1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * API REQUIREMENTS AND SIDE EFFECTS 82 * 83 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 84 * have remained compatible with the following API requirements: 85 * 86 * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) 87 * + all power-of-2 sized allocations are power-of-2 aligned (twe) 88 * + malloc(0) is allowed and returns non-NULL (ahc driver) 89 * + ability to allocate arbitrarily large chunks of memory 90 */ 91 92 #include "opt_vm.h" 93 94 #include <sys/param.h> 95 #include <sys/systm.h> 96 #include <sys/kernel.h> 97 #include <sys/slaballoc.h> 98 #include <sys/mbuf.h> 99 #include <sys/vmmeter.h> 100 #include <sys/lock.h> 101 #include <sys/thread.h> 102 #include <sys/globaldata.h> 103 #include <sys/sysctl.h> 104 #include <sys/ktr.h> 105 106 #include <vm/vm.h> 107 #include <vm/vm_param.h> 108 #include <vm/vm_kern.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_object.h> 111 #include <vm/pmap.h> 112 #include <vm/vm_map.h> 113 #include <vm/vm_page.h> 114 #include <vm/vm_pageout.h> 115 116 #include <machine/cpu.h> 117 118 #include <sys/thread2.h> 119 120 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 121 122 #define MEMORY_STRING "ptr=%p type=%p size=%d flags=%04x" 123 #define MEMORY_ARG_SIZE (sizeof(void *) * 2 + sizeof(unsigned long) + \ 124 sizeof(int)) 125 126 #if !defined(KTR_MEMORY) 127 #define KTR_MEMORY KTR_ALL 128 #endif 129 KTR_INFO_MASTER(memory); 130 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0); 131 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE); 132 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE); 133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE); 134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE); 135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE); 136 #ifdef SMP 137 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE); 138 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE); 139 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE); 140 #endif 141 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0); 142 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0); 143 144 #define logmemory(name, ptr, type, size, flags) \ 145 KTR_LOG(memory_ ## name, ptr, type, size, flags) 146 #define logmemory_quick(name) \ 147 KTR_LOG(memory_ ## name) 148 149 /* 150 * Fixed globals (not per-cpu) 151 */ 152 static int ZoneSize; 153 static int ZoneLimit; 154 static int ZonePageCount; 155 static uintptr_t ZoneMask; 156 static int ZoneBigAlloc; /* in KB */ 157 static int ZoneGenAlloc; /* in KB */ 158 struct malloc_type *kmemstatistics; /* exported to vmstat */ 159 static int32_t weirdary[16]; 160 161 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 162 static void kmem_slab_free(void *ptr, vm_size_t bytes); 163 164 #if defined(INVARIANTS) 165 static void chunk_mark_allocated(SLZone *z, void *chunk); 166 static void chunk_mark_free(SLZone *z, void *chunk); 167 #else 168 #define chunk_mark_allocated(z, chunk) 169 #define chunk_mark_free(z, chunk) 170 #endif 171 172 /* 173 * Misc constants. Note that allocations that are exact multiples of 174 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 175 * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists. 176 */ 177 #define MIN_CHUNK_SIZE 8 /* in bytes */ 178 #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) 179 #define ZONE_RELS_THRESH 2 /* threshold number of zones */ 180 #define IN_SAME_PAGE_MASK (~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK) 181 182 /* 183 * The WEIRD_ADDR is used as known text to copy into free objects to 184 * try to create deterministic failure cases if the data is accessed after 185 * free. 186 */ 187 #define WEIRD_ADDR 0xdeadc0de 188 #define MAX_COPY sizeof(weirdary) 189 #define ZERO_LENGTH_PTR ((void *)-8) 190 191 /* 192 * Misc global malloc buckets 193 */ 194 195 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 196 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 197 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 198 199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 201 202 /* 203 * Initialize the slab memory allocator. We have to choose a zone size based 204 * on available physical memory. We choose a zone side which is approximately 205 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 206 * 128K. The zone size is limited to the bounds set in slaballoc.h 207 * (typically 32K min, 128K max). 208 */ 209 static void kmeminit(void *dummy); 210 211 char *ZeroPage; 212 213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 214 215 #ifdef INVARIANTS 216 /* 217 * If enabled any memory allocated without M_ZERO is initialized to -1. 218 */ 219 static int use_malloc_pattern; 220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 221 &use_malloc_pattern, 0, 222 "Initialize memory to -1 if M_ZERO not specified"); 223 #endif 224 225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 227 228 static void 229 kmeminit(void *dummy) 230 { 231 size_t limsize; 232 int usesize; 233 int i; 234 235 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 236 if (limsize > KvaSize) 237 limsize = KvaSize; 238 239 usesize = (int)(limsize / 1024); /* convert to KB */ 240 241 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 242 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 243 ZoneSize <<= 1; 244 ZoneLimit = ZoneSize / 4; 245 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 246 ZoneLimit = ZALLOC_ZONE_LIMIT; 247 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 248 ZonePageCount = ZoneSize / PAGE_SIZE; 249 250 for (i = 0; i < NELEM(weirdary); ++i) 251 weirdary[i] = WEIRD_ADDR; 252 253 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 254 255 if (bootverbose) 256 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 257 } 258 259 /* 260 * Initialize a malloc type tracking structure. 