xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 4bfff613235390e418af6fe340d465e53afba83a)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  *			API REQUIREMENTS AND SIDE EFFECTS
82  *
83  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
84  *    have remained compatible with the following API requirements:
85  *
86  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
87  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
88  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
89  *    + ability to allocate arbitrarily large chunks of memory
90  */
91 
92 #include "opt_vm.h"
93 
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kernel.h>
97 #include <sys/slaballoc.h>
98 #include <sys/mbuf.h>
99 #include <sys/vmmeter.h>
100 #include <sys/lock.h>
101 #include <sys/thread.h>
102 #include <sys/globaldata.h>
103 #include <sys/sysctl.h>
104 #include <sys/ktr.h>
105 
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_extern.h>
110 #include <vm/vm_object.h>
111 #include <vm/pmap.h>
112 #include <vm/vm_map.h>
113 #include <vm/vm_page.h>
114 #include <vm/vm_pageout.h>
115 
116 #include <machine/cpu.h>
117 
118 #include <sys/thread2.h>
119 
120 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
121 
122 #define MEMORY_STRING	"ptr=%p type=%p size=%d flags=%04x"
123 #define MEMORY_ARG_SIZE	(sizeof(void *) * 2 + sizeof(unsigned long) + 	\
124 			sizeof(int))
125 
126 #if !defined(KTR_MEMORY)
127 #define KTR_MEMORY	KTR_ALL
128 #endif
129 KTR_INFO_MASTER(memory);
130 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin", 0);
131 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARG_SIZE);
132 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARG_SIZE);
133 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARG_SIZE);
134 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARG_SIZE);
135 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARG_SIZE);
136 #ifdef SMP
137 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARG_SIZE);
138 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARG_SIZE);
139 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARG_SIZE);
140 #endif
141 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin", 0);
142 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end", 0);
143 
144 #define logmemory(name, ptr, type, size, flags)				\
145 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
146 #define logmemory_quick(name)						\
147 	KTR_LOG(memory_ ## name)
148 
149 /*
150  * Fixed globals (not per-cpu)
151  */
152 static int ZoneSize;
153 static int ZoneLimit;
154 static int ZonePageCount;
155 static uintptr_t ZoneMask;
156 static int ZoneBigAlloc;		/* in KB */
157 static int ZoneGenAlloc;		/* in KB */
158 struct malloc_type *kmemstatistics;	/* exported to vmstat */
159 static int32_t weirdary[16];
160 
161 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
162 static void kmem_slab_free(void *ptr, vm_size_t bytes);
163 
164 #if defined(INVARIANTS)
165 static void chunk_mark_allocated(SLZone *z, void *chunk);
166 static void chunk_mark_free(SLZone *z, void *chunk);
167 #else
168 #define chunk_mark_allocated(z, chunk)
169 #define chunk_mark_free(z, chunk)
170 #endif
171 
172 /*
173  * Misc constants.  Note that allocations that are exact multiples of
174  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
175  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
176  */
177 #define MIN_CHUNK_SIZE		8		/* in bytes */
178 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
179 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
180 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
181 
182 /*
183  * The WEIRD_ADDR is used as known text to copy into free objects to
184  * try to create deterministic failure cases if the data is accessed after
185  * free.
186  */
187 #define WEIRD_ADDR      0xdeadc0de
188 #define MAX_COPY        sizeof(weirdary)
189 #define ZERO_LENGTH_PTR	((void *)-8)
190 
191 /*
192  * Misc global malloc buckets
193  */
194 
195 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
196 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
197 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
198 
199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
201 
202 /*
203  * Initialize the slab memory allocator.  We have to choose a zone size based
204  * on available physical memory.  We choose a zone side which is approximately
205  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
206  * 128K.  The zone size is limited to the bounds set in slaballoc.h
207  * (typically 32K min, 128K max).
208  */
209 static void kmeminit(void *dummy);
210 
211 char *ZeroPage;
212 
213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
214 
215 #ifdef INVARIANTS
216 /*
217  * If enabled any memory allocated without M_ZERO is initialized to -1.
