1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * API REQUIREMENTS AND SIDE EFFECTS 82 * 83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 84 * have remained compatible with the following API requirements: 85 * 86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 88 * + malloc(0) is allowed and returns non-NULL (ahc driver) 89 * + ability to allocate arbitrarily large chunks of memory 90 */ 91 92 #include "opt_vm.h" 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kernel.h> 97 #include <sys/slaballoc.h> 98 #include <sys/mbuf.h> 99 #include <sys/vmmeter.h> 100 #include <sys/lock.h> 101 #include <sys/thread.h> 102 #include <sys/globaldata.h> 103 #include <sys/sysctl.h> 104 #include <sys/ktr.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_object.h> 111 #include <vm/pmap.h> 112 #include <vm/vm_map.h> 113 #include <vm/vm_page.h> 114 #include <vm/vm_pageout.h> 115 116 #include <machine/cpu.h> 117 118 #include <sys/thread2.h> 119 120 #define arysize(ary) (sizeof(ary)/sizeof((ary)[0])) 121 122 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 123 124 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x" 125 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \ 126 sizeof(int)) 127 128 #if !defined(KTR_MEMORY) 129 #define KTR_MEMORY KTR_ALL 130 #endif 131 KTR_INFO_MASTER(memory); 132 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0); 133 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE); 134 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE); 135 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE); 136 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE); 137 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE); 138 #ifdef SMP 139 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE); 140 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE); 141 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE); 142 #endif 143 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0); 144 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0); 145 146 #define logmemory(name, ptr, type, size, flags) \ 147 KTR_LOG(memory_ ## name, ptr, type, size, flags) 148 #define logmemory_quick(name) \ 149 KTR_LOG(memory_ ## name) 150 151 /* 152 * Fixed globals (not per-cpu) 153 */ 154 static int ZoneSize; 155 static int ZoneLimit; 156 static int ZonePageCount; 157 static uintptr_t ZoneMask; 158 static int ZoneBigAlloc; /* in KB */ 159 static int ZoneGenAlloc; /* in KB */ 160 struct malloc_type *kmemstatistics; /* exported to vmstat */ 161 static int32_t weirdary[16]; 162 163 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 164 static void kmem_slab_free(void *ptr, vm_size_t bytes); 165 166 #if defined(INVARIANTS) 167 static void chunk_mark_allocated(SLZone *z, void *chunk); 168 static void chunk_mark_free(SLZone *z, void *chunk); 169 #else 170 #define chunk_mark_allocated(z, chunk) 171 #define chunk_mark_free(z, chunk) 172 #endif 173 174 /* 175 * Misc constants. Note that allocations that are exact multiples of 176 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 177 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 178 */ 179 #define MIN_CHUNK_SIZE 8 /* in bytes */ 180 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 181 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 182 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 183 184 /* 185 * The WEIRD_ADDR is used as known text to copy into free objects to 186 * try to create deterministic failure cases if the data is accessed after 187 * free. 188 */ 189 #define WEIRD_ADDR 0xdeadc0de 190 #define MAX_COPY sizeof(weirdary) 191 #define ZERO_LENGTH_PTR ((void *)-8) 192 193 /* 194 * Misc global malloc buckets 195 */ 196 197 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 198 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 199 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 200 201 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 202 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 203 204 /* 205 * Initialize the slab memory allocator. We have to choose a zone size based 206 * on available physical memory. We choose a zone side which is approximately 207 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 208 * 128K. The zone size is limited to the bounds set in slaballoc.h 209 * (typically 32K min, 128K max). 210 */ 211 static void kmeminit(void *dummy); 212 213 char *ZeroPage; 214 215 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 216 217 #ifdef INVARIANTS 218 /* 219 * If enabled any memory allocated without M_ZERO is initialized to -1. 