261 */ 262 void 263 malloc_init(void *data) 264 { 265 struct malloc_type *type = data; 266 size_t limsize; 267 268 if (type->ks_magic != M_MAGIC) 269 panic("malloc type lacks magic"); 270 271 if (type->ks_limit != 0) 272 return; 273 274 if (vmstats.v_page_count == 0) 275 panic("malloc_init not allowed before vm init"); 276 277 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 278 if (limsize > KvaSize) 279 limsize = KvaSize; 280 type->ks_limit = limsize / 10; 281 282 type->ks_next = kmemstatistics; 283 kmemstatistics = type; 284 } 285 286 void 287 malloc_uninit(void *data) 288 { 289 struct malloc_type *type = data; 290 struct malloc_type *t; 291 #ifdef INVARIANTS 292 int i; 293 long ttl; 294 #endif 295 296 if (type->ks_magic != M_MAGIC) 297 panic("malloc type lacks magic"); 298 299 if (vmstats.v_page_count == 0) 300 panic("malloc_uninit not allowed before vm init"); 301 302 if (type->ks_limit == 0) 303 panic("malloc_uninit on uninitialized type"); 304 305 #ifdef SMP 306 /* Make sure that all pending kfree()s are finished. */ 307 lwkt_synchronize_ipiqs("muninit"); 308 #endif 309 310 #ifdef INVARIANTS 311 /* 312 * memuse is only correct in aggregation. Due to memory being allocated 313 * on one cpu and freed on another individual array entries may be 314 * negative or positive (canceling each other out). 315 */ 316 for (i = ttl = 0; i < ncpus; ++i) 317 ttl += type->ks_memuse[i]; 318 if (ttl) { 319 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 320 ttl, type->ks_shortdesc, i); 321 } 322 #endif 323 if (type == kmemstatistics) { 324 kmemstatistics = type->ks_next; 325 } else { 326 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 327 if (t->ks_next == type) { 328 t->ks_next = type->ks_next; 329 break; 330 } 331 } 332 } 333 type->ks_next = NULL; 334 type->ks_limit = 0; 335 } 336 337 /* 338 * Increase the kmalloc pool limit for the specified pool. No changes 339 * are the made if the pool would shrink. 340 */ 341 void 342 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 343 { 344 if (type->ks_limit == 0) 345 malloc_init(type); 346 if (bytes == 0) 347 bytes = KvaSize; 348 if (type->ks_limit < bytes) 349 type->ks_limit = bytes; 350 } 351 352 /* 353 * Dynamically create a malloc pool. This function is a NOP if *typep is 354 * already non-NULL. 355 */ 356 void 357 kmalloc_create(struct malloc_type **typep, const char *descr) 358 { 359 struct malloc_type *type; 360 361 if (*typep == NULL) { 362 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 363 type->ks_magic = M_MAGIC; 364 type->ks_shortdesc = descr; 365 malloc_init(type); 366 *typep = type; 367 } 368 } 369 370 /* 371 * Destroy a dynamically created malloc pool. This function is a NOP if 372 * the pool has already been destroyed. 373 */ 374 void 375 kmalloc_destroy(struct malloc_type **typep) 376 { 377 if (*typep != NULL) { 378 malloc_uninit(*typep); 379 kfree(*typep, M_TEMP); 380 *typep = NULL; 381 } 382 } 383 384 /* 385 * Calculate the zone index for the allocation request size and set the 386 * allocation request size to that particular zone's chunk size. 387 */ 388 static __inline int 389 zoneindex(unsigned long *bytes) 390 { 391 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 392 if (n < 128) { 393 *bytes = n = (n + 7) & ~7; 394 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 395 } 396 if (n < 256) { 397 *bytes = n = (n + 15) & ~15; 398 return(n / 16 + 7); 399 } 400 if (n < 8192) { 401 if (n < 512) { 402 *bytes = n = (n + 31) & ~31; 403 return(n / 32 + 15); 404 } 405 if (n < 1024) { 406 *bytes = n = (n + 63) & ~63; 407 return(n / 64 + 23); 408 } 409 if (n < 2048) { 410 *bytes = n = (n + 127) & ~127; 411 return(n / 128 + 31); 412 } 413 if (n < 4096) { 414 *bytes = n = (n + 255) & ~255; 415 return(n / 256 + 39); 416 } 417 *bytes = n = (n + 511) & ~511; 418 return(n / 512 + 47); 419 } 420 #if ZALLOC_ZONE_LIMIT > 8192 421 if (n < 16384) { 422 *bytes = n = (n + 1023) & ~1023; 423 return(n / 1024 + 55); 424 } 425 #endif 426 #if ZALLOC_ZONE_LIMIT > 16384 427 if (n < 32768) { 428 *bytes = n = (n + 2047) & ~2047; 429 return(n / 2048 + 63); 430 } 431 #endif 432 panic("Unexpected byte count %d", n); 433 return(0); 434 } 435 436 #ifdef SLAB_DEBUG 437 /* 438 * Used to debug memory corruption issues. Record up to (typically 32) 439 * allocation sources for this zone (for a particular chunk size). 