xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 5b991541a99aa38e5ca17ac8e6abee49bd57ac56)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
121 
122 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
123 
124 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
125 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
126 			sizeof(int))
127 
128 #if !defined(KTR_MEMORY)
129 #define KTR_MEMORY	KTR_ALL
130 #endif
131 KTR_INFO_MASTER(memory);
132 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
133 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
136 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
137 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
138 #ifdef SMP
139 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
140 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
141 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
142 #endif
143 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
144 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
145 
146 #define logmemory(name, ptr, type, size, flags)				\
147 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
148 #define logmemory_quick(name)						\
149 	KTR_LOG(memory_ ## name)
150 
151 /*
152  * Fixed globals (not per-cpu)
153  */
154 static int ZoneSize;
155 static int ZoneLimit;
156 static int ZonePageCount;
157 static uintptr_t ZoneMask;
158 static int ZoneBigAlloc;		/* in KB */
159 static int ZoneGenAlloc;		/* in KB */
160 struct malloc_type *kmemstatistics;	/* exported to vmstat */
161 static int32_t weirdary[16];
162 
163 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
164 static void kmem_slab_free(void *ptr, vm_size_t bytes);
165 
166 #if defined(INVARIANTS)
167 static void chunk_mark_allocated(SLZone *z, void *chunk);
168 static void chunk_mark_free(SLZone *z, void *chunk);
169 #else
170 #define chunk_mark_allocated(z, chunk)
171 #define chunk_mark_free(z, chunk)
172 #endif
173 
174 /*
175  * Misc constants.  Note that allocations that are exact multiples of
176  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
177  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
178  */
179 #define MIN_CHUNK_SIZE		8		/* in bytes */
180 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
181 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
182 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
183 
184 /*
185  * The WEIRD_ADDR is used as known text to copy into free objects to
186  * try to create deterministic failure cases if the data is accessed after
187  * free.
188  */
189 #define WEIRD_ADDR      0xdeadc0de
190 #define MAX_COPY        sizeof(weirdary)
191 #define ZERO_LENGTH_PTR	((void *)-8)
192 
193 /*
194  * Misc global malloc buckets
195  */
196 
197 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
198 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
199 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
200 
201 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
202 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
203 
204 /*
205  * Initialize the slab memory allocator.  We have to choose a zone size based
206  * on available physical memory.  We choose a zone side which is approximately
207  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
208  * 128K.  The zone size is limited to the bounds set in slaballoc.h
209  * (typically 32K min, 128K max).
210  */
211 static void kmeminit(void *dummy);
212 
213 char *ZeroPage;
214 
215 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
216 
217 #ifdef INVARIANTS
218 /*
219  * If enabled any memory allocated without M_ZERO is initialized to -1.
220  */
221 static int  use_malloc_pattern;
222 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
223 		&use_malloc_pattern, 0, "");
224 #endif
225 
226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
228 
229 static void
230 kmeminit(void *dummy)
231 {
232     size_t limsize;
233     int usesize;
234     int i;
235 
236     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
237     if (limsize > KvaSize)
238 	limsize = KvaSize;
239 
240     usesize = (int)(limsize / 1024);	/* convert to KB */
241 
242     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
243     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
244 	ZoneSize <<= 1;
245     ZoneLimit = ZoneSize / 4;
246     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
247 	ZoneLimit = ZALLOC_ZONE_LIMIT;
248     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
249     ZonePageCount = ZoneSize / PAGE_SIZE;
250 
251     for (i = 0; i < arysize(weirdary); ++i)
252 	weirdary[i] = WEIRD_ADDR;
253 
254     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
255 
256     if (bootverbose)
257 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
258 }
259 
260 /*
261  * Initialize a malloc type tracking structure.
262  */
263 void
264 malloc_init(void *data)
265 {
266     struct malloc_type *type = data;
267     size_t limsize;
268 
269     if (type->ks_magic != M_MAGIC)
270 	panic("malloc type lacks magic");
271 
272     if (type->ks_limit != 0)
273 	return;
274 
275     if (vmstats.v_page_count == 0)
276 	panic("malloc_init not allowed before vm init");
277 
278     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
279     if (limsize > KvaSize)
280 	limsize = KvaSize;
281     type->ks_limit = limsize / 10;
282 
283     type->ks_next = kmemstatistics;
284     kmemstatistics = type;
285 }
286 
287 void
288 malloc_uninit(void *data)
289 {
290     struct malloc_type *type = data;
291     struct malloc_type *t;
292 #ifdef INVARIANTS
293     int i;
294     long ttl;
295 #endif
296 
297     if (type->ks_magic != M_MAGIC)
298 	panic("malloc type lacks magic");
299 
300     if (vmstats.v_page_count == 0)
301 	panic("malloc_uninit not allowed before vm init");
302 
303     if (type->ks_limit == 0)
304 	panic("malloc_uninit on uninitialized type");
305 
306 #ifdef SMP
307     /* Make sure that all pending kfree()s are finished. */
308     lwkt_synchronize_ipiqs("muninit");
309 #endif
310 
311 #ifdef INVARIANTS
312     /*
313      * memuse is only correct in aggregation.  Due to memory being allocated
314      * on one cpu and freed on another individual array entries may be
315      * negative or positive (canceling each other out).