220 */ 221 static int use_malloc_pattern; 222 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 223 &use_malloc_pattern, 0, ""); 224 #endif 225 226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 228 229 static void 230 kmeminit(void *dummy) 231 { 232 size_t limsize; 233 int usesize; 234 int i; 235 236 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 237 if (limsize > KvaSize) 238 limsize = KvaSize; 239 240 usesize = (int)(limsize / 1024); /* convert to KB */ 241 242 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 243 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 244 ZoneSize <<= 1; 245 ZoneLimit = ZoneSize / 4; 246 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 247 ZoneLimit = ZALLOC_ZONE_LIMIT; 248 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 249 ZonePageCount = ZoneSize / PAGE_SIZE; 250 251 for (i = 0; i < arysize(weirdary); ++i) 252 weirdary[i] = WEIRD_ADDR; 253 254 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 255 256 if (bootverbose) 257 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 258 } 259 260 /* 261 * Initialize a malloc type tracking structure. 262 */ 263 void 264 malloc_init(void *data) 265 { 266 struct malloc_type *type = data; 267 size_t limsize; 268 269 if (type->ks_magic != M_MAGIC) 270 panic("malloc type lacks magic"); 271 272 if (type->ks_limit != 0) 273 return; 274 275 if (vmstats.v_page_count == 0) 276 panic("malloc_init not allowed before vm init"); 277 278 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 279 if (limsize > KvaSize) 280 limsize = KvaSize; 281 type->ks_limit = limsize / 10; 282 283 type->ks_next = kmemstatistics; 284 kmemstatistics = type; 285 } 286 287 void 288 malloc_uninit(void *data) 289 { 290 struct malloc_type *type = data; 291 struct malloc_type *t; 292 #ifdef INVARIANTS 293 int i; 294 long ttl; 295 #endif 296 297 if (type->ks_magic != M_MAGIC) 298 panic("malloc type lacks magic"); 299 300 if (vmstats.v_page_count == 0) 301 panic("malloc_uninit not allowed before vm init"); 302 303 if (type->ks_limit == 0) 304 panic("malloc_uninit on uninitialized type"); 305 306 #ifdef SMP 307 /* Make sure that all pending kfree()s are finished. */ 308 lwkt_synchronize_ipiqs("muninit"); 309 #endif 310 311 #ifdef INVARIANTS 312 /* 313 * memuse is only correct in aggregation. Due to memory being allocated 314 * on one cpu and freed on another individual array entries may be 315 * negative or positive (canceling each other out). 316 */ 317 for (i = ttl = 0; i < ncpus; ++i) 318 ttl += type->ks_memuse[i]; 319 if (ttl) { 320 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 321 ttl, type->ks_shortdesc, i); 322 } 323 #endif 324 if (type == kmemstatistics) { 325 kmemstatistics = type->ks_next; 326 } else { 327 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 328 if (t->ks_next == type) { 329 t->ks_next = type->ks_next; 330 break; 331 } 332 } 333 } 334 type->ks_next = NULL; 335 type->ks_limit = 0; 336 } 337 338 /* 339 * Increase the kmalloc pool limit for the specified pool. No changes 340 * are the made if the pool would shrink. 341 */ 342 void 343 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 344 { 345 if (type->ks_limit == 0) 346 malloc_init(type); 347 if (bytes == 0) 348 bytes = KvaSize; 349 if (type->ks_limit < bytes) 350 type->ks_limit = bytes; 351 } 352 353 /* 354 * Dynamically create a malloc pool. This function is a NOP if *typep is 355 * already non-NULL. 356 */ 357 void 358 kmalloc_create(struct malloc_type **typep, const char *descr) 359 { 360 struct malloc_type *type; 361 362 if (*typep == NULL) { 363 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 364 type->ks_magic = M_MAGIC; 365 type->ks_shortdesc = descr; 366 malloc_init(type); 367 *typep = type; 368 } 369 } 370 371 /* 372 * Destroy a dynamically created malloc pool. This function is a NOP if 373 * the pool has already been destroyed. 374 */ 375 void 376 kmalloc_destroy(struct malloc_type **typep) 377 { 378 if (*typep != NULL) { 379 malloc_uninit(*typep); 380 kfree(*typep, M_TEMP); 381 *typep = NULL; 382 } 383 } 384 385 /* 386 * Calculate the zone index for the allocation request size and set the 387 * allocation request size to that particular zone's chunk size. 388 */ 389 static __inline int 390 zoneindex(unsigned long *bytes) 391 { 392 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 393 if (n < 128) { 394 *bytes = n = (n + 7) & ~7; 395 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 396 } 397 if (n < 256) { 398 *bytes = n = (n + 15) & ~15; 399 return(n / 16 + 7); 400 } 401 if (n < 8192) { 402 if (n < 512) { 403 *bytes = n = (n + 31) & ~31; 404 return(n / 32 + 15); 405 } 406 if (n < 1024) { 407 *bytes = n = (n + 63) & ~63; 408 return(n / 64 + 23); 409 } 410 if (n < 2048) { 411 *bytes = n = (n + 127) & ~127; 412 return(n / 128 + 31); 413 } 414 if (n < 4096) { 415 *bytes = n = (n + 255) & ~255; 416 return(n / 256 + 39); 417 } 418 *bytes = n = (n + 511) & ~511; 419 return(n / 512 + 47); 420 } 421 #if ZALLOC_ZONE_LIMIT > 8192 422 if (n < 16384) { 423 *bytes = n = (n + 1023) & ~1023; 424 return(n / 1024 + 55); 425 } 426 #endif 427 #if ZALLOC_ZONE_LIMIT > 16384 428 if (n < 32768) { 429 *bytes = n = (n + 2047) & ~2047; 430 return(n / 2048 + 63); 431 } 432 #endif 433 panic("Unexpected byte count %d", n); 434 return(0); 435 } 436 437 /* 438 * kmalloc() (SLAB ALLOCATOR) 439 * 440 * Allocate memory via the slab allocator. If the request is too large, 441 * or if it page-aligned beyond a certain size, we fall back to the 442 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 443 * &SlabMisc if you don't care. 444 * 445 * M_RNOWAIT - don't block. 