218  */
219 static int  use_malloc_pattern;
220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
221     &use_malloc_pattern, 0,
222     "Initialize memory to -1 if M_ZERO not specified");
223 #endif
224 
225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
227 
228 static void
229 kmeminit(void *dummy)
230 {
231     size_t limsize;
232     int usesize;
233     int i;
234 
235     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
236     if (limsize > KvaSize)
237 	limsize = KvaSize;
238 
239     usesize = (int)(limsize / 1024);	/* convert to KB */
240 
241     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
242     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
243 	ZoneSize <<= 1;
244     ZoneLimit = ZoneSize / 4;
245     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
246 	ZoneLimit = ZALLOC_ZONE_LIMIT;
247     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
248     ZonePageCount = ZoneSize / PAGE_SIZE;
249 
250     for (i = 0; i < NELEM(weirdary); ++i)
251 	weirdary[i] = WEIRD_ADDR;
252 
253     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
254 
255     if (bootverbose)
256 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
257 }
258 
259 /*
260  * Initialize a malloc type tracking structure.
261  */
262 void
263 malloc_init(void *data)
264 {
265     struct malloc_type *type = data;
266     size_t limsize;
267 
268     if (type->ks_magic != M_MAGIC)
269 	panic("malloc type lacks magic");
270 
271     if (type->ks_limit != 0)
272 	return;
273 
274     if (vmstats.v_page_count == 0)
275 	panic("malloc_init not allowed before vm init");
276 
277     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
278     if (limsize > KvaSize)
279 	limsize = KvaSize;
280     type->ks_limit = limsize / 10;
281 
282     type->ks_next = kmemstatistics;
283     kmemstatistics = type;
284 }
285 
286 void
287 malloc_uninit(void *data)
288 {
289     struct malloc_type *type = data;
290     struct malloc_type *t;
291 #ifdef INVARIANTS
292     int i;
293     long ttl;
294 #endif
295 
296     if (type->ks_magic != M_MAGIC)
297 	panic("malloc type lacks magic");
298 
299     if (vmstats.v_page_count == 0)
300 	panic("malloc_uninit not allowed before vm init");
301 
302     if (type->ks_limit == 0)
303 	panic("malloc_uninit on uninitialized type");
304 
305 #ifdef SMP
306     /* Make sure that all pending kfree()s are finished. */
307     lwkt_synchronize_ipiqs("muninit");
308 #endif
309 
310 #ifdef INVARIANTS
311     /*
312      * memuse is only correct in aggregation.  Due to memory being allocated
313      * on one cpu and freed on another individual array entries may be
314      * negative or positive (canceling each other out).
315      */
316     for (i = ttl = 0; i < ncpus; ++i)
317 	ttl += type->ks_memuse[i];
318     if (ttl) {
319 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
320 	    ttl, type->ks_shortdesc, i);
321     }
322 #endif
323     if (type == kmemstatistics) {
324 	kmemstatistics = type->ks_next;
325     } else {
326 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
327 	    if (t->ks_next == type) {
328 		t->ks_next = type->ks_next;
329 		break;
330 	    }
331 	}
332     }
333     type->ks_next = NULL;
334     type->ks_limit = 0;
335 }
336 
337 /*
338  * Increase the kmalloc pool limit for the specified pool.  No changes
339  * are the made if the pool would shrink.
340  */
341 void
342 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
343 {
344     if (type->ks_limit == 0)
345 	malloc_init(type);
346     if (bytes == 0)
347 	bytes = KvaSize;
348     if (type->ks_limit < bytes)
349 	type->ks_limit = bytes;
350 }
351 
352 /*
353  * Dynamically create a malloc pool.  This function is a NOP if *typep is
354  * already non-NULL.
355  */
356 void
357 kmalloc_create(struct malloc_type **typep, const char *descr)
358 {
359 	struct malloc_type *type;
360 
361 	if (*typep == NULL) {
362 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
363 		type->ks_magic = M_MAGIC;
364 		type->ks_shortdesc = descr;
365 		malloc_init(type);
366 		*typep = type;
367 	}
368 }
369 
370 /*
371  * Destroy a dynamically created malloc pool.  This function is a NOP if
372  * the pool has already been destroyed.