316      */
317     for (i = ttl = 0; i < ncpus; ++i)
318 	ttl += type->ks_memuse[i];
319     if (ttl) {
320 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
321 	    ttl, type->ks_shortdesc, i);
322     }
323 #endif
324     if (type == kmemstatistics) {
325 	kmemstatistics = type->ks_next;
326     } else {
327 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
328 	    if (t->ks_next == type) {
329 		t->ks_next = type->ks_next;
330 		break;
331 	    }
332 	}
333     }
334     type->ks_next = NULL;
335     type->ks_limit = 0;
336 }
337 
338 /*
339  * Increase the kmalloc pool limit for the specified pool.  No changes
340  * are the made if the pool would shrink.
341  */
342 void
343 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
344 {
345     if (type->ks_limit == 0)
346 	malloc_init(type);
347     if (bytes == 0)
348 	bytes = KvaSize;
349     if (type->ks_limit < bytes)
350 	type->ks_limit = bytes;
351 }
352 
353 /*
354  * Dynamically create a malloc pool.  This function is a NOP if *typep is
355  * already non-NULL.
356  */
357 void
358 kmalloc_create(struct malloc_type **typep, const char *descr)
359 {
360 	struct malloc_type *type;
361 
362 	if (*typep == NULL) {
363 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
364 		type->ks_magic = M_MAGIC;
365 		type->ks_shortdesc = descr;
366 		malloc_init(type);
367 		*typep = type;
368 	}
369 }
370 
371 /*
372  * Destroy a dynamically created malloc pool.  This function is a NOP if
373  * the pool has already been destroyed.
374  */
375 void
376 kmalloc_destroy(struct malloc_type **typep)
377 {
378 	if (*typep != NULL) {
379 		malloc_uninit(*typep);
380 		kfree(*typep, M_TEMP);
381 		*typep = NULL;
382 	}
383 }
384 
385 /*
386  * Calculate the zone index for the allocation request size and set the
387  * allocation request size to that particular zone's chunk size.
388  */
389 static __inline int
390 zoneindex(unsigned long *bytes)
391 {
392     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
393     if (n < 128) {
394 	*bytes = n = (n + 7) & ~7;
395 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
396     }
397     if (n < 256) {
398 	*bytes = n = (n + 15) & ~15;
399 	return(n / 16 + 7);
400     }
401     if (n < 8192) {
402 	if (n < 512) {
403 	    *bytes = n = (n + 31) & ~31;
404 	    return(n / 32 + 15);
405 	}
406 	if (n < 1024) {
407 	    *bytes = n = (n + 63) & ~63;
408 	    return(n / 64 + 23);
409 	}
410 	if (n < 2048) {
411 	    *bytes = n = (n + 127) & ~127;
412 	    return(n / 128 + 31);
413 	}
414 	if (n < 4096) {
415 	    *bytes = n = (n + 255) & ~255;
416 	    return(n / 256 + 39);
417 	}
418 	*bytes = n = (n + 511) & ~511;
419 	return(n / 512 + 47);
420     }
421 #if ZALLOC_ZONE_LIMIT > 8192
422     if (n < 16384) {
423 	*bytes = n = (n + 1023) & ~1023;
424 	return(n / 1024 + 55);
425     }
426 #endif
427 #if ZALLOC_ZONE_LIMIT > 16384
428     if (n < 32768) {
429 	*bytes = n = (n + 2047) & ~2047;
430 	return(n / 2048 + 63);
431     }
432 #endif
433     panic("Unexpected byte count %d", n);
434     return(0);
435 }
436 
437 /*
438  * kmalloc()	(SLAB ALLOCATOR)
439  *
440  *	Allocate memory via the slab allocator.  If the request is too large,
441  *	or if it page-aligned beyond a certain size, we fall back to the
442  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
443  *	&SlabMisc if you don't care.
444  *
445  *	M_RNOWAIT	- don't block.
446  *	M_NULLOK	- return NULL instead of blocking.
447  *	M_ZERO		- zero the returned memory.
448  *	M_USE_RESERVE	- allow greater drawdown of the free list
449  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
450  *
451  * MPSAFE
452  */
453 void *
454 kmalloc(unsigned long size, struct malloc_type *type, int flags)
455 {
456     SLZone *z;
457     SLChunk *chunk;
458 #ifdef SMP
459     SLChunk *bchunk;
460 #endif
461     SLGlobalData *slgd;
462     struct globaldata *gd;
463     int zi;
464 #ifdef INVARIANTS
465     int i;
466 #endif
467 
468     logmemory_quick(malloc_beg);
469     gd = mycpu;
470     slgd = &gd->gd_slab;
471 
472     /*
473      * XXX silly to have this in the critical path.
474      */
475     if (type->ks_limit == 0) {
476 	crit_enter();
477 	if (type->ks_limit == 0)
478 	    malloc_init(type);
479 	crit_exit();
480     }
481     ++type->ks_calls;
482 
483     /*
484      * Handle the case where the limit is reached.  Panic if we can't return
485      * NULL.  The original malloc code looped, but this tended to
486      * simply deadlock the computer.
487      *
488      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
489      * to determine if a more complete limit check should be done.  The
490      * actual memory use is tracked via ks_memuse[cpu].
