chunking of the old pointer's zone.
745  */
746 void *
747 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
748 {
749     SLZone *z;
750     void *nptr;
751     unsigned long osize;
752 
753     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
754 
755     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
756 	return(kmalloc(size, type, flags));
757     if (size == 0) {
758 	kfree(ptr, type);
759 	return(NULL);
760     }
761 
762     /*
763      * Handle oversized allocations.  XXX we really should require that a
764      * size be passed to free() instead of this nonsense.
765      */
766     {
767 	struct kmemusage *kup;
768 
769 	kup = btokup(ptr);
770 	if (kup->ku_pagecnt) {
771 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
772 	    if (osize == round_page(size))
773 		return(ptr);
774 	    if ((nptr = kmalloc(size, type, flags)) == NULL)
775 		return(NULL);
776 	    bcopy(ptr, nptr, min(size, osize));
777 	    kfree(ptr, type);
778 	    return(nptr);
779 	}
780     }
781 
782     /*
783      * Get the original allocation's zone.  If the new request winds up
784      * using the same chunk size we do not have to do anything.
785      */
786     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
787     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
788 
789     /*
790      * Allocate memory for the new request size.  Note that zoneindex has
791      * already adjusted the request size to the appropriate chunk size, which
792      * should optimize our bcopy().  Then copy and return the new pointer.
793      *
794      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
795      * necessary align the result.
796      *
797      * We can only zoneindex (to align size to the chunk size) if the new
798      * size is not too large.
799      */
800     if (size < ZoneLimit) {
801 	zoneindex(&size);
802 	if (z->z_ChunkSize == size)
803 	    return(ptr);
804     }
805     if ((nptr = kmalloc(size, type, flags)) == NULL)
806 	return(NULL);
807     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
808     kfree(ptr, type);
809     return(nptr);
810 }
811 
812 /*
813  * Return the kmalloc limit for this type, in bytes.
814  */
815 long
816 kmalloc_limit(struct malloc_type *type)
817 {
818     if (type->ks_limit == 0) {
819 	crit_enter();
820 	if (type->ks_limit == 0)
821 	    malloc_init(type);
822 	crit_exit();
823     }
824     return(type->ks_limit);
825 }
826 
827 /*
828  * Allocate a copy of the specified string.
829  *
830  * (MP SAFE) (MAY BLOCK)
831  */
832 char *
833 kstrdup(const char *str, struct malloc_type *type)
834 {
835     int zlen;	/* length inclusive of terminating NUL */
836     char *nstr;
837 
838     if (str == NULL)
839 	return(NULL);
840     zlen = strlen(str) + 1;
841     nstr = kmalloc(zlen, type, M_WAITOK);
842     bcopy(str, nstr, zlen);
843     return(nstr);
844 }
845 
846 #ifdef SMP
847 /*
848  * free()	(SLAB ALLOCATOR)
849  *
850  *	Free the specified chunk of memory.
851  */
852 static
853 void
854 free_remote(void *ptr)
855 {
856     logmemory(free_remote, ptr, *(struct malloc_type **)ptr, -1, 0);
857     kfree(ptr, *(struct malloc_type **)ptr);
858 }
859 
860 #endif
861 
862 /*
863  * free (SLAB ALLOCATOR)
864  *
865  * Free a memory block previously allocated by malloc.  Note that we do not
866  * attempt to uplodate ks_loosememuse as MP races could prevent us from
867  * checking memory limits in malloc.
868  *
869  * MPSAFE
870  */
871 void
872 kfree(void *ptr, struct malloc_type *type)
873 {
874     SLZone *z;
875     SLChunk *chunk;
876     SLGlobalData *slgd;
877     struct globaldata *gd;
878     int pgno;
879 
880     logmemory_quick(free_beg);
881     gd = mycpu;
882     slgd = &gd->gd_slab;
883 
884     if (ptr == NULL)
885 	panic("trying to free NULL pointer");
886 
887     /*
888      * Handle special 0-byte allocations
889      */
890     if (ptr == ZERO_LENGTH_PTR) {
891 	logmemory(free_zero, ptr, type, -1, 0);
892 	logmemory_quick(free_end);
893 	return;
894     }
895 
896     /*
897      * Handle oversized allocations.  XXX we really should require that a
898      * size be passed to free() instead of this nonsense.