440 */ 441 442 static void 443 slab_record_source(SLZone *z, const char *file, int line) 444 { 445 int i; 446 int b = line & (SLAB_DEBUG_ENTRIES - 1); 447 448 i = b; 449 do { 450 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line) 451 return; 452 if (z->z_Sources[i].file == NULL) 453 break; 454 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1); 455 } while (i != b); 456 z->z_Sources[i].file = file; 457 z->z_Sources[i].line = line; 458 } 459 460 #endif 461 462 /* 463 * kmalloc() (SLAB ALLOCATOR) 464 * 465 * Allocate memory via the slab allocator. If the request is too large, 466 * or if it page-aligned beyond a certain size, we fall back to the 467 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 468 * &SlabMisc if you don't care. 469 * 470 * M_RNOWAIT - don't block. 471 * M_NULLOK - return NULL instead of blocking. 472 * M_ZERO - zero the returned memory. 473 * M_USE_RESERVE - allow greater drawdown of the free list 474 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 475 * 476 * MPSAFE 477 */ 478 479 #ifdef SLAB_DEBUG 480 void * 481 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags, 482 const char *file, int line) 483 #else 484 void * 485 kmalloc(unsigned long size, struct malloc_type *type, int flags) 486 #endif 487 { 488 SLZone *z; 489 SLChunk *chunk; 490 #ifdef SMP 491 SLChunk *bchunk; 492 #endif 493 SLGlobalData *slgd; 494 struct globaldata *gd; 495 int zi; 496 #ifdef INVARIANTS 497 int i; 498 #endif 499 500 logmemory_quick(malloc_beg); 501 gd = mycpu; 502 slgd = &gd->gd_slab; 503 504 /* 505 * XXX silly to have this in the critical path. 506 */ 507 if (type->ks_limit == 0) { 508 crit_enter(); 509 if (type->ks_limit == 0) 510 malloc_init(type); 511 crit_exit(); 512 } 513 ++type->ks_calls; 514 515 /* 516 * Handle the case where the limit is reached. Panic if we can't return 517 * NULL. The original malloc code looped, but this tended to 518 * simply deadlock the computer. 519 * 520 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 521 * to determine if a more complete limit check should be done. The 522 * actual memory use is tracked via ks_memuse[cpu]. 523 */ 524 while (type->ks_loosememuse >= type->ks_limit) { 525 int i; 526 long ttl; 527 528 for (i = ttl = 0; i < ncpus; ++i) 529 ttl += type->ks_memuse[i]; 530 type->ks_loosememuse = ttl; /* not MP synchronized */ 531 if ((ssize_t)ttl < 0) /* deal with occassional race */ 532 ttl = 0; 533 if (ttl >= type->ks_limit) { 534 if (flags & M_NULLOK) { 535 logmemory(malloc_end, NULL, type, size, flags); 536 return(NULL); 537 } 538 panic("%s: malloc limit exceeded", type->ks_shortdesc); 539 } 540 } 541 542 /* 543 * Handle the degenerate size == 0 case. Yes, this does happen. 544 * Return a special pointer. This is to maintain compatibility with 545 * the original malloc implementation. Certain devices, such as the 546 * adaptec driver, not only allocate 0 bytes, they check for NULL and 547 * also realloc() later on. Joy. 548 */ 549 if (size == 0) { 550 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 551 return(ZERO_LENGTH_PTR); 552 } 553 554 /* 555 * Handle hysteresis from prior frees here in malloc(). We cannot 556 * safely manipulate the kernel_map in free() due to free() possibly 557 * being called via an IPI message or from sensitive interrupt code. 558 * 559 * NOTE: ku_pagecnt must be cleared before we free the slab or we 560 * might race another cpu allocating the kva and setting 561 * ku_pagecnt. 562 */ 563 while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) { 564 crit_enter(); 565 if (slgd->NFreeZones > ZONE_RELS_THRESH) { /* crit sect race */ 566 int *kup; 567 568 z = slgd->FreeZones; 569 slgd->FreeZones = z->z_Next; 570 --slgd->NFreeZones; 571 kup = btokup(z); 572 *kup = 0; 573 kmem_slab_free(z, ZoneSize); /* may block */ 574 atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024); 575 } 576 crit_exit(); 577 } 578 579 /* 580 * XXX handle oversized frees that were queued from kfree(). 581 */ 582 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 583 crit_enter(); 584 if ((z = slgd->FreeOvZones) != NULL) { 585 vm_size_t tsize; 586 587 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 588 slgd->FreeOvZones = z->z_Next; 589 tsize = z->z_ChunkSize; 590 kmem_slab_free(z, tsize); /* may block */ 591 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 592 } 593 crit_exit(); 594 } 595 596 /* 597 * Handle large allocations directly. There should not be very many of 598 * these so performance is not a big issue. 599 * 600 * The backend allocator is pretty nasty on a SMP system. Use the 601 * slab allocator for one and two page-sized chunks even though we lose 602 * some efficiency. XXX maybe fix mmio and the elf loader instead. 603 */ 604 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 605 int *kup; 606 607 size = round_page(size); 608 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 609 if (chunk == NULL) { 610 logmemory(malloc_end, NULL, type, size, flags); 611 return(NULL); 612 } 613 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 614 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 615 flags |= M_PASSIVE_ZERO; 616 kup = btokup(chunk); 617 *kup = size / PAGE_SIZE; 618 crit_enter(); 619 goto done; 620 } 621 622 /* 623 * Attempt to allocate out of an existing zone. First try the free list, 624 * then allocate out of unallocated space. If we find a good zone move 625 * it to the head of the list so later allocations find it quickly 626 * (we might have thousands of zones in the list). 627 * 628 * Note: zoneindex() will panic of size is too large. 