491      */
492     while (type->ks_loosememuse >= type->ks_limit) {
493 	int i;
494 	long ttl;
495 
496 	for (i = ttl = 0; i < ncpus; ++i)
497 	    ttl += type->ks_memuse[i];
498 	type->ks_loosememuse = ttl;	/* not MP synchronized */
499 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
500 		ttl = 0;
501 	if (ttl >= type->ks_limit) {
502 	    if (flags & M_NULLOK) {
503 		logmemory(malloc_end, NULL, type, size, flags);
504 		return(NULL);
505 	    }
506 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
507 	}
508     }
509 
510     /*
511      * Handle the degenerate size == 0 case.  Yes, this does happen.
512      * Return a special pointer.  This is to maintain compatibility with
513      * the original malloc implementation.  Certain devices, such as the
514      * adaptec driver, not only allocate 0 bytes, they check for NULL and
515      * also realloc() later on.  Joy.
516      */
517     if (size == 0) {
518 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
519 	return(ZERO_LENGTH_PTR);
520     }
521 
522     /*
523      * Handle hysteresis from prior frees here in malloc().  We cannot
524      * safely manipulate the kernel_map in free() due to free() possibly
525      * being called via an IPI message or from sensitive interrupt code.
526      *
527      * NOTE: ku_pagecnt must be cleared before we free the slab or we
528      *	     might race another cpu allocating the kva and setting
529      *	     ku_pagecnt.
530      */
531     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
532 	crit_enter();
533 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
534 	    int *kup;
535 
536 	    z = slgd->FreeZones;
537 	    slgd->FreeZones = z->z_Next;
538 	    --slgd->NFreeZones;
539 	    kup = btokup(z);
540 	    *kup = 0;
541 	    kmem_slab_free(z, ZoneSize);	/* may block */
542 	    atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
543 	}
544 	crit_exit();
545     }
546 
547     /*
548      * XXX handle oversized frees that were queued from kfree().
549      */
550     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
551 	crit_enter();
552 	if ((z = slgd->FreeOvZones) != NULL) {
553 	    vm_size_t tsize;
554 
555 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
556 	    slgd->FreeOvZones = z->z_Next;
557 	    tsize = z->z_ChunkSize;
558 	    kmem_slab_free(z, tsize);	/* may block */
559 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
560 	}
561 	crit_exit();
562     }
563 
564     /*
565      * Handle large allocations directly.  There should not be very many of
566      * these so performance is not a big issue.
567      *
568      * The backend allocator is pretty nasty on a SMP system.   Use the
569      * slab allocator for one and two page-sized chunks even though we lose
570      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
571      */
572     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
573 	int *kup;
574 
575 	size = round_page(size);
576 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
577 	if (chunk == NULL) {
578 	    logmemory(malloc_end, NULL, type, size, flags);
579 	    return(NULL);
580 	}
581 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
582 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
583 	flags |= M_PASSIVE_ZERO;
584 	kup = btokup(chunk);
585 	*kup = size / PAGE_SIZE;
586 	crit_enter();
587 	goto done;
588     }
589 
590     /*
591      * Attempt to allocate out of an existing zone.  First try the free list,
592      * then allocate out of unallocated space.  If we find a good zone move
593      * it to the head of the list so later allocations find it quickly
594      * (we might have thousands of zones in the list).
595      *
596      * Note: zoneindex() will panic of size is too large.
597      */
598     zi = zoneindex(&size);
599     KKASSERT(zi < NZONES);
600     crit_enter();
601 
602     if ((z = slgd->ZoneAry[zi]) != NULL) {
603 	/*
604 	 * Locate a chunk - we have to have at least one.  If this is the
605 	 * last chunk go ahead and do the work to retrieve chunks freed
606 	 * from remote cpus, and if the zone is still empty move it off
607 	 * the ZoneAry.
608 	 */
609 	if (--z->z_NFree <= 0) {
610 	    KKASSERT(z->z_NFree == 0);
611 
612 #ifdef SMP
613 	    /*
614 	     * WARNING! This code competes with other cpus.  It is ok
615 	     * for us to not drain RChunks here but we might as well, and
616 	     * it is ok if more accumulate after we're done.
617 	     *
618 	     * Set RSignal before pulling rchunks off, indicating that we
619 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
620 	     * read RSignal before putting rchunks on thus interlocking
621 	     * their IPI signaling.
622 	     */
623 	    if (z->z_RChunks == NULL)
624 		atomic_swap_int(&z->z_RSignal, 1);
625 
626 	    while ((bchunk = z->z_RChunks) != NULL) {
627 		cpu_ccfence();
628 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
629 		    *z->z_LChunksp = bchunk;
630 		    while (bchunk) {
631 			chunk_mark_free(z, bchunk);
632 			z->z_LChunksp = &bchunk->c_Next;
633 			bchunk = bchunk->c_Next;
634 			++z->z_NFree;
635 		    }
636 		    break;
637 		}
638 	    }
639 #endif
640 	    /*
641 	     * Remove from the zone list if no free chunks remain.
642 	     * Clear RSignal
643 	     */
644 	    if (z->z_NFree == 0) {
645 		slgd->ZoneAry[zi] = z->z_Next;
646 		z->z_Next = NULL;
647 	    } else {
648 		z->z_RSignal = 0;
649 	    }
650 	}
651 
652 	/*
653 	 * Fast path, we have chunks available in z_LChunks.