446 * M_NULLOK - return NULL instead of blocking. 447 * M_ZERO - zero the returned memory. 448 * M_USE_RESERVE - allow greater drawdown of the free list 449 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 450 * 451 * MPSAFE 452 */ 453 void * 454 kmalloc(unsigned long size, struct malloc_type *type, int flags) 455 { 456 SLZone *z; 457 SLChunk *chunk; 458 #ifdef SMP 459 SLChunk *bchunk; 460 #endif 461 SLGlobalData *slgd; 462 struct globaldata *gd; 463 int zi; 464 #ifdef INVARIANTS 465 int i; 466 #endif 467 468 logmemory_quick(malloc_beg); 469 gd = mycpu; 470 slgd = &gd->gd_slab; 471 472 /* 473 * XXX silly to have this in the critical path. 474 */ 475 if (type->ks_limit == 0) { 476 crit_enter(); 477 if (type->ks_limit == 0) 478 malloc_init(type); 479 crit_exit(); 480 } 481 ++type->ks_calls; 482 483 /* 484 * Handle the case where the limit is reached. Panic if we can't return 485 * NULL. The original malloc code looped, but this tended to 486 * simply deadlock the computer. 487 * 488 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 489 * to determine if a more complete limit check should be done. The 490 * actual memory use is tracked via ks_memuse[cpu]. 491 */ 492 while (type->ks_loosememuse >= type->ks_limit) { 493 int i; 494 long ttl; 495 496 for (i = ttl = 0; i < ncpus; ++i) 497 ttl += type->ks_memuse[i]; 498 type->ks_loosememuse = ttl; /* not MP synchronized */ 499 if ((ssize_t)ttl < 0) /* deal with occassional race */ 500 ttl = 0; 501 if (ttl >= type->ks_limit) { 502 if (flags & M_NULLOK) { 503 logmemory(malloc_end, NULL, type, size, flags); 504 return(NULL); 505 } 506 panic("%s: malloc limit exceeded", type->ks_shortdesc); 507 } 508 } 509 510 /* 511 * Handle the degenerate size == 0 case. Yes, this does happen. 512 * Return a special pointer. This is to maintain compatibility with 513 * the original malloc implementation. Certain devices, such as the 514 * adaptec driver, not only allocate 0 bytes, they check for NULL and 515 * also realloc() later on. Joy. 516 */ 517 if (size == 0) { 518 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 519 return(ZERO_LENGTH_PTR); 520 } 521 522 /* 523 * Handle hysteresis from prior frees here in malloc(). We cannot 524 * safely manipulate the kernel_map in free() due to free() possibly 525 * being called via an IPI message or from sensitive interrupt code. 526 * 527 * NOTE: ku_pagecnt must be cleared before we free the slab or we 528 * might race another cpu allocating the kva and setting 529 * ku_pagecnt. 530 */ 531 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 532 crit_enter(); 533 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 534 int *kup; 535 536 z = slgd->FreeZones; 537 slgd->FreeZones = z->z_Next; 538 --slgd->NFreeZones; 539 kup = btokup(z); 540 *kup = 0; 541 kmem_slab_free(z, ZoneSize); /* may block */ 542 atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024); 543 } 544 crit_exit(); 545 } 546 547 /* 548 * XXX handle oversized frees that were queued from kfree(). 549 */ 550 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 551 crit_enter(); 552 if ((z = slgd->FreeOvZones) != NULL) { 553 vm_size_t tsize; 554 555 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 556 slgd->FreeOvZones = z->z_Next; 557 tsize = z->z_ChunkSize; 558 kmem_slab_free(z, tsize); /* may block */ 559 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 560 } 561 crit_exit(); 562 } 563 564 /* 565 * Handle large allocations directly. There should not be very many of 566 * these so performance is not a big issue. 567 * 568 * The backend allocator is pretty nasty on a SMP system. Use the 569 * slab allocator for one and two page-sized chunks even though we lose 570 * some efficiency. XXX maybe fix mmio and the elf loader instead. 571 */ 572 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 573 int *kup; 574 575 size = round_page(size); 576 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 577 if (chunk == NULL) { 578 logmemory(malloc_end, NULL, type, size, flags); 579 return(NULL); 580 } 581 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 582 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 583 flags |= M_PASSIVE_ZERO; 584 kup = btokup(chunk); 585 *kup = size / PAGE_SIZE; 586 crit_enter(); 587 goto done; 588 } 589 590 /* 591 * Attempt to allocate out of an existing zone. First try the free list, 592 * then allocate out of unallocated space. If we find a good zone move 593 * it to the head of the list so later allocations find it quickly 594 * (we might have thousands of zones in the list). 595 * 596 * Note: zoneindex() will panic of size is too large. 597 */ 598 zi = zoneindex(&size); 599 KKASSERT(zi < NZONES); 600 crit_enter(); 601 602 if ((z = slgd->ZoneAry[zi]) != NULL) { 603 /* 604 * Locate a chunk - we have to have at least one. If this is the 605 * last chunk go ahead and do the work to retrieve chunks freed 606 * from remote cpus, and if the zone is still empty move it off 607 * the ZoneAry. 