629 */ 630 zi = zoneindex(&size); 631 KKASSERT(zi < NZONES); 632 crit_enter(); 633 634 if ((z = slgd->ZoneAry[zi]) != NULL) { 635 /* 636 * Locate a chunk - we have to have at least one. If this is the 637 * last chunk go ahead and do the work to retrieve chunks freed 638 * from remote cpus, and if the zone is still empty move it off 639 * the ZoneAry. 640 */ 641 if (--z->z_NFree <= 0) { 642 KKASSERT(z->z_NFree == 0); 643 644 #ifdef SMP 645 /* 646 * WARNING! This code competes with other cpus. It is ok 647 * for us to not drain RChunks here but we might as well, and 648 * it is ok if more accumulate after we're done. 649 * 650 * Set RSignal before pulling rchunks off, indicating that we 651 * will be moving ourselves off of the ZoneAry. Remote ends will 652 * read RSignal before putting rchunks on thus interlocking 653 * their IPI signaling. 654 */ 655 if (z->z_RChunks == NULL) 656 atomic_swap_int(&z->z_RSignal, 1); 657 658 while ((bchunk = z->z_RChunks) != NULL) { 659 cpu_ccfence(); 660 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 661 *z->z_LChunksp = bchunk; 662 while (bchunk) { 663 chunk_mark_free(z, bchunk); 664 z->z_LChunksp = &bchunk->c_Next; 665 bchunk = bchunk->c_Next; 666 ++z->z_NFree; 667 } 668 break; 669 } 670 } 671 #endif 672 /* 673 * Remove from the zone list if no free chunks remain. 674 * Clear RSignal 675 */ 676 if (z->z_NFree == 0) { 677 slgd->ZoneAry[zi] = z->z_Next; 678 z->z_Next = NULL; 679 } else { 680 z->z_RSignal = 0; 681 } 682 } 683 684 /* 685 * Fast path, we have chunks available in z_LChunks. 686 */ 687 chunk = z->z_LChunks; 688 if (chunk) { 689 chunk_mark_allocated(z, chunk); 690 z->z_LChunks = chunk->c_Next; 691 if (z->z_LChunks == NULL) 692 z->z_LChunksp = &z->z_LChunks; 693 #ifdef SLAB_DEBUG 694 slab_record_source(z, file, line); 695 #endif 696 goto done; 697 } 698 699 /* 700 * No chunks are available in LChunks, the free chunk MUST be 701 * in the never-before-used memory area, controlled by UIndex. 702 * 703 * The consequences are very serious if our zone got corrupted so 704 * we use an explicit panic rather than a KASSERT. 705 */ 706 if (z->z_UIndex + 1 != z->z_NMax) 707 ++z->z_UIndex; 708 else 709 z->z_UIndex = 0; 710 711 if (z->z_UIndex == z->z_UEndIndex) 712 panic("slaballoc: corrupted zone"); 713 714 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 715 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 716 flags &= ~M_ZERO; 717 flags |= M_PASSIVE_ZERO; 718 } 719 chunk_mark_allocated(z, chunk); 720 #ifdef SLAB_DEBUG 721 slab_record_source(z, file, line); 722 #endif 723 goto done; 724 } 725 726 /* 727 * If all zones are exhausted we need to allocate a new zone for this 728 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 729 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 730 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 731 * we do not pre-zero it because we do not want to mess up the L1 cache. 732 * 733 * At least one subsystem, the tty code (see CROUND) expects power-of-2 734 * allocations to be power-of-2 aligned. We maintain compatibility by 735 * adjusting the base offset below. 736 */ 737 { 738 int off; 739 int *kup; 740 741 if ((z = slgd->FreeZones) != NULL) { 742 slgd->FreeZones = z->z_Next; 743 --slgd->NFreeZones; 744 bzero(z, sizeof(SLZone)); 745 z->z_Flags |= SLZF_UNOTZEROD; 746 } else { 747 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 748 if (z == NULL) 749 goto fail; 750 atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024); 751 } 752 753 /* 754 * How big is the base structure? 755 */ 756 #if defined(INVARIANTS) 757 /* 758 * Make room for z_Bitmap. An exact calculation is somewhat more 759 * complicated so don't make an exact calculation. 760 */ 761 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 762 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 763 #else 764 off = sizeof(SLZone); 765 #endif 766 767 /* 768 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 769 * Otherwise just 8-byte align the data. 770 */ 771 if ((size | (size - 1)) + 1 == (size << 1)) 772 off = (off + size - 1) & ~(size - 1); 773 else 774 off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; 775 z->z_Magic = ZALLOC_SLAB_MAGIC; 776 z->z_ZoneIndex = zi; 777 z->z_NMax = (ZoneSize - off) / size; 778 z->z_NFree = z->z_NMax - 1; 779 z->z_BasePtr = (char *)z + off; 780 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 781 z->z_ChunkSize = size; 782 z->z_CpuGd = gd; 783 z->z_Cpu = gd->gd_cpuid; 784 z->z_LChunksp = &z->z_LChunks; 785 #ifdef SLAB_DEBUG 786 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources)); 787 bzero(z->z_Sources, sizeof(z->z_Sources)); 788 #endif 789 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 790 z->z_Next = slgd->ZoneAry[zi]; 791 slgd->ZoneAry[zi] = z; 792 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 793 flags &= ~M_ZERO; /* already zero'd */ 794 flags |= M_PASSIVE_ZERO; 795 } 796 kup = btokup(z); 797 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 798 chunk_mark_allocated(z, chunk); 799 #ifdef SLAB_DEBUG 800 slab_record_source(z, file, line); 801 #endif 802 803 /* 804 * Slide the base index for initial allocations out of the next 805 * zone we create so we do not over-weight the lower part of the 806 * cpu memory caches. 