654 	 */
655 	chunk = z->z_LChunks;
656 	if (chunk) {
657 		chunk_mark_allocated(z, chunk);
658 		z->z_LChunks = chunk->c_Next;
659 		if (z->z_LChunks == NULL)
660 			z->z_LChunksp = &z->z_LChunks;
661 		goto done;
662 	}
663 
664 	/*
665 	 * No chunks are available in LChunks, the free chunk MUST be
666 	 * in the never-before-used memory area, controlled by UIndex.
667 	 *
668 	 * The consequences are very serious if our zone got corrupted so
669 	 * we use an explicit panic rather than a KASSERT.
670 	 */
671 	if (z->z_UIndex + 1 != z->z_NMax)
672 	    ++z->z_UIndex;
673 	else
674 	    z->z_UIndex = 0;
675 
676 	if (z->z_UIndex == z->z_UEndIndex)
677 	    panic("slaballoc: corrupted zone");
678 
679 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
680 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
681 	    flags &= ~M_ZERO;
682 	    flags |= M_PASSIVE_ZERO;
683 	}
684 	chunk_mark_allocated(z, chunk);
685 	goto done;
686     }
687 
688     /*
689      * If all zones are exhausted we need to allocate a new zone for this
690      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
691      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
692      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
693      * we do not pre-zero it because we do not want to mess up the L1 cache.
694      *
695      * At least one subsystem, the tty code (see CROUND) expects power-of-2
696      * allocations to be power-of-2 aligned.  We maintain compatibility by
697      * adjusting the base offset below.
698      */
699     {
700 	int off;
701 	int *kup;
702 
703 	if ((z = slgd->FreeZones) != NULL) {
704 	    slgd->FreeZones = z->z_Next;
705 	    --slgd->NFreeZones;
706 	    bzero(z, sizeof(SLZone));
707 	    z->z_Flags |= SLZF_UNOTZEROD;
708 	} else {
709 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
710 	    if (z == NULL)
711 		goto fail;
712 	    atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
713 	}
714 
715 	/*
716 	 * How big is the base structure?
717 	 */
718 #if defined(INVARIANTS)
719 	/*
720 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
721 	 * complicated so don't make an exact calculation.
722 	 */
723 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
724 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
725 #else
726 	off = sizeof(SLZone);
727 #endif
728 
729 	/*
730 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
731 	 * Otherwise just 8-byte align the data.
732 	 */
733 	if ((size | (size - 1)) + 1 == (size << 1))
734 	    off = (off + size - 1) & ~(size - 1);
735 	else
736 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
737 	z->z_Magic = ZALLOC_SLAB_MAGIC;
738 	z->z_ZoneIndex = zi;
739 	z->z_NMax = (ZoneSize - off) / size;
740 	z->z_NFree = z->z_NMax - 1;
741 	z->z_BasePtr = (char *)z + off;
742 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
743 	z->z_ChunkSize = size;
744 	z->z_CpuGd = gd;
745 	z->z_Cpu = gd->gd_cpuid;
746 	z->z_LChunksp = &z->z_LChunks;
747 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
748 	z->z_Next = slgd->ZoneAry[zi];
749 	slgd->ZoneAry[zi] = z;
750 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
751 	    flags &= ~M_ZERO;	/* already zero'd */
752 	    flags |= M_PASSIVE_ZERO;
753 	}
754 	kup = btokup(z);
755 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
756 	chunk_mark_allocated(z, chunk);
757 
758 	/*
759 	 * Slide the base index for initial allocations out of the next
760 	 * zone we create so we do not over-weight the lower part of the
761 	 * cpu memory caches.
762 	 */
763 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
764 				& (ZALLOC_MAX_ZONE_SIZE - 1);
765     }
766 
767 done:
768     ++type->ks_inuse[gd->gd_cpuid];
769     type->ks_memuse[gd->gd_cpuid] += size;
770     type->ks_loosememuse += size;	/* not MP synchronized */
771     crit_exit();
772 
773     if (flags & M_ZERO)
774 	bzero(chunk, size);
775 #ifdef INVARIANTS
776     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
777 	if (use_malloc_pattern) {
778 	    for (i = 0; i < size; i += sizeof(int)) {
779 		*(int *)((char *)chunk + i) = -1;
780 	    }
781 	}
782 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
783     }
784 #endif
785     logmemory(malloc_end, chunk, type, size, flags);
786     return(chunk);
787 fail:
788     crit_exit();
789     logmemory(malloc_end, NULL, type, size, flags);
790     return(NULL);
791 }
792 
793 /*
794  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
795  *
796  * Generally speaking this routine is not called very often and we do
797  * not attempt to optimize it beyond reusing the same pointer if the
798  * new size fits within the chunking of the old pointer's zone.
799  */
800 void *
801 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
802 {
803     unsigned long osize;
804     SLZone *z;
805     void *nptr;
806     int *kup;
807 
808     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
809 
810     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
811 	return(kmalloc(size, type, flags));
812     if (size == 0) {
813 	kfree(ptr, type);
814 	return(NULL);
815     }
816 
817     /*
818      * Handle oversized allocations.  XXX we really should require that a
819      * size be passed to free() instead of this nonsense.