373  */
374 void
375 kmalloc_destroy(struct malloc_type **typep)
376 {
377 	if (*typep != NULL) {
378 		malloc_uninit(*typep);
379 		kfree(*typep, M_TEMP);
380 		*typep = NULL;
381 	}
382 }
383 
384 /*
385  * Calculate the zone index for the allocation request size and set the
386  * allocation request size to that particular zone's chunk size.
387  */
388 static __inline int
389 zoneindex(unsigned long *bytes)
390 {
391     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
392     if (n < 128) {
393 	*bytes = n = (n + 7) & ~7;
394 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
395     }
396     if (n < 256) {
397 	*bytes = n = (n + 15) & ~15;
398 	return(n / 16 + 7);
399     }
400     if (n < 8192) {
401 	if (n < 512) {
402 	    *bytes = n = (n + 31) & ~31;
403 	    return(n / 32 + 15);
404 	}
405 	if (n < 1024) {
406 	    *bytes = n = (n + 63) & ~63;
407 	    return(n / 64 + 23);
408 	}
409 	if (n < 2048) {
410 	    *bytes = n = (n + 127) & ~127;
411 	    return(n / 128 + 31);
412 	}
413 	if (n < 4096) {
414 	    *bytes = n = (n + 255) & ~255;
415 	    return(n / 256 + 39);
416 	}
417 	*bytes = n = (n + 511) & ~511;
418 	return(n / 512 + 47);
419     }
420 #if ZALLOC_ZONE_LIMIT > 8192
421     if (n < 16384) {
422 	*bytes = n = (n + 1023) & ~1023;
423 	return(n / 1024 + 55);
424     }
425 #endif
426 #if ZALLOC_ZONE_LIMIT > 16384
427     if (n < 32768) {
428 	*bytes = n = (n + 2047) & ~2047;
429 	return(n / 2048 + 63);
430     }
431 #endif
432     panic("Unexpected byte count %d", n);
433     return(0);
434 }
435 
436 #ifdef SLAB_DEBUG
437 /*
438  * Used to debug memory corruption issues.  Record up to (typically 32)
439  * allocation sources for this zone (for a particular chunk size).
440  */
441 
442 static void
443 slab_record_source(SLZone *z, const char *file, int line)
444 {
445     int i;
446     int b = line & (SLAB_DEBUG_ENTRIES - 1);
447 
448     i = b;
449     do {
450 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
451 		return;
452 	if (z->z_Sources[i].file == NULL)
453 		break;
454 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
455     } while (i != b);
456     z->z_Sources[i].file = file;
457     z->z_Sources[i].line = line;
458 }
459 
460 #endif
461 
462 /*
463  * kmalloc()	(SLAB ALLOCATOR)
464  *
465  *	Allocate memory via the slab allocator.  If the request is too large,
466  *	or if it page-aligned beyond a certain size, we fall back to the
467  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
468  *	&SlabMisc if you don't care.
469  *
470  *	M_RNOWAIT	- don't block.
471  *	M_NULLOK	- return NULL instead of blocking.
472  *	M_ZERO		- zero the returned memory.
473  *	M_USE_RESERVE	- allow greater drawdown of the free list
474  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
475  *
476  * MPSAFE
477  */
478 
479 #ifdef SLAB_DEBUG
480 void *
481 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
482 	      const char *file, int line)
483 #else
484 void *
485 kmalloc(unsigned long size, struct malloc_type *type, int flags)
486 #endif
487 {
488     SLZone *z;
489     SLChunk *chunk;
490 #ifdef SMP
491     SLChunk *bchunk;
492 #endif
493     SLGlobalData *slgd;
494     struct globaldata *gd;
495     int zi;
496 #ifdef INVARIANTS
497     int i;
498 #endif
499 
500     logmemory_quick(malloc_beg);
501     gd = mycpu;
502     slgd = &gd->gd_slab;
503 
504     /*
505      * XXX silly to have this in the critical path.
506      */
507     if (type->ks_limit == 0) {
508 	crit_enter();
509 	if (type->ks_limit == 0)
510 	    malloc_init(type);
511 	crit_exit();
512     }
513     ++type->ks_calls;
514 
515     /*
516      * Handle the case where the limit is reached.  Panic if we can't return
517      * NULL.  The original malloc code looped, but this tended to
518      * simply deadlock the computer.