807 */ 808 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 809 & (ZALLOC_MAX_ZONE_SIZE - 1); 810 } 811 812 done: 813 ++type->ks_inuse[gd->gd_cpuid]; 814 type->ks_memuse[gd->gd_cpuid] += size; 815 type->ks_loosememuse += size; /* not MP synchronized */ 816 crit_exit(); 817 818 if (flags & M_ZERO) 819 bzero(chunk, size); 820 #ifdef INVARIANTS 821 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 822 if (use_malloc_pattern) { 823 for (i = 0; i < size; i += sizeof(int)) { 824 *(int *)((char *)chunk + i) = -1; 825 } 826 } 827 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 828 } 829 #endif 830 logmemory(malloc_end, chunk, type, size, flags); 831 return(chunk); 832 fail: 833 crit_exit(); 834 logmemory(malloc_end, NULL, type, size, flags); 835 return(NULL); 836 } 837 838 /* 839 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 840 * 841 * Generally speaking this routine is not called very often and we do 842 * not attempt to optimize it beyond reusing the same pointer if the 843 * new size fits within the chunking of the old pointer's zone. 844 */ 845 #ifdef SLAB_DEBUG 846 void * 847 krealloc_debug(void *ptr, unsigned long size, 848 struct malloc_type *type, int flags, 849 const char *file, int line) 850 #else 851 void * 852 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 853 #endif 854 { 855 unsigned long osize; 856 SLZone *z; 857 void *nptr; 858 int *kup; 859 860 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 861 862 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 863 return(kmalloc_debug(size, type, flags, file, line)); 864 if (size == 0) { 865 kfree(ptr, type); 866 return(NULL); 867 } 868 869 /* 870 * Handle oversized allocations. XXX we really should require that a 871 * size be passed to free() instead of this nonsense. 872 */ 873 kup = btokup(ptr); 874 if (*kup > 0) { 875 osize = *kup << PAGE_SHIFT; 876 if (osize == round_page(size)) 877 return(ptr); 878 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 879 return(NULL); 880 bcopy(ptr, nptr, min(size, osize)); 881 kfree(ptr, type); 882 return(nptr); 883 } 884 885 /* 886 * Get the original allocation's zone. If the new request winds up 887 * using the same chunk size we do not have to do anything. 888 */ 889 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 890 kup = btokup(z); 891 KKASSERT(*kup < 0); 892 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 893 894 /* 895 * Allocate memory for the new request size. Note that zoneindex has 896 * already adjusted the request size to the appropriate chunk size, which 897 * should optimize our bcopy(). Then copy and return the new pointer. 898 * 899 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 900 * necessary align the result. 901 * 902 * We can only zoneindex (to align size to the chunk size) if the new 903 * size is not too large. 904 */ 905 if (size < ZoneLimit) { 906 zoneindex(&size); 907 if (z->z_ChunkSize == size) 908 return(ptr); 909 } 910 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 911 return(NULL); 912 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 913 kfree(ptr, type); 914 return(nptr); 915 } 916 917 /* 918 * Return the kmalloc limit for this type, in bytes. 919 */ 920 long 921 kmalloc_limit(struct malloc_type *type) 922 { 923 if (type->ks_limit == 0) { 924 crit_enter(); 925 if (type->ks_limit == 0) 926 malloc_init(type); 927 crit_exit(); 928 } 929 return(type->ks_limit); 930 } 931 932 /* 933 * Allocate a copy of the specified string. 934 * 935 * (MP SAFE) (MAY BLOCK) 936 */ 937 #ifdef SLAB_DEBUG 938 char * 939 kstrdup_debug(const char *str, struct malloc_type *type, 940 const char *file, int line) 941 #else 942 char * 943 kstrdup(const char *str, struct malloc_type *type) 944 #endif 945 { 946 int zlen; /* length inclusive of terminating NUL */ 947 char *nstr; 948 949 if (str == NULL) 950 return(NULL); 951 zlen = strlen(str) + 1; 952 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 953 bcopy(str, nstr, zlen); 954 return(nstr); 955 } 956 957 #ifdef SMP 958 /* 959 * Notify our cpu that a remote cpu has freed some chunks in a zone that 960 * we own. RCount will be bumped so the memory should be good, but validate 961 * that it really is. 962 */ 963 static 964 void 965 kfree_remote(void *ptr) 966 { 967 SLGlobalData *slgd; 968 SLChunk *bchunk; 969 SLZone *z; 970 int nfree; 971 int *kup; 972 973 slgd = &mycpu->gd_slab; 974 z = ptr; 975 kup = btokup(z); 976 KKASSERT(*kup == -((int)mycpuid + 1)); 977 KKASSERT(z->z_RCount > 0); 978 atomic_subtract_int(&z->z_RCount, 1); 979 980 logmemory(free_rem_beg, z, NULL, 0, 0); 981 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 982 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 983 nfree = z->z_NFree; 984 985 /* 986 * Indicate that we will no longer be off of the ZoneAry by 987 * clearing RSignal. 988 */ 989 if (z->z_RChunks) 990 z->z_RSignal = 0; 991 992 /* 993 * Atomically extract the bchunks list and then process it back 994 * into the lchunks list. We want to append our bchunks to the 995 * lchunks list and not prepend since we likely do not have 996 * cache mastership of the related data (not that it helps since 997 * we are using c_Next). 