820      */
821     kup = btokup(ptr);
822     if (*kup > 0) {
823 	osize = *kup << PAGE_SHIFT;
824 	if (osize == round_page(size))
825 	    return(ptr);
826 	if ((nptr = kmalloc(size, type, flags)) == NULL)
827 	    return(NULL);
828 	bcopy(ptr, nptr, min(size, osize));
829 	kfree(ptr, type);
830 	return(nptr);
831     }
832 
833     /*
834      * Get the original allocation's zone.  If the new request winds up
835      * using the same chunk size we do not have to do anything.
836      */
837     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
838     kup = btokup(z);
839     KKASSERT(*kup < 0);
840     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
841 
842     /*
843      * Allocate memory for the new request size.  Note that zoneindex has
844      * already adjusted the request size to the appropriate chunk size, which
845      * should optimize our bcopy().  Then copy and return the new pointer.
846      *
847      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
848      * necessary align the result.
849      *
850      * We can only zoneindex (to align size to the chunk size) if the new
851      * size is not too large.
852      */
853     if (size < ZoneLimit) {
854 	zoneindex(&size);
855 	if (z->z_ChunkSize == size)
856 	    return(ptr);
857     }
858     if ((nptr = kmalloc(size, type, flags)) == NULL)
859 	return(NULL);
860     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
861     kfree(ptr, type);
862     return(nptr);
863 }
864 
865 /*
866  * Return the kmalloc limit for this type, in bytes.
867  */
868 long
869 kmalloc_limit(struct malloc_type *type)
870 {
871     if (type->ks_limit == 0) {
872 	crit_enter();
873 	if (type->ks_limit == 0)
874 	    malloc_init(type);
875 	crit_exit();
876     }
877     return(type->ks_limit);
878 }
879 
880 /*
881  * Allocate a copy of the specified string.
882  *
883  * (MP SAFE) (MAY BLOCK)
884  */
885 char *
886 kstrdup(const char *str, struct malloc_type *type)
887 {
888     int zlen;	/* length inclusive of terminating NUL */
889     char *nstr;
890 
891     if (str == NULL)
892 	return(NULL);
893     zlen = strlen(str) + 1;
894     nstr = kmalloc(zlen, type, M_WAITOK);
895     bcopy(str, nstr, zlen);
896     return(nstr);
897 }
898 
899 #ifdef SMP
900 /*
901  * Notify our cpu that a remote cpu has freed some chunks in a zone that
902  * we own.  RCount will be bumped so the memory should be good, but validate
903  * that it really is.
904  */
905 static
906 void
907 kfree_remote(void *ptr)
908 {
909     SLGlobalData *slgd;
910     SLChunk *bchunk;
911     SLZone *z;
912     int nfree;
913     int *kup;
914 
915     slgd = &mycpu->gd_slab;
916     z = ptr;
917     kup = btokup(z);
918     KKASSERT(*kup == -((int)mycpuid + 1));
919     KKASSERT(z->z_RCount > 0);
920     atomic_subtract_int(&z->z_RCount, 1);
921 
922     logmemory(free_rem_beg, z, NULL, 0, 0);
923     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
924     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
925     nfree = z->z_NFree;
926 
927     /*
928      * Indicate that we will no longer be off of the ZoneAry by
929      * clearing RSignal.
930      */
931     if (z->z_RChunks)
932 	z->z_RSignal = 0;
933 
934     /*
935      * Atomically extract the bchunks list and then process it back
936      * into the lchunks list.  We want to append our bchunks to the
937      * lchunks list and not prepend since we likely do not have
938      * cache mastership of the related data (not that it helps since
939      * we are using c_Next).
940      */
941     while ((bchunk = z->z_RChunks) != NULL) {
942 	cpu_ccfence();
943 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
944 	    *z->z_LChunksp = bchunk;
945 	    while (bchunk) {
946 		    chunk_mark_free(z, bchunk);
947 		    z->z_LChunksp = &bchunk->c_Next;
948 		    bchunk = bchunk->c_Next;
949 		    ++z->z_NFree;
950 	    }
951 	    break;
952 	}
953     }
954     if (z->z_NFree && nfree == 0) {
955 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
956 	slgd->ZoneAry[z->z_ZoneIndex] = z;
957     }
958 
959     /*
960      * If the zone becomes totally free, and there are other zones we
961      * can allocate from, move this zone to the FreeZones list.  Since
962      * this code can be called from an IPI callback, do *NOT* try to mess
963      * with kernel_map here.  Hysteresis will be performed at malloc() time.
964      *
965      * Do not move the zone if there is an IPI inflight, otherwise MP
966      * races can result in our free_remote code accessing a destroyed
967      * zone.
968      */
969     if (z->z_NFree == z->z_NMax &&
970 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
971 	z->z_RCount == 0
972     ) {
973 	SLZone **pz;
974 	int *kup;
975 
976 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
977 	     z != *pz;
978 	     pz = &(*pz)->z_Next) {
979 	    ;
980 	}
981 	*pz = z->z_Next;
982 	z->z_Magic = -1;
983 	z->z_Next = slgd->FreeZones;
984 	slgd->FreeZones = z;
985 	++slgd->NFreeZones;
986 	kup = btokup(z);
987 	*kup = 0;
988     }
989     logmemory(free_rem_end, z, bchunk, 0, 0);
990 }
991 
992 #endif
993 
994 /*
995  * free (SLAB ALLOCATOR)
996  *
997  * Free a memory block previously allocated by malloc.  Note that we do not
998  * attempt to update ks_loosememuse as MP races could prevent us from
999  * checking memory limits in malloc.