608 */ 609 if (--z->z_NFree <= 0) { 610 KKASSERT(z->z_NFree == 0); 611 612 #ifdef SMP 613 /* 614 * WARNING! This code competes with other cpus. It is ok 615 * for us to not drain RChunks here but we might as well, and 616 * it is ok if more accumulate after we're done. 617 * 618 * Set RSignal before pulling rchunks off, indicating that we 619 * will be moving ourselves off of the ZoneAry. Remote ends will 620 * read RSignal before putting rchunks on thus interlocking 621 * their IPI signaling. 622 */ 623 if (z->z_RChunks == NULL) 624 atomic_swap_int(&z->z_RSignal, 1); 625 626 while ((bchunk = z->z_RChunks) != NULL) { 627 cpu_ccfence(); 628 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 629 *z->z_LChunksp = bchunk; 630 while (bchunk) { 631 chunk_mark_free(z, bchunk); 632 z->z_LChunksp = &bchunk->c_Next; 633 bchunk = bchunk->c_Next; 634 ++z->z_NFree; 635 } 636 break; 637 } 638 } 639 #endif 640 /* 641 * Remove from the zone list if no free chunks remain. 642 * Clear RSignal 643 */ 644 if (z->z_NFree == 0) { 645 slgd->ZoneAry[zi] = z->z_Next; 646 z->z_Next = NULL; 647 } else { 648 z->z_RSignal = 0; 649 } 650 } 651 652 /* 653 * Fast path, we have chunks available in z_LChunks. 654 */ 655 chunk = z->z_LChunks; 656 if (chunk) { 657 chunk_mark_allocated(z, chunk); 658 z->z_LChunks = chunk->c_Next; 659 if (z->z_LChunks == NULL) 660 z->z_LChunksp = &z->z_LChunks; 661 goto done; 662 } 663 664 /* 665 * No chunks are available in LChunks, the free chunk MUST be 666 * in the never-before-used memory area, controlled by UIndex. 667 * 668 * The consequences are very serious if our zone got corrupted so 669 * we use an explicit panic rather than a KASSERT. 670 */ 671 if (z->z_UIndex + 1 != z->z_NMax) 672 ++z->z_UIndex; 673 else 674 z->z_UIndex = 0; 675 676 if (z->z_UIndex == z->z_UEndIndex) 677 panic("slaballoc: corrupted zone"); 678 679 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 680 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 681 flags &= ~M_ZERO; 682 flags |= M_PASSIVE_ZERO; 683 } 684 chunk_mark_allocated(z, chunk); 685 goto done; 686 } 687 688 /* 689 * If all zones are exhausted we need to allocate a new zone for this 690 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 691 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 692 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 693 * we do not pre-zero it because we do not want to mess up the L1 cache. 694 * 695 * At least one subsystem, the tty code (see CROUND) expects power-of-2 696 * allocations to be power-of-2 aligned. We maintain compatibility by 697 * adjusting the base offset below. 698 */ 699 { 700 int off; 701 int *kup; 702 703 if ((z = slgd->FreeZones) != NULL) { 704 slgd->FreeZones = z->z_Next; 705 --slgd->NFreeZones; 706 bzero(z, sizeof(SLZone)); 707 z->z_Flags |= SLZF_UNOTZEROD; 708 } else { 709 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 710 if (z == NULL) 711 goto fail; 712 atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024); 713 } 714 715 /* 716 * How big is the base structure? 717 */ 718 #if defined(INVARIANTS) 719 /* 720 * Make room for z_Bitmap. An exact calculation is somewhat more 721 * complicated so don't make an exact calculation. 722 */ 723 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 724 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 725 #else 726 off = sizeof(SLZone); 727 #endif 728 729 /* 730 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 731 * Otherwise just 8-byte align the data. 732 */ 733 if ((size | (size - 1)) + 1 == (size << 1)) 734 off = (off + size - 1) & ~(size - 1); 735 else 736 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 737 z->z_Magic = ZALLOC_SLAB_MAGIC; 738 z->z_ZoneIndex = zi; 739 z->z_NMax = (ZoneSize - off) / size; 740 z->z_NFree = z->z_NMax - 1; 741 z->z_BasePtr = (char *)z + off; 742 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 743 z->z_ChunkSize = size; 744 z->z_CpuGd = gd; 745 z->z_Cpu = gd->gd_cpuid; 746 z->z_LChunksp = &z->z_LChunks; 747 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 748 z->z_Next = slgd->ZoneAry[zi]; 749 slgd->ZoneAry[zi] = z; 750 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 751 flags &= ~M_ZERO; /* already zero'd */ 752 flags |= M_PASSIVE_ZERO; 753 } 754 kup = btokup(z); 755 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 756 chunk_mark_allocated(z, chunk); 757 758 /* 759 * Slide the base index for initial allocations out of the next 760 * zone we create so we do not over-weight the lower part of the 761 * cpu memory caches. 