899      *
900      * This code is never called via an ipi.
901      */
902     {
903 	struct kmemusage *kup;
904 	unsigned long size;
905 
906 	kup = btokup(ptr);
907 	if (kup->ku_pagecnt) {
908 	    size = kup->ku_pagecnt << PAGE_SHIFT;
909 	    kup->ku_pagecnt = 0;
910 #ifdef INVARIANTS
911 	    KKASSERT(sizeof(weirdary) <= size);
912 	    bcopy(weirdary, ptr, sizeof(weirdary));
913 #endif
914 	    /*
915 	     * note: we always adjust our cpu's slot, not the originating
916 	     * cpu (kup->ku_cpuid).  The statistics are in aggregate.
917 	     *
918 	     * note: XXX we have still inherited the interrupts-can't-block
919 	     * assumption.  An interrupt thread does not bump
920 	     * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
921 	     * primarily until we can fix softupdate's assumptions about free().
922 	     */
923 	    crit_enter();
924 	    --type->ks_inuse[gd->gd_cpuid];
925 	    type->ks_memuse[gd->gd_cpuid] -= size;
926 	    if (mycpu->gd_intr_nesting_level || (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
927 		logmemory(free_ovsz_delayed, ptr, type, size, 0);
928 		z = (SLZone *)ptr;
929 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
930 		z->z_Next = slgd->FreeOvZones;
931 		z->z_ChunkSize = size;
932 		slgd->FreeOvZones = z;
933 		crit_exit();
934 	    } else {
935 		crit_exit();
936 		logmemory(free_ovsz, ptr, type, size, 0);
937 		kmem_slab_free(ptr, size);	/* may block */
938 	    }
939 	    logmemory_quick(free_end);
940 	    return;
941 	}
942     }
943 
944     /*
945      * Zone case.  Figure out the zone based on the fact that it is
946      * ZoneSize aligned.
947      */
948     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
949     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
950 
951     /*
952      * If we do not own the zone then forward the request to the
953      * cpu that does.  Since the timing is non-critical, a passive
954      * message is sent.
955      */
956     if (z->z_CpuGd != gd) {
957 	*(struct malloc_type **)ptr = type;
958 #ifdef SMP
959 	logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
960 	lwkt_send_ipiq_passive(z->z_CpuGd, free_remote, ptr);
961 #else
962 	panic("Corrupt SLZone");
963 #endif
964 	logmemory_quick(free_end);
965 	return;
966     }
967 
968     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
969 
970     if (type->ks_magic != M_MAGIC)
971 	panic("free: malloc type lacks magic");
972 
973     crit_enter();
974     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
975     chunk = ptr;
976 
977 #ifdef INVARIANTS
978     /*
979      * Attempt to detect a double-free.  To reduce overhead we only check
980      * if there appears to be link pointer at the base of the data.
981      */
982     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
983 	SLChunk *scan;
984 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
985 	    if (scan == chunk)
986 		panic("Double free at %p", chunk);
987 	}
988     }
989     chunk_mark_free(z, chunk);
990 #endif
991 
992     /*
993      * Put weird data into the memory to detect modifications after freeing,
994      * illegal pointer use after freeing (we should fault on the odd address),
995      * and so forth.  XXX needs more work, see the old malloc code.
996      */
997 #ifdef INVARIANTS
998     if (z->z_ChunkSize < sizeof(weirdary))
999 	bcopy(weirdary, chunk, z->z_ChunkSize);
1000     else
1001 	bcopy(weirdary, chunk, sizeof(weirdary));
1002 #endif
1003 
1004     /*
1005      * Add this free non-zero'd chunk to a linked list for reuse, adjust
1006      * z_FirstFreePg.
1007      */
1008 #ifdef INVARIANTS
1009     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1010 	panic("BADFREE %p", chunk);
1011 #endif
1012     chunk->c_Next = z->z_PageAry[pgno];
1013     z->z_PageAry[pgno] = chunk;
1014 #ifdef INVARIANTS
1015     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1016 	panic("BADFREE2");
1017 #endif
1018     if (z->z_FirstFreePg > pgno)
1019 	z->z_FirstFreePg = pgno;
1020 
1021     /*
1022      * Bump the number of free chunks.  If it becomes non-zero the zone
1023      * must be added back onto the appropriate list.