1000  *
1001  * MPSAFE
1002  */
1003 void
1004 kfree(void *ptr, struct malloc_type *type)
1005 {
1006     SLZone *z;
1007     SLChunk *chunk;
1008     SLGlobalData *slgd;
1009     struct globaldata *gd;
1010     int *kup;
1011     unsigned long size;
1012 #ifdef SMP
1013     SLChunk *bchunk;
1014     int rsignal;
1015 #endif
1016 
1017     logmemory_quick(free_beg);
1018     gd = mycpu;
1019     slgd = &gd->gd_slab;
1020 
1021     if (ptr == NULL)
1022 	panic("trying to free NULL pointer");
1023 
1024     /*
1025      * Handle special 0-byte allocations
1026      */
1027     if (ptr == ZERO_LENGTH_PTR) {
1028 	logmemory(free_zero, ptr, type, -1, 0);
1029 	logmemory_quick(free_end);
1030 	return;
1031     }
1032 
1033     /*
1034      * Panic on bad malloc type
1035      */
1036     if (type->ks_magic != M_MAGIC)
1037 	panic("free: malloc type lacks magic");
1038 
1039     /*
1040      * Handle oversized allocations.  XXX we really should require that a
1041      * size be passed to free() instead of this nonsense.
1042      *
1043      * This code is never called via an ipi.
1044      */
1045     kup = btokup(ptr);
1046     if (*kup > 0) {
1047 	size = *kup << PAGE_SHIFT;
1048 	*kup = 0;
1049 #ifdef INVARIANTS
1050 	KKASSERT(sizeof(weirdary) <= size);
1051 	bcopy(weirdary, ptr, sizeof(weirdary));
1052 #endif
1053 	/*
1054 	 * NOTE: For oversized allocations we do not record the
1055 	 *	     originating cpu.  It gets freed on the cpu calling
1056 	 *	     kfree().  The statistics are in aggregate.
1057 	 *
1058 	 * note: XXX we have still inherited the interrupts-can't-block
1059 	 * assumption.  An interrupt thread does not bump
1060 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1061 	 * primarily until we can fix softupdate's assumptions about free().
1062 	 */
1063 	crit_enter();
1064 	--type->ks_inuse[gd->gd_cpuid];
1065 	type->ks_memuse[gd->gd_cpuid] -= size;
1066 	if (mycpu->gd_intr_nesting_level ||
1067 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1068 	{
1069 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1070 	    z = (SLZone *)ptr;
1071 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1072 	    z->z_Next = slgd->FreeOvZones;
1073 	    z->z_ChunkSize = size;
1074 	    slgd->FreeOvZones = z;
1075 	    crit_exit();
1076 	} else {
1077 	    crit_exit();
1078 	    logmemory(free_ovsz, ptr, type, size, 0);
1079 	    kmem_slab_free(ptr, size);	/* may block */
1080 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1081 	}
1082 	logmemory_quick(free_end);
1083 	return;
1084     }
1085 
1086     /*
1087      * Zone case.  Figure out the zone based on the fact that it is
1088      * ZoneSize aligned.
1089      */
1090     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1091     kup = btokup(z);
1092     KKASSERT(*kup < 0);
1093     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1094 
1095     /*
1096      * If we do not own the zone then use atomic ops to free to the
1097      * remote cpu linked list and notify the target zone using a
1098      * passive message.
1099      *
1100      * The target zone cannot be deallocated while we own a chunk of it,
1101      * so the zone header's storage is stable until the very moment
1102      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1103      *
1104      * (no critical section needed)
1105      */
1106     if (z->z_CpuGd != gd) {
1107 #ifdef SMP
1108 	/*
1109 	 * Making these adjustments now allow us to avoid passing (type)
1110 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1111 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1112 	 * sum up properly and cancel out.
1113 	 */
1114 	crit_enter();
1115 	--type->ks_inuse[gd->gd_cpuid];
1116 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1117 	crit_exit();
1118 
1119 	/*
1120 	 * WARNING! This code competes with other cpus.  Once we
1121 	 *	    successfully link the chunk to RChunks the remote
1122 	 *	    cpu can rip z's storage out from under us.
1123 	 *
1124 	 *	    Bumping RCount prevents z's storage from getting
1125 	 *	    ripped out.
1126 	 */
1127 	rsignal = z->z_RSignal;
1128 	cpu_lfence();
1129 	if (rsignal)
1130 		atomic_add_int(&z->z_RCount, 1);
1131 
1132 	chunk = ptr;
1133 	for (;;) {
1134 	    bchunk = z->z_RChunks;
1135 	    cpu_ccfence();
1136 	    chunk->c_Next = bchunk;
1137 	    cpu_sfence();
1138 
1139 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1140 		break;
1141 	}
1142 
1143 	/*
1144 	 * We have to signal the remote cpu if our actions will cause
1145 	 * the remote zone to be placed back on ZoneAry so it can
1146 	 * move the zone back on.
1147 	 *
1148 	 * We only need to deal with NULL->non-NULL RChunk transitions
1149 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1150 	 * before adding our chunk to RChunks.  This should result in
1151 	 * virtually no IPI traffic.
1152 	 *
1153 	 * We can use a passive IPI to reduce overhead even further.