762 */ 763 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 764 & (ZALLOC_MAX_ZONE_SIZE - 1); 765 } 766 767 done: 768 ++type->ks_inuse[gd->gd_cpuid]; 769 type->ks_memuse[gd->gd_cpuid] += size; 770 type->ks_loosememuse += size; /* not MP synchronized */ 771 crit_exit(); 772 773 if (flags & M_ZERO) 774 bzero(chunk, size); 775 #ifdef INVARIANTS 776 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 777 if (use_malloc_pattern) { 778 for (i = 0; i < size; i += sizeof(int)) { 779 *(int *)((char *)chunk + i) = -1; 780 } 781 } 782 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 783 } 784 #endif 785 logmemory(malloc_end, chunk, type, size, flags); 786 return(chunk); 787 fail: 788 crit_exit(); 789 logmemory(malloc_end, NULL, type, size, flags); 790 return(NULL); 791 } 792 793 /* 794 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 795 * 796 * Generally speaking this routine is not called very often and we do 797 * not attempt to optimize it beyond reusing the same pointer if the 798 * new size fits within the chunking of the old pointer's zone. 799 */ 800 void * 801 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 802 { 803 unsigned long osize; 804 SLZone *z; 805 void *nptr; 806 int *kup; 807 808 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 809 810 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 811 return(kmalloc(size, type, flags)); 812 if (size == 0) { 813 kfree(ptr, type); 814 return(NULL); 815 } 816 817 /* 818 * Handle oversized allocations. XXX we really should require that a 819 * size be passed to free() instead of this nonsense. 820 */ 821 kup = btokup(ptr); 822 if (*kup > 0) { 823 osize = *kup << PAGE_SHIFT; 824 if (osize == round_page(size)) 825 return(ptr); 826 if ((nptr = kmalloc(size, type, flags)) == NULL) 827 return(NULL); 828 bcopy(ptr, nptr, min(size, osize)); 829 kfree(ptr, type); 830 return(nptr); 831 } 832 833 /* 834 * Get the original allocation's zone. If the new request winds up 835 * using the same chunk size we do not have to do anything. 836 */ 837 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 838 kup = btokup(z); 839 KKASSERT(*kup < 0); 840 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 841 842 /* 843 * Allocate memory for the new request size. Note that zoneindex has 844 * already adjusted the request size to the appropriate chunk size, which 845 * should optimize our bcopy(). Then copy and return the new pointer. 846 * 847 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 848 * necessary align the result. 849 * 850 * We can only zoneindex (to align size to the chunk size) if the new 851 * size is not too large. 852 */ 853 if (size < ZoneLimit) { 854 zoneindex(&size); 855 if (z->z_ChunkSize == size) 856 return(ptr); 857 } 858 if ((nptr = kmalloc(size, type, flags)) == NULL) 859 return(NULL); 860 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 861 kfree(ptr, type); 862 return(nptr); 863 } 864 865 /* 866 * Return the kmalloc limit for this type, in bytes. 867 */ 868 long 869 kmalloc_limit(struct malloc_type *type) 870 { 871 if (type->ks_limit == 0) { 872 crit_enter(); 873 if (type->ks_limit == 0) 874 malloc_init(type); 875 crit_exit(); 876 } 877 return(type->ks_limit); 878 } 879 880 /* 881 * Allocate a copy of the specified string. 882 * 883 * (MP SAFE) (MAY BLOCK) 884 */ 885 char * 886 kstrdup(const char *str, struct malloc_type *type) 887 { 888 int zlen; /* length inclusive of terminating NUL */ 889 char *nstr; 890 891 if (str == NULL) 892 return(NULL); 893 zlen = strlen(str) + 1; 894 nstr = kmalloc(zlen, type, M_WAITOK); 895 bcopy(str, nstr, zlen); 896 return(nstr); 897 } 898 899 #ifdef SMP 900 /* 901 * Notify our cpu that a remote cpu has freed some chunks in a zone that 902 * we own. RCount will be bumped so the memory should be good, but validate 903 * that it really is. 904 */ 905 static 906 void 907 kfree_remote(void *ptr) 908 { 909 SLGlobalData *slgd; 910 SLChunk *bchunk; 911 SLZone *z; 912 int nfree; 913 int *kup; 914 915 slgd = &mycpu->gd_slab; 916 z = ptr; 917 kup = btokup(z); 918 KKASSERT(*kup == -((int)mycpuid + 1)); 919 KKASSERT(z->z_RCount > 0); 920 atomic_subtract_int(&z->z_RCount, 1); 921 922 logmemory(free_rem_beg, z, NULL, 0, 0); 923 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 924 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 925 nfree = z->z_NFree; 926 927 /* 928 * Indicate that we will no longer be off of the ZoneAry by 929 * clearing RSignal. 930 */ 931 if (z->z_RChunks) 932 z->z_RSignal = 0; 933 934 /* 935 * Atomically extract the bchunks list and then process it back 936 * into the lchunks list. We want to append our bchunks to the 937 * lchunks list and not prepend since we likely do not have 938 * cache mastership of the related data (not that it helps since 939 * we are using c_Next). 940 */ 941 while ((bchunk = z->z_RChunks) != NULL) { 942 cpu_ccfence(); 943 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 944 *z->z_LChunksp = bchunk; 945 while (bchunk) { 946 chunk_mark_free(z, bchunk); 947 z->z_LChunksp = &bchunk->c_Next; 948 bchunk = bchunk->c_Next; 949 ++z->z_NFree; 950 } 951 break; 952 } 953 } 954 if (z->z_NFree && nfree == 0) { 955 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 956 slgd->ZoneAry[z->z_ZoneIndex] = z; 957 } 958 959 /* 960 * If the zone becomes totally free, and there are other zones we 961 * can allocate from, move this zone to the FreeZones list. Since 962 * this code can be called from an IPI callback, do *NOT* try to mess 963 * with kernel_map here. Hysteresis will be performed at malloc() time. 964 * 965 * Do not move the zone if there is an IPI inflight, otherwise