519      *
520      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
521      * to determine if a more complete limit check should be done.  The
522      * actual memory use is tracked via ks_memuse[cpu].
523      */
524     while (type->ks_loosememuse >= type->ks_limit) {
525 	int i;
526 	long ttl;
527 
528 	for (i = ttl = 0; i < ncpus; ++i)
529 	    ttl += type->ks_memuse[i];
530 	type->ks_loosememuse = ttl;	/* not MP synchronized */
531 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
532 		ttl = 0;
533 	if (ttl >= type->ks_limit) {
534 	    if (flags & M_NULLOK) {
535 		logmemory(malloc_end, NULL, type, size, flags);
536 		return(NULL);
537 	    }
538 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
539 	}
540     }
541 
542     /*
543      * Handle the degenerate size == 0 case.  Yes, this does happen.
544      * Return a special pointer.  This is to maintain compatibility with
545      * the original malloc implementation.  Certain devices, such as the
546      * adaptec driver, not only allocate 0 bytes, they check for NULL and
547      * also realloc() later on.  Joy.
548      */
549     if (size == 0) {
550 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
551 	return(ZERO_LENGTH_PTR);
552     }
553 
554     /*
555      * Handle hysteresis from prior frees here in malloc().  We cannot
556      * safely manipulate the kernel_map in free() due to free() possibly
557      * being called via an IPI message or from sensitive interrupt code.
558      *
559      * NOTE: ku_pagecnt must be cleared before we free the slab or we
560      *	     might race another cpu allocating the kva and setting
561      *	     ku_pagecnt.
562      */
563     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_RNOWAIT) == 0) {
564 	crit_enter();
565 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
566 	    int *kup;
567 
568 	    z = slgd->FreeZones;
569 	    slgd->FreeZones = z->z_Next;
570 	    --slgd->NFreeZones;
571 	    kup = btokup(z);
572 	    *kup = 0;
573 	    kmem_slab_free(z, ZoneSize);	/* may block */
574 	    atomic_add_int(&ZoneGenAlloc, -(int)ZoneSize / 1024);
575 	}
576 	crit_exit();
577     }
578 
579     /*
580      * XXX handle oversized frees that were queued from kfree().
581      */
582     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
583 	crit_enter();
584 	if ((z = slgd->FreeOvZones) != NULL) {
585 	    vm_size_t tsize;
586 
587 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
588 	    slgd->FreeOvZones = z->z_Next;
589 	    tsize = z->z_ChunkSize;
590 	    kmem_slab_free(z, tsize);	/* may block */
591 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
592 	}
593 	crit_exit();
594     }
595 
596     /*
597      * Handle large allocations directly.  There should not be very many of
598      * these so performance is not a big issue.
599      *
600      * The backend allocator is pretty nasty on a SMP system.   Use the
601      * slab allocator for one and two page-sized chunks even though we lose
602      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
603      */
604     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
605 	int *kup;
606 
607 	size = round_page(size);
608 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
609 	if (chunk == NULL) {
610 	    logmemory(malloc_end, NULL, type, size, flags);
611 	    return(NULL);
612 	}
613 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
614 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
615 	flags |= M_PASSIVE_ZERO;
616 	kup = btokup(chunk);
617 	*kup = size / PAGE_SIZE;
618 	crit_enter();
619 	goto done;
620     }
621 
622     /*
623      * Attempt to allocate out of an existing zone.  First try the free list,
624      * then allocate out of unallocated space.  If we find a good zone move
625      * it to the head of the list so later allocations find it quickly
626      * (we might have thousands of zones in the list).
627      *
628      * Note: zoneindex() will panic of size is too large.
629      */
630     zi = zoneindex(&size);
631     KKASSERT(zi < NZONES);
632     crit_enter();
633 
634     if ((z = slgd->ZoneAry[zi]) != NULL) {
635 	/*
636 	 * Locate a chunk - we have to have at least one.  If this is the
637 	 * last chunk go ahead and do the work to retrieve chunks freed
638 	 * from remote cpus, and if the zone is still empty move it off
639 	 * the ZoneAry.
640 	 */
641 	