1154 	 */
1155 	if (bchunk == NULL && rsignal) {
1156 	    logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1157 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1158 	    /* z can get ripped out from under us from this point on */
1159 	} else if (rsignal) {
1160 	    atomic_subtract_int(&z->z_RCount, 1);
1161 	    /* z can get ripped out from under us from this point on */
1162 	}
1163 #else
1164 	panic("Corrupt SLZone");
1165 #endif
1166 	logmemory_quick(free_end);
1167 	return;
1168     }
1169 
1170     /*
1171      * kfree locally
1172      */
1173     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1174 
1175     crit_enter();
1176     chunk = ptr;
1177     chunk_mark_free(z, chunk);
1178 
1179     /*
1180      * Put weird data into the memory to detect modifications after freeing,
1181      * illegal pointer use after freeing (we should fault on the odd address),
1182      * and so forth.  XXX needs more work, see the old malloc code.
1183      */
1184 #ifdef INVARIANTS
1185     if (z->z_ChunkSize < sizeof(weirdary))
1186 	bcopy(weirdary, chunk, z->z_ChunkSize);
1187     else
1188 	bcopy(weirdary, chunk, sizeof(weirdary));
1189 #endif
1190 
1191     /*
1192      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1193      * to the front of the linked list so it is more likely to be
1194      * reallocated, since it is already in our L1 cache.
1195      */
1196 #ifdef INVARIANTS
1197     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1198 	panic("BADFREE %p", chunk);
1199 #endif
1200     chunk->c_Next = z->z_LChunks;
1201     z->z_LChunks = chunk;
1202     if (chunk->c_Next == NULL)
1203 	    z->z_LChunksp = &chunk->c_Next;
1204 
1205 #ifdef INVARIANTS
1206     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1207 	panic("BADFREE2");
1208 #endif
1209 
1210     /*
1211      * Bump the number of free chunks.  If it becomes non-zero the zone
1212      * must be added back onto the appropriate list.
1213      */
1214     if (z->z_NFree++ == 0) {
1215 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1216 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1217     }
1218 
1219     --type->ks_inuse[z->z_Cpu];
1220     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1221 
1222     /*
1223      * If the zone becomes totally free, and there are other zones we
1224      * can allocate from, move this zone to the FreeZones list.  Since
1225      * this code can be called from an IPI callback, do *NOT* try to mess
1226      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1227      */
1228     if (z->z_NFree == z->z_NMax &&
1229 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1230 	z->z_RCount == 0
1231     ) {
1232 	SLZone **pz;
1233 	int *kup;
1234 
1235 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1236 	    ;
1237 	*pz = z->z_Next;
1238 	z->z_Magic = -1;
1239 	z->z_Next = slgd->FreeZones;
1240 	slgd->FreeZones = z;
1241 	++slgd->NFreeZones;
1242 	kup = btokup(z);
1243 	*kup = 0;
1244     }
1245     logmemory_quick(free_end);
1246     crit_exit();
1247 }
1248 
1249 #if defined(INVARIANTS)
1250 
1251 /*
1252  * Helper routines for sanity checks
1253  */
1254 static
1255 void
1256 chunk_mark_allocated(SLZone *z, void *chunk)
1257 {
1258     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1259     __uint32_t *bitptr;
1260 
1261     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1262     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1263 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1264     bitptr = &z->z_Bitmap[bitdex >> 5];
1265     bitdex &= 31;
1266     KASSERT((*bitptr & (1 << bitdex)) == 0,
1267 	    ("memory chunk %p is already allocated!", chunk));
1268     *bitptr |= 1 << bitdex;
1269 }
1270 
1271 static
1272 void
1273 chunk_mark_free(SLZone *z, void *chunk)
1274 {
1275     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1276     __uint32_t *bitptr;
1277 
1278     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1279     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1280 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1281     bitptr = &z->z_Bitmap[bitdex >> 5];
1282     bitdex &= 31;
1283     KASSERT((*bitptr & (1 << bitdex)) != 0,
1284 	    ("memory chunk %p is already free!", chunk));
1285     *bitptr &= ~(1 << bitdex);
1286 }
1287 
1288 #endif
1289 
1290 /*
1291  * kmem_slab_alloc()
1292  *
1293  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1294  *	specified alignment.  M_* flags are expected in the flags field.
1295  *
1296  *	Alignment must be a multiple of PAGE_SIZE.
1297  *
1298  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1299  *	but when we move zalloc() over to use this function as its backend
1300  *	we will have to switch to kreserve/krelease and call reserve(0)
1301  *	after the new space is made available.
1302  *
1303  *	Interrupt code which has preempted other code is not allowed to
1304  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1305  *	non-preemptively or blocks and then runs non-preemptively, then
1306  *	it is free to use PQ_CACHE pages.
1307  */
1308 static void *
1309 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1310 {
1311     vm_size_t i;
1312     vm_offset_t addr;
1313     int count, vmflags, base_vmflags;
1314     vm_page_t mp[ZALLOC_MAX_ZONE_SIZE / PAGE_SIZE];
1315     thread_t td;
1316 
1317     size = round_page(size);
1318     addr = vm_map_min(&kernel_map);
1319 
1320     /*
1321      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1322      * cannot block.