MP 966 * races can result in our free_remote code accessing a destroyed 967 * zone. 968 */ 969 if (z->z_NFree == z->z_NMax && 970 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 971 z->z_RCount == 0 972 ) { 973 SLZone **pz; 974 int *kup; 975 976 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; 977 z != *pz; 978 pz = &(*pz)->z_Next) { 979 ; 980 } 981 *pz = z->z_Next; 982 z->z_Magic = -1; 983 z->z_Next = slgd->FreeZones; 984 slgd->FreeZones = z; 985 ++slgd->NFreeZones; 986 kup = btokup(z); 987 *kup = 0; 988 } 989 logmemory(free_rem_end, z, bchunk, 0, 0); 990 } 991 992 #endif 993 994 /* 995 * free (SLAB ALLOCATOR) 996 * 997 * Free a memory block previously allocated by malloc. Note that we do not 998 * attempt to update ks_loosememuse as MP races could prevent us from 999 * checking memory limits in malloc. 1000 * 1001 * MPSAFE 1002 */ 1003 void 1004 kfree(void *ptr, struct malloc_type *type) 1005 { 1006 SLZone *z; 1007 SLChunk *chunk; 1008 SLGlobalData *slgd; 1009 struct globaldata *gd; 1010 int *kup; 1011 unsigned long size; 1012 #ifdef SMP 1013 SLChunk *bchunk; 1014 int rsignal; 1015 #endif 1016 1017 logmemory_quick(free_beg); 1018 gd = mycpu; 1019 slgd = &gd->gd_slab; 1020 1021 if (ptr == NULL) 1022 panic("trying to free NULL pointer"); 1023 1024 /* 1025 * Handle special 0-byte allocations 1026 */ 1027 if (ptr == ZERO_LENGTH_PTR) { 1028 logmemory(free_zero, ptr, type, -1, 0); 1029 logmemory_quick(free_end); 1030 return; 1031 } 1032 1033 /* 1034 * Panic on bad malloc type 1035 */ 1036 if (type->ks_magic != M_MAGIC) 1037 panic("free: malloc type lacks magic"); 1038 1039 /* 1040 * Handle oversized allocations. XXX we really should require that a 1041 * size be passed to free() instead of this nonsense. 1042 * 1043 * This code is never called via an ipi. 1044 */ 1045 kup = btokup(ptr); 1046 if (*kup > 0) { 1047 size = *kup << PAGE_SHIFT; 1048 *kup = 0; 1049 #ifdef INVARIANTS 1050 KKASSERT(sizeof(weirdary) <= size); 1051 bcopy(weirdary, ptr, sizeof(weirdary)); 1052 #endif 1053 /* 1054 * NOTE: For oversized allocations we do not record the 1055 * originating cpu. It gets freed on the cpu calling 1056 * kfree(). The statistics are in aggregate. 1057 * 1058 * note: XXX we have still inherited the interrupts-can't-block 1059 * assumption. An interrupt thread does not bump 1060 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1061 * primarily until we can fix softupdate's assumptions about free(). 1062 */ 1063 crit_enter(); 1064 --type->ks_inuse[gd->gd_cpuid]; 1065 type->ks_memuse[gd->gd_cpuid] -= size; 1066 if (mycpu->gd_intr_nesting_level || 1067 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) 1068 { 1069 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1070 z = (SLZone *)ptr; 1071 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1072 z->z_Next = slgd->FreeOvZones; 1073 z->z_ChunkSize = size; 1074 slgd->FreeOvZones = z; 1075 crit_exit(); 1076 } else { 1077 crit_exit(); 1078 logmemory(free_ovsz, ptr, type, size, 0); 1079 kmem_slab_free(ptr, size); /* may block */ 1080 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1081 } 1082 logmemory_quick(free_end); 1083 return; 1084 } 1085 1086 /* 1087 * Zone case. Figure out the zone based on the fact that it is 1088 * ZoneSize aligned. 1089 */ 1090 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1091 kup = btokup(z); 1092 KKASSERT(*kup < 0); 1093 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1094 1095 /* 1096 * If we do not own the zone then use atomic ops to free to the 1097 * remote cpu linked list and notify the target zone using a 1098 * passive message. 1099 * 1100 * The target zone cannot be deallocated while we own a chunk of it, 1101 * so the zone header's storage is stable until the very moment 1102 * we adjust z_RChunks. After that we cannot safely dereference (z). 1103 * 1104 * (no critical section needed) 1105 */ 1106 if (z->z_CpuGd != gd) { 1107 #ifdef SMP 1108 /* 1109 * Making these adjustments now allow us to avoid passing (type) 1110 * to the remote cpu. Note that ks_inuse/ks_memuse is being 1111 * adjusted on OUR cpu, not the zone cpu, but it should all still 1112 * sum up properly and cancel out. 1113 */ 1114 crit_enter(); 1115 --type->ks_inuse[gd->gd_cpuid]; 1116 type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize; 1117 crit_exit(); 1118 1119 /* 1120 * WARNING! This code competes with other cpus. Once we 1121 * successfully link the chunk to RChunks the remote 1122 * cpu can rip z's storage out from under us. 1123 * 1124 * Bumping RCount prevents z's storage from getting 1125 * ripped out. 1126 */ 1127 rsignal = z->z_RSignal; 1128 cpu_lfence(); 1129 if (rsignal) 1130 atomic_add_int(&z->z_RCount, 1); 1131 1132 chunk = ptr; 1133 for (;;) { 1134 bchunk = z->z_RChunks; 1135 cpu_ccfence(); 1136 chunk->c_Next = bchunk; 1137 cpu_sfence(); 1138 1139 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1140 break; 1141 } 1142 1143 /* 1144 * We have to signal the remote cpu if our actions will cause 1145 * the remote zone to be placed back on ZoneAry so it can 1146 * move the zone back on. 1147 * 1148 * We only need to deal with NULL->non-NULL RChunk transitions 1149 * and only if z_RSignal is set. We interlock by reading rsignal 1150 * before adding our chunk to RChunks. This should result in 1151 * virtually no IPI traffic. 