998 */ 999 while ((bchunk = z->z_RChunks) != NULL) { 1000 cpu_ccfence(); 1001 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 1002 *z->z_LChunksp = bchunk; 1003 while (bchunk) { 1004 chunk_mark_free(z, bchunk); 1005 z->z_LChunksp = &bchunk->c_Next; 1006 bchunk = bchunk->c_Next; 1007 ++z->z_NFree; 1008 } 1009 break; 1010 } 1011 } 1012 if (z->z_NFree && nfree == 0) { 1013 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1014 slgd->ZoneAry[z->z_ZoneIndex] = z; 1015 } 1016 1017 /* 1018 * If the zone becomes totally free, and there are other zones we 1019 * can allocate from, move this zone to the FreeZones list. Since 1020 * this code can be called from an IPI callback, do *NOT* try to mess 1021 * with kernel_map here. Hysteresis will be performed at malloc() time. 1022 * 1023 * Do not move the zone if there is an IPI inflight, otherwise MP 1024 * races can result in our free_remote code accessing a destroyed 1025 * zone. 1026 */ 1027 if (z->z_NFree == z->z_NMax && 1028 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 1029 z->z_RCount == 0 1030 ) { 1031 SLZone **pz; 1032 int *kup; 1033 1034 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; 1035 z != *pz; 1036 pz = &(*pz)->z_Next) { 1037 ; 1038 } 1039 *pz = z->z_Next; 1040 z->z_Magic = -1; 1041 z->z_Next = slgd->FreeZones; 1042 slgd->FreeZones = z; 1043 ++slgd->NFreeZones; 1044 kup = btokup(z); 1045 *kup = 0; 1046 } 1047 logmemory(free_rem_end, z, bchunk, 0, 0); 1048 } 1049 1050 #endif 1051 1052 /* 1053 * free (SLAB ALLOCATOR) 1054 * 1055 * Free a memory block previously allocated by malloc. Note that we do not 1056 * attempt to update ks_loosememuse as MP races could prevent us from 1057 * checking memory limits in malloc. 1058 * 1059 * MPSAFE 1060 */ 1061 void 1062 kfree(void *ptr, struct malloc_type *type) 1063 { 1064 SLZone *z; 1065 SLChunk *chunk; 1066 SLGlobalData *slgd; 1067 struct globaldata *gd; 1068 int *kup; 1069 unsigned long size; 1070 #ifdef SMP 1071 SLChunk *bchunk; 1072 int rsignal; 1073 #endif 1074 1075 logmemory_quick(free_beg); 1076 gd = mycpu; 1077 slgd = &gd->gd_slab; 1078 1079 if (ptr == NULL) 1080 panic("trying to free NULL pointer"); 1081 1082 /* 1083 * Handle special 0-byte allocations 1084 */ 1085 if (ptr == ZERO_LENGTH_PTR) { 1086 logmemory(free_zero, ptr, type, -1, 0); 1087 logmemory_quick(free_end); 1088 return; 1089 } 1090 1091 /* 1092 * Panic on bad malloc type 1093 */ 1094 if (type->ks_magic != M_MAGIC) 1095 panic("free: malloc type lacks magic"); 1096 1097 /* 1098 * Handle oversized allocations. XXX we really should require that a 1099 * size be passed to free() instead of this nonsense. 1100 * 1101 * This code is never called via an ipi. 1102 */ 1103 kup = btokup(ptr); 1104 if (*kup > 0) { 1105 size = *kup << PAGE_SHIFT; 1106 *kup = 0; 1107 #ifdef INVARIANTS 1108 KKASSERT(sizeof(weirdary) <= size); 1109 bcopy(weirdary, ptr, sizeof(weirdary)); 1110 #endif 1111 /* 1112 * NOTE: For oversized allocations we do not record the 1113 * originating cpu. It gets freed on the cpu calling 1114 * kfree(). The statistics are in aggregate. 1115 * 1116 * note: XXX we have still inherited the interrupts-can't-block 1117 * assumption. An interrupt thread does not bump 1118 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1119 * primarily until we can fix softupdate's assumptions about free(). 1120 */ 1121 crit_enter(); 1122 --type->ks_inuse[gd->gd_cpuid]; 1123 type->ks_memuse[gd->gd_cpuid] -= size; 1124 if (mycpu->gd_intr_nesting_level || 1125 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) 1126 { 1127 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1128 z = (SLZone *)ptr; 1129 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1130 z->z_Next = slgd->FreeOvZones; 1131 z->z_ChunkSize = size; 1132 slgd->FreeOvZones = z; 1133 crit_exit(); 1134 } else { 1135 crit_exit(); 1136 logmemory(free_ovsz, ptr, type, size, 0); 1137 kmem_slab_free(ptr, size); /* may block */ 1138 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1139 } 1140 logmemory_quick(free_end); 1141 return; 1142 } 1143 1144 /* 1145 * Zone case. Figure out the zone based on the fact that it is 1146 * ZoneSize aligned. 1147 */ 1148 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1149 kup = btokup(z); 1150 KKASSERT(*kup < 0); 1151 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1152 1153 /* 1154 * If we do not own the zone then use atomic ops to free to the 1155 * remote cpu linked list and notify the target zone using a 1156 * passive message. 1157 * 1158 * The target zone cannot be deallocated while we own a chunk of it, 1159 * so the zone header's storage is stable until the very moment 1160 * we adjust z_RChunks. After that we cannot safely dereference (z). 1161 * 1162 * (no critical section needed) 1163 */ 1164 if (z->z_CpuGd != gd) { 1165 #ifdef SMP 1166 /* 1167 * Making these adjustments now allow us to avoid passing (type) 1168 * to the remote cpu. Note that ks_inuse/ks_memuse is being 1169 * adjusted on OUR cpu, not the zone cpu, but it should all still 1170 * sum up properly and cancel out. 1171 */ 1172 crit_enter(); 1173 --type->ks_inuse[gd->gd_cpuid]; 1174 type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize; 1175 crit_exit(); 1176 1177 /* 1178 * WARNING! This code competes with other cpus. Once we 1179 * successfully link the chunk to RChunks the remote 1180 * cpu can rip z's storage out from under us. 1181 * 1182 * Bumping RCount prevents z's storage from getting 1183 * ripped out. 1184 */ 1185 rsignal = z->z_RSignal; 1186 cpu_lfence(); 1187 if (rsignal) 1188 atomic_add_int(&z->z_RCount, 1); 1189 1190 chunk = ptr; 1191 for (;;) { 1192 bchunk = z->z_RChunks; 1193 cpu_ccfence(); 1194 chunk->c_Next = bchunk; 1195 cpu_sfence(); 1196 1197 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1198 break; 1199 } 1200 1201 /* 1202 * We have to signal the remote cpu if our actions will cause 1203 * the remote zone to be placed back on ZoneAry so it can 1204 * move the zone back on. 1205 * 1206 * We only need to deal with NULL->non-NULL RChunk transitions 1207 * and only if z_RSignal is set. We interlock by reading rsignal 1208 * before adding our chunk to RChunks. This should result in 1209 * virtually no IPI traffic. 