1024      */
1025     if (z->z_NFree++ == 0) {
1026 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1027 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1028     }
1029 
1030     --type->ks_inuse[z->z_Cpu];
1031     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1032 
1033     /*
1034      * If the zone becomes totally free, and there are other zones we
1035      * can allocate from, move this zone to the FreeZones list.  Since
1036      * this code can be called from an IPI callback, do *NOT* try to mess
1037      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1038      */
1039     if (z->z_NFree == z->z_NMax &&
1040 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
1041     ) {
1042 	SLZone **pz;
1043 
1044 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1045 	    ;
1046 	*pz = z->z_Next;
1047 	z->z_Magic = -1;
1048 	z->z_Next = slgd->FreeZones;
1049 	slgd->FreeZones = z;
1050 	++slgd->NFreeZones;
1051     }
1052     logmemory_quick(free_end);
1053     crit_exit();
1054 }
1055 
1056 #if defined(INVARIANTS)
1057 /*
1058  * Helper routines for sanity checks
1059  */
1060 static
1061 void
1062 chunk_mark_allocated(SLZone *z, void *chunk)
1063 {
1064     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1065     __uint32_t *bitptr;
1066 
1067     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1068     bitptr = &z->z_Bitmap[bitdex >> 5];
1069     bitdex &= 31;
1070     KASSERT((*bitptr & (1 << bitdex)) == 0, ("memory chunk %p is already allocated!", chunk));
1071     *bitptr |= 1 << bitdex;
1072 }
1073 
1074 static
1075 void
1076 chunk_mark_free(SLZone *z, void *chunk)
1077 {
1078     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1079     __uint32_t *bitptr;
1080 
1081     KASSERT(bitdex >= 0 && bitdex < z->z_NMax, ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1082     bitptr = &z->z_Bitmap[bitdex >> 5];
1083     bitdex &= 31;
1084     KASSERT((*bitptr & (1 << bitdex)) != 0, ("memory chunk %p is already free!", chunk));
1085     *bitptr &= ~(1 << bitdex);
1086 }
1087 
1088 #endif
1089 
1090 /*
1091  * kmem_slab_alloc()
1092  *
1093  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1094  *	specified alignment.  M_* flags are expected in the flags field.
1095  *
1096  *	Alignment must be a multiple of PAGE_SIZE.
1097  *
1098  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1099  *	but when we move zalloc() over to use this function as its backend
1100  *	we will have to switch to kreserve/krelease and call reserve(0)
1101  *	after the new space is made available.
1102  *
1103  *	Interrupt code which has preempted other code is not allowed to
1104  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1105  *	non-preemptively or blocks and then runs non-preemptively, then
1106  *	it is free to use PQ_CACHE pages.
1107  *
1108  *	This routine will currently obtain the BGL.
1109  *
1110  * MPALMOSTSAFE - acquires mplock
1111  */
1112 static void *
1113 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1114 {
1115     vm_size_t i;
1116     vm_offset_t addr;
1117     int count, vmflags, base_vmflags;
1118     thread_t td;
1119 
1120     size = round_page(size);
1121     addr = vm_map_min(&kernel_map);
1122 
1123     /*
1124      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1125      * cannot block.
1126      */
1127     if (flags & M_RNOWAIT) {
1128 	if (try_mplock() == 0)
1129 	    return(NULL);
1130     } else {
1131 	get_mplock();
1132     }
1133     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1134     crit_enter();
1135     vm_map_lock(&kernel_map);
1136     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1137 	vm_map_unlock(&kernel_map);
1138 	if ((flags & M_NULLOK) == 0)
1139 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1140 	crit_exit();
1141 	vm_map_entry_release(count);
1142 	rel_mplock();
1143 	return(NULL);
1144     }
1145 
1146     /*
1147      * kernel_object maps 1:1 to kernel_map.