1152 * 1153 * We can use a passive IPI to reduce overhead even further. 1154 */ 1155 if (bchunk == NULL && rsignal) { 1156 logmemory(free_request, ptr, type, z->z_ChunkSize, 0); 1157 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1158 /* z can get ripped out from under us from this point on */ 1159 } else if (rsignal) { 1160 atomic_subtract_int(&z->z_RCount, 1); 1161 /* z can get ripped out from under us from this point on */ 1162 } 1163 #else 1164 panic("Corrupt SLZone"); 1165 #endif 1166 logmemory_quick(free_end); 1167 return; 1168 } 1169 1170 /* 1171 * kfree locally 1172 */ 1173 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0); 1174 1175 crit_enter(); 1176 chunk = ptr; 1177 chunk_mark_free(z, chunk); 1178 1179 /* 1180 * Put weird data into the memory to detect modifications after freeing, 1181 * illegal pointer use after freeing (we should fault on the odd address), 1182 * and so forth. XXX needs more work, see the old malloc code. 1183 */ 1184 #ifdef INVARIANTS 1185 if (z->z_ChunkSize < sizeof(weirdary)) 1186 bcopy(weirdary, chunk, z->z_ChunkSize); 1187 else 1188 bcopy(weirdary, chunk, sizeof(weirdary)); 1189 #endif 1190 1191 /* 1192 * Add this free non-zero'd chunk to a linked list for reuse. Add 1193 * to the front of the linked list so it is more likely to be 1194 * reallocated, since it is already in our L1 cache. 1195 */ 1196 #ifdef INVARIANTS 1197 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1198 panic("BADFREE %p", chunk); 1199 #endif 1200 chunk->c_Next = z->z_LChunks; 1201 z->z_LChunks = chunk; 1202 if (chunk->c_Next == NULL) 1203 z->z_LChunksp = &chunk->c_Next; 1204 1205 #ifdef INVARIANTS 1206 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1207 panic("BADFREE2"); 1208 #endif 1209 1210 /* 1211 * Bump the number of free chunks. If it becomes non-zero the zone 1212 * must be added back onto the appropriate list. 1213 */ 1214 if (z->z_NFree++ == 0) { 1215 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1216 slgd->ZoneAry[z->z_ZoneIndex] = z; 1217 } 1218 1219 --type->ks_inuse[z->z_Cpu]; 1220 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1221 1222 /* 1223 * If the zone becomes totally free, and there are other zones we 1224 * can allocate from, move this zone to the FreeZones list. Since 1225 * this code can be called from an IPI callback, do *NOT* try to mess 1226 * with kernel_map here. Hysteresis will be performed at malloc() time. 1227 */ 1228 if (z->z_NFree == z->z_NMax && 1229 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 1230 z->z_RCount == 0 1231 ) { 1232 SLZone **pz; 1233 int *kup; 1234 1235 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 1236 ; 1237 *pz = z->z_Next; 1238 z->z_Magic = -1; 1239 z->z_Next = slgd->FreeZones; 1240 slgd->FreeZones = z; 1241 ++slgd->NFreeZones; 1242 kup = btokup(z); 1243 *kup = 0; 1244 } 1245 logmemory_quick(free_end); 1246 crit_exit(); 1247 } 1248 1249 #if defined(INVARIANTS) 1250 1251 /* 1252 * Helper routines for sanity checks 1253 */ 1254 static 1255 void 1256 chunk_mark_allocated(SLZone *z, void *chunk) 1257 { 1258 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1259 __uint32_t *bitptr; 1260 1261 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1262 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1263 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1264 bitptr = &z->z_Bitmap[bitdex >> 5]; 1265 bitdex &= 31; 1266 KASSERT((*bitptr & (1 << bitdex)) == 0, 1267 ("memory chunk %p is already allocated!", chunk)); 1268 *bitptr |= 1 << bitdex; 1269 } 1270 1271 static 1272 void 1273 chunk_mark_free(SLZone *z, void *chunk) 1274 { 1275 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1276 __uint32_t *bitptr; 1277 1278 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1279 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1280 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1281 bitptr = &z->z_Bitmap[bitdex >> 5]; 1282 bitdex &= 31; 1283 KASSERT((*bitptr & (1 << bitdex)) != 0, 1284 ("memory chunk %p is already free!", chunk)); 1285 *bitptr &= ~(1 << bitdex); 1286 } 1287 1288 #endif 1289 1290 /* 1291 * kmem_slab_alloc() 1292 * 1293 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1294 * specified alignment. M_* flags are expected in the flags field. 1295 * 1296 * Alignment must be a multiple of PAGE_SIZE. 1297 * 1298 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1299 * but when we move zalloc() over to use this function as its backend 1300 * we will have to switch to kreserve/krelease and call reserve(0) 1301 * after the new space is made available. 1302 * 1303 * Interrupt code which has preempted other code is not allowed to 1304 * use PQ_CACHE pages. However, if an interrupt thread is run 1305 * non-preemptively or blocks and then runs non-preemptively, then 1306 * it is free to use PQ_CACHE pages. 