1210 * 1211 * We can use a passive IPI to reduce overhead even further. 1212 */ 1213 if (bchunk == NULL && rsignal) { 1214 logmemory(free_request, ptr, type, z->z_ChunkSize, 0); 1215 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1216 /* z can get ripped out from under us from this point on */ 1217 } else if (rsignal) { 1218 atomic_subtract_int(&z->z_RCount, 1); 1219 /* z can get ripped out from under us from this point on */ 1220 } 1221 #else 1222 panic("Corrupt SLZone"); 1223 #endif 1224 logmemory_quick(free_end); 1225 return; 1226 } 1227 1228 /* 1229 * kfree locally 1230 */ 1231 logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0); 1232 1233 crit_enter(); 1234 chunk = ptr; 1235 chunk_mark_free(z, chunk); 1236 1237 /* 1238 * Put weird data into the memory to detect modifications after freeing, 1239 * illegal pointer use after freeing (we should fault on the odd address), 1240 * and so forth. XXX needs more work, see the old malloc code. 1241 */ 1242 #ifdef INVARIANTS 1243 if (z->z_ChunkSize < sizeof(weirdary)) 1244 bcopy(weirdary, chunk, z->z_ChunkSize); 1245 else 1246 bcopy(weirdary, chunk, sizeof(weirdary)); 1247 #endif 1248 1249 /* 1250 * Add this free non-zero'd chunk to a linked list for reuse. Add 1251 * to the front of the linked list so it is more likely to be 1252 * reallocated, since it is already in our L1 cache. 1253 */ 1254 #ifdef INVARIANTS 1255 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1256 panic("BADFREE %p", chunk); 1257 #endif 1258 chunk->c_Next = z->z_LChunks; 1259 z->z_LChunks = chunk; 1260 if (chunk->c_Next == NULL) 1261 z->z_LChunksp = &chunk->c_Next; 1262 1263 #ifdef INVARIANTS 1264 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1265 panic("BADFREE2"); 1266 #endif 1267 1268 /* 1269 * Bump the number of free chunks. If it becomes non-zero the zone 1270 * must be added back onto the appropriate list. 1271 */ 1272 if (z->z_NFree++ == 0) { 1273 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1274 slgd->ZoneAry[z->z_ZoneIndex] = z; 1275 } 1276 1277 --type->ks_inuse[z->z_Cpu]; 1278 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1279 1280 /* 1281 * If the zone becomes totally free, and there are other zones we 1282 * can allocate from, move this zone to the FreeZones list. Since 1283 * this code can be called from an IPI callback, do *NOT* try to mess 1284 * with kernel_map here. Hysteresis will be performed at malloc() time. 1285 */ 1286 if (z->z_NFree == z->z_NMax && 1287 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 1288 z->z_RCount == 0 1289 ) { 1290 SLZone **pz; 1291 int *kup; 1292 1293 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 1294 ; 1295 *pz = z->z_Next; 1296 z->z_Magic = -1; 1297 z->z_Next = slgd->FreeZones; 1298 slgd->FreeZones = z; 1299 ++slgd->NFreeZones; 1300 kup = btokup(z); 1301 *kup = 0; 1302 } 1303 logmemory_quick(free_end); 1304 crit_exit(); 1305 } 1306 1307 #if defined(INVARIANTS) 1308 1309 /* 1310 * Helper routines for sanity checks 1311 */ 1312 static 1313 void 1314 chunk_mark_allocated(SLZone *z, void *chunk) 1315 { 1316 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1317 __uint32_t *bitptr; 1318 1319 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1320 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1321 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1322 bitptr = &z->z_Bitmap[bitdex >> 5]; 1323 bitdex &= 31; 1324 KASSERT((*bitptr & (1 << bitdex)) == 0, 1325 ("memory chunk %p is already allocated!", chunk)); 1326 *bitptr |= 1 << bitdex; 1327 } 1328 1329 static 1330 void 1331 chunk_mark_free(SLZone *z, void *chunk) 1332 { 1333 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1334 __uint32_t *bitptr; 1335 1336 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1337 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1338 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1339 bitptr = &z->z_Bitmap[bitdex >> 5]; 1340 bitdex &= 31; 1341 KASSERT((*bitptr & (1 << bitdex)) != 0, 1342 ("memory chunk %p is already free!", chunk)); 1343 *bitptr &= ~(1 << bitdex); 1344 } 1345 1346 #endif 1347 1348 /* 1349 * kmem_slab_alloc() 1350 * 1351 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1352 * specified alignment. M_* flags are expected in the flags field. 1353 * 1354 * Alignment must be a multiple of PAGE_SIZE. 1355 * 1356 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1357 * but when we move zalloc() over to use this function as its backend 1358 * we will have to switch to kreserve/krelease and call reserve(0) 1359 * after the new space is made available. 