1323      */
1324     if (flags & M_RNOWAIT) {
1325 	if (lwkt_trytoken(&vm_token) == 0)
1326 	    return(NULL);
1327     } else {
1328 	lwkt_gettoken(&vm_token);
1329     }
1330     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1331     crit_enter();
1332     vm_map_lock(&kernel_map);
1333     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1334 	vm_map_unlock(&kernel_map);
1335 	if ((flags & M_NULLOK) == 0)
1336 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1337 	vm_map_entry_release(count);
1338 	crit_exit();
1339 	lwkt_reltoken(&vm_token);
1340 	return(NULL);
1341     }
1342 
1343     /*
1344      * kernel_object maps 1:1 to kernel_map.
1345      */
1346     vm_object_reference(&kernel_object);
1347     vm_map_insert(&kernel_map, &count,
1348 		    &kernel_object, addr, addr, addr + size,
1349 		    VM_MAPTYPE_NORMAL,
1350 		    VM_PROT_ALL, VM_PROT_ALL,
1351 		    0);
1352 
1353     td = curthread;
1354 
1355     base_vmflags = 0;
1356     if (flags & M_ZERO)
1357         base_vmflags |= VM_ALLOC_ZERO;
1358     if (flags & M_USE_RESERVE)
1359 	base_vmflags |= VM_ALLOC_SYSTEM;
1360     if (flags & M_USE_INTERRUPT_RESERVE)
1361         base_vmflags |= VM_ALLOC_INTERRUPT;
1362     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1363 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1364 	      flags, ((int **)&size)[-1]);
1365     }
1366 
1367 
1368     /*
1369      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1370      */
1371     for (i = 0; i < size; i += PAGE_SIZE) {
1372 	vm_page_t m;
1373 
1374 	/*
1375 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1376 	 *
1377 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1378 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1379 	 * implied in this case), though I'm not sure if we really need to
1380 	 * do that.
1381 	 */
1382 	vmflags = base_vmflags;
1383 	if (flags & M_WAITOK) {
1384 	    if (td->td_preempted)
1385 		vmflags |= VM_ALLOC_SYSTEM;
1386 	    else
1387 		vmflags |= VM_ALLOC_NORMAL;
1388 	}
1389 
1390 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1391 	if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0])))
1392 		mp[i / PAGE_SIZE] = m;
1393 
1394 	/*
1395 	 * If the allocation failed we either return NULL or we retry.
1396 	 *
1397 	 * If M_WAITOK is specified we wait for more memory and retry.
1398 	 * If M_WAITOK is specified from a preemption we yield instead of
1399 	 * wait.  Livelock will not occur because the interrupt thread
1400 	 * will not be preempting anyone the second time around after the
1401 	 * yield.
1402 	 */
1403 	if (m == NULL) {
1404 	    if (flags & M_WAITOK) {
1405 		if (td->td_preempted) {
1406 		    vm_map_unlock(&kernel_map);
1407 		    lwkt_switch();
1408 		    vm_map_lock(&kernel_map);
1409 		} else {
1410 		    vm_map_unlock(&kernel_map);
1411 		    vm_wait(0);
1412 		    vm_map_lock(&kernel_map);
1413 		}
1414 		i -= PAGE_SIZE;	/* retry */
1415 		continue;
1416 	    }
1417 
1418 	    /*
1419 	     * We were unable to recover, cleanup and return NULL
1420 	     *
1421 	     * (vm_token already held)
1422 	     */
1423 	    while (i != 0) {
1424 		i -= PAGE_SIZE;
1425 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1426 		/* page should already be busy */
1427 		vm_page_free(m);
1428 	    }
1429 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1430 	    vm_map_unlock(&kernel_map);
1431 	    vm_map_entry_release(count);
1432 	    crit_exit();
1433 	    lwkt_reltoken(&vm_token);
1434 	    return(NULL);
1435 	}
1436     }
1437 
1438     /*
1439      * Success!
1440      *
1441      * Mark the map entry as non-pageable using a routine that allows us to
1442      * populate the underlying pages.
1443      *
1444      * The pages were busied by the allocations above.
1445      */
1446     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1447     crit_exit();
1448 
1449     /*
1450      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1451      */
1452     for (i = 0; i < size; i += PAGE_SIZE) {
1453 	vm_page_t m;
1454 
1455 	if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0])))
1456 	   m = mp[i / PAGE_SIZE];
1457 	else
1458 	   m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1459 	m->valid = VM_PAGE_BITS_ALL;
1460 	/* page should already be busy */
1461 	vm_page_wire(m);
1462 	vm_page_wakeup(m);
1463 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1464 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1465 	    bzero((char *)addr + i, PAGE_SIZE);
1466 	vm_page_flag_clear(m, PG_ZERO);
1467 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1468 	vm_page_flag_set(m, PG_REFERENCED);
1469     }
1470     vm_map_unlock(&kernel_map);
1471     vm_map_entry_release(count);
1472     lwkt_reltoken(&vm_token);
1473     return((void *)addr);
1474 }
1475 
1476 /*
1477  * kmem_slab_free()
1478  */
1479 static void
1480 kmem_slab_free(void *ptr, vm_size_t size)
1481 {
1482     crit_enter();
1483     lwkt_gettoken(&vm_token);
1484     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1485     lwkt_reltoken(&vm_token);
1486     crit_exit();
1487 }
1488 
1489