1307 */ 1308 static void * 1309 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1310 { 1311 vm_size_t i; 1312 vm_offset_t addr; 1313 int count, vmflags, base_vmflags; 1314 vm_page_t mp[ZALLOC_MAX_ZONE_SIZE / PAGE_SIZE]; 1315 thread_t td; 1316 1317 size = round_page(size); 1318 addr = vm_map_min(&kernel_map); 1319 1320 /* 1321 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 1322 * cannot block. 1323 */ 1324 if (flags & M_RNOWAIT) { 1325 if (lwkt_trytoken(&vm_token) == 0) 1326 return(NULL); 1327 } else { 1328 lwkt_gettoken(&vm_token); 1329 } 1330 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1331 crit_enter(); 1332 vm_map_lock(&kernel_map); 1333 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1334 vm_map_unlock(&kernel_map); 1335 if ((flags & M_NULLOK) == 0) 1336 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1337 vm_map_entry_release(count); 1338 crit_exit(); 1339 lwkt_reltoken(&vm_token); 1340 return(NULL); 1341 } 1342 1343 /* 1344 * kernel_object maps 1:1 to kernel_map. 1345 */ 1346 vm_object_reference(&kernel_object); 1347 vm_map_insert(&kernel_map, &count, 1348 &kernel_object, addr, addr, addr + size, 1349 VM_MAPTYPE_NORMAL, 1350 VM_PROT_ALL, VM_PROT_ALL, 1351 0); 1352 1353 td = curthread; 1354 1355 base_vmflags = 0; 1356 if (flags & M_ZERO) 1357 base_vmflags |= VM_ALLOC_ZERO; 1358 if (flags & M_USE_RESERVE) 1359 base_vmflags |= VM_ALLOC_SYSTEM; 1360 if (flags & M_USE_INTERRUPT_RESERVE) 1361 base_vmflags |= VM_ALLOC_INTERRUPT; 1362 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1363 panic("kmem_slab_alloc: bad flags %08x (%p)", 1364 flags, ((int **)&size)[-1]); 1365 } 1366 1367 1368 /* 1369 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 1370 */ 1371 for (i = 0; i < size; i += PAGE_SIZE) { 1372 vm_page_t m; 1373 1374 /* 1375 * VM_ALLOC_NORMAL can only be set if we are not preempting. 1376 * 1377 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1378 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1379 * implied in this case), though I'm not sure if we really need to 1380 * do that. 1381 */ 1382 vmflags = base_vmflags; 1383 if (flags & M_WAITOK) { 1384 if (td->td_preempted) 1385 vmflags |= VM_ALLOC_SYSTEM; 1386 else 1387 vmflags |= VM_ALLOC_NORMAL; 1388 } 1389 1390 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1391 if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0]))) 1392 mp[i / PAGE_SIZE] = m; 1393 1394 /* 1395 * If the allocation failed we either return NULL or we retry. 1396 * 1397 * If M_WAITOK is specified we wait for more memory and retry. 1398 * If M_WAITOK is specified from a preemption we yield instead of 1399 * wait. Livelock will not occur because the interrupt thread 1400 * will not be preempting anyone the second time around after the 1401 * yield. 1402 */ 1403 if (m == NULL) { 1404 if (flags & M_WAITOK) { 1405 if (td->td_preempted) { 1406 vm_map_unlock(&kernel_map); 1407 lwkt_switch(); 1408 vm_map_lock(&kernel_map); 1409 } else { 1410 vm_map_unlock(&kernel_map); 1411 vm_wait(0); 1412 vm_map_lock(&kernel_map); 1413 } 1414 i -= PAGE_SIZE; /* retry */ 1415 continue; 1416 } 1417 1418 /* 1419 * We were unable to recover, cleanup and return NULL 1420 * 1421 * (vm_token already held) 1422 */ 1423 while (i != 0) { 1424 i -= PAGE_SIZE; 1425 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1426 /* page should already be busy */ 1427 vm_page_free(m); 1428 } 1429 vm_map_delete(&kernel_map, addr, addr + size, &count); 1430 vm_map_unlock(&kernel_map); 1431 vm_map_entry_release(count); 1432 crit_exit(); 1433 lwkt_reltoken(&vm_token); 1434 return(NULL); 1435 } 1436 } 1437 1438 /* 1439 * Success! 1440 * 1441 * Mark the map entry as non-pageable using a routine that allows us to 1442 * populate the underlying pages. 1443 * 1444 * The pages were busied by the allocations above. 1445 */ 1446 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1447 crit_exit(); 1448 1449 /* 1450 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1451 */ 1452 for (i = 0; i < size; i += PAGE_SIZE) { 1453 vm_page_t m; 1454 1455 if ((i / PAGE_SIZE) < (sizeof(mp) / sizeof(mp[0]))) 1456 m = mp[i / PAGE_SIZE]; 1457 else 1458 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1459 m->valid = VM_PAGE_BITS_ALL; 1460 /* page should already be busy */ 1461 vm_page_wire(m); 1462 vm_page_wakeup(m); 1463 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1464 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1465 bzero((char *)addr + i, PAGE_SIZE); 1466 vm_page_flag_clear(m, PG_ZERO); 1467 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1468 vm_page_flag_set(m, PG_REFERENCED); 1469 } 1470 vm_map_unlock(&kernel_map); 1471 vm_map_entry_release(count); 1472 lwkt_reltoken(&vm_token); 1473 return((void *)addr); 1474 } 1475 1476 /* 1477 * kmem_slab_free() 1478 */ 1479 static void 1480 kmem_slab_free(void *ptr, vm_size_t size) 1481 { 1482 crit_enter(); 1483 lwkt_gettoken(&vm_token); 1484 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1485 lwkt_reltoken(&vm_token); 1486 crit_exit(); 1487 } 1488 1489