1360 * 1361 * Interrupt code which has preempted other code is not allowed to 1362 * use PQ_CACHE pages. However, if an interrupt thread is run 1363 * non-preemptively or blocks and then runs non-preemptively, then 1364 * it is free to use PQ_CACHE pages. 1365 */ 1366 static void * 1367 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1368 { 1369 vm_size_t i; 1370 vm_offset_t addr; 1371 int count, vmflags, base_vmflags; 1372 vm_page_t mp[ZALLOC_MAX_ZONE_SIZE / PAGE_SIZE]; 1373 thread_t td; 1374 1375 size = round_page(size); 1376 addr = vm_map_min(&kernel_map); 1377 1378 /* 1379 * Reserve properly aligned space from kernel_map. RNOWAIT allocations 1380 * cannot block. 1381 */ 1382 if (flags & M_RNOWAIT) { 1383 if (lwkt_trytoken(&vm_token) == 0) 1384 return(NULL); 1385 } else { 1386 lwkt_gettoken(&vm_token); 1387 } 1388 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1389 crit_enter(); 1390 vm_map_lock(&kernel_map); 1391 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1392 vm_map_unlock(&kernel_map); 1393 if ((flags & M_NULLOK) == 0) 1394 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1395 vm_map_entry_release(count); 1396 crit_exit(); 1397 lwkt_reltoken(&vm_token); 1398 return(NULL); 1399 } 1400 1401 /* 1402 * kernel_object maps 1:1 to kernel_map. 1403 */ 1404 vm_object_reference(&kernel_object); 1405 vm_map_insert(&kernel_map, &count, 1406 &kernel_object, addr, addr, addr + size, 1407 VM_MAPTYPE_NORMAL, 1408 VM_PROT_ALL, VM_PROT_ALL, 1409 0); 1410 1411 td = curthread; 1412 1413 base_vmflags = 0; 1414 if (flags & M_ZERO) 1415 base_vmflags |= VM_ALLOC_ZERO; 1416 if (flags & M_USE_RESERVE) 1417 base_vmflags |= VM_ALLOC_SYSTEM; 1418 if (flags & M_USE_INTERRUPT_RESERVE) 1419 base_vmflags |= VM_ALLOC_INTERRUPT; 1420 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1421 panic("kmem_slab_alloc: bad flags %08x (%p)", 1422 flags, ((int **)&size)[-1]); 1423 } 1424 1425 1426 /* 1427 * Allocate the pages. Do not mess with the PG_ZERO flag yet. 1428 */ 1429 for (i = 0; i < size; i += PAGE_SIZE) { 1430 vm_page_t m; 1431 1432 /* 1433 * VM_ALLOC_NORMAL can only be set if we are not preempting. 1434 * 1435 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1436 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1437 * implied in this case), though I'm not sure if we really need to 1438 * do that. 1439 */ 1440 vmflags = base_vmflags; 1441 if (flags & M_WAITOK) { 1442 if (td->td_preempted) 1443 vmflags |= VM_ALLOC_SYSTEM; 1444 else 1445 vmflags |= VM_ALLOC_NORMAL; 1446 } 1447 1448 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1449 if (i / PAGE_SIZE < NELEM(mp)) 1450 mp[i / PAGE_SIZE] = m; 1451 1452 /* 1453 * If the allocation failed we either return NULL or we retry. 1454 * 1455 * If M_WAITOK is specified we wait for more memory and retry. 1456 * If M_WAITOK is specified from a preemption we yield instead of 1457 * wait. Livelock will not occur because the interrupt thread 1458 * will not be preempting anyone the second time around after the 1459 * yield. 1460 */ 1461 if (m == NULL) { 1462 if (flags & M_WAITOK) { 1463 if (td->td_preempted) { 1464 vm_map_unlock(&kernel_map); 1465 lwkt_switch(); 1466 vm_map_lock(&kernel_map); 1467 } else { 1468 vm_map_unlock(&kernel_map); 1469 vm_wait(0); 1470 vm_map_lock(&kernel_map); 1471 } 1472 i -= PAGE_SIZE; /* retry */ 1473 continue; 1474 } 1475 1476 /* 1477 * We were unable to recover, cleanup and return NULL 1478 * 1479 * (vm_token already held) 1480 */ 1481 while (i != 0) { 1482 i -= PAGE_SIZE; 1483 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1484 /* page should already be busy */ 1485 vm_page_free(m); 1486 } 1487 vm_map_delete(&kernel_map, addr, addr + size, &count); 1488 vm_map_unlock(&kernel_map); 1489 vm_map_entry_release(count); 1490 crit_exit(); 1491 lwkt_reltoken(&vm_token); 1492 return(NULL); 1493 } 1494 } 1495 1496 /* 1497 * Success! 1498 * 1499 * Mark the map entry as non-pageable using a routine that allows us to 1500 * populate the underlying pages. 1501 * 1502 * The pages were busied by the allocations above. 1503 */ 1504 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1505 crit_exit(); 1506 1507 /* 1508 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1509 */ 1510 for (i = 0; i < size; i += PAGE_SIZE) { 1511 vm_page_t m; 1512 1513 if (i / PAGE_SIZE < NELEM(mp)) 1514 m = mp[i / PAGE_SIZE]; 1515 else 1516 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1517 m->valid = VM_PAGE_BITS_ALL; 1518 /* page should already be busy */ 1519 vm_page_wire(m); 1520 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1); 1521 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1522 bzero((char *)addr + i, PAGE_SIZE); 1523 vm_page_flag_clear(m, PG_ZERO); 1524 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1525 vm_page_flag_set(m, PG_REFERENCED); 1526 vm_page_wakeup(m); 1527 } 1528 vm_map_unlock(&kernel_map); 1529 vm_map_entry_release(count); 1530 lwkt_reltoken(&vm_token); 1531 return((void *)addr); 1532 } 1533 1534 /* 1535 * kmem_slab_free() 1536 */ 1537 static void 1538 kmem_slab_free(void *ptr, vm_size_t size) 1539 { 1540 crit_enter(); 1541 lwkt_gettoken(&vm_token); 1542 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1543 lwkt_reltoken(&vm_token); 1544 crit_exit(); 1545 } 1546 1547