1148      */
1149     vm_object_reference(&kernel_object);
1150     vm_map_insert(&kernel_map, &count,
1151 		    &kernel_object, addr, addr, addr + size,
1152 		    VM_MAPTYPE_NORMAL,
1153 		    VM_PROT_ALL, VM_PROT_ALL,
1154 		    0);
1155 
1156     td = curthread;
1157 
1158     base_vmflags = 0;
1159     if (flags & M_ZERO)
1160         base_vmflags |= VM_ALLOC_ZERO;
1161     if (flags & M_USE_RESERVE)
1162 	base_vmflags |= VM_ALLOC_SYSTEM;
1163     if (flags & M_USE_INTERRUPT_RESERVE)
1164         base_vmflags |= VM_ALLOC_INTERRUPT;
1165     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0)
1166     	panic("kmem_slab_alloc: bad flags %08x (%p)", flags, ((int **)&size)[-1]);
1167 
1168 
1169     /*
1170      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1171      */
1172     for (i = 0; i < size; i += PAGE_SIZE) {
1173 	vm_page_t m;
1174 
1175 	/*
1176 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1177 	 *
1178 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1179 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1180 	 * implied in this case), though I'm not sure if we really need to
1181 	 * do that.
1182 	 */
1183 	vmflags = base_vmflags;
1184 	if (flags & M_WAITOK) {
1185 	    if (td->td_preempted)
1186 		vmflags |= VM_ALLOC_SYSTEM;
1187 	    else
1188 		vmflags |= VM_ALLOC_NORMAL;
1189 	}
1190 
1191 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1192 
1193 	/*
1194 	 * If the allocation failed we either return NULL or we retry.
1195 	 *
1196 	 * If M_WAITOK is specified we wait for more memory and retry.
1197 	 * If M_WAITOK is specified from a preemption we yield instead of
1198 	 * wait.  Livelock will not occur because the interrupt thread
1199 	 * will not be preempting anyone the second time around after the
1200 	 * yield.
1201 	 */
1202 	if (m == NULL) {
1203 	    if (flags & M_WAITOK) {
1204 		if (td->td_preempted) {
1205 		    vm_map_unlock(&kernel_map);
1206 		    lwkt_yield();
1207 		    vm_map_lock(&kernel_map);
1208 		} else {
1209 		    vm_map_unlock(&kernel_map);
1210 		    vm_wait(0);
1211 		    vm_map_lock(&kernel_map);
1212 		}
1213 		i -= PAGE_SIZE;	/* retry */
1214 		continue;
1215 	    }
1216 
1217 	    /*
1218 	     * We were unable to recover, cleanup and return NULL
1219 	     */
1220 	    while (i != 0) {
1221 		i -= PAGE_SIZE;
1222 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1223 		/* page should already be busy */
1224 		vm_page_free(m);
1225 	    }
1226 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1227 	    vm_map_unlock(&kernel_map);
1228 	    crit_exit();
1229 	    vm_map_entry_release(count);
1230 	    rel_mplock();
1231 	    return(NULL);
1232 	}
1233     }
1234 
1235     /*
1236      * Success!
1237      *
1238      * Mark the map entry as non-pageable using a routine that allows us to
1239      * populate the underlying pages.
1240      *
1241      * The pages were busied by the allocations above.
1242      */
1243     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1244     crit_exit();
1245 
1246     /*
1247      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1248      */
1249     for (i = 0; i < size; i += PAGE_SIZE) {
1250 	vm_page_t m;
1251 
1252 	m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1253 	m->valid = VM_PAGE_BITS_ALL;
1254 	/* page should already be busy */
1255 	vm_page_wire(m);
1256 	vm_page_wakeup(m);
1257 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1258 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1259 	    bzero((char *)addr + i, PAGE_SIZE);
1260 	vm_page_flag_clear(m, PG_ZERO);
1261 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1262 	vm_page_flag_set(m, PG_REFERENCED);
1263     }
1264     vm_map_unlock(&kernel_map);
1265     vm_map_entry_release(count);
1266     rel_mplock();
1267     return((void *)addr);
1268 }
1269 
1270 /*
1271  * kmem_slab_free()
1272  *
1273  * MPALMOSTSAFE - acquires mplock
1274  */
1275 static void
1276 kmem_slab_free(void *ptr, vm_size_t size)
1277 {
1278     get_mplock();
1279     crit_enter();
1280     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1281     crit_exit();
1282     rel_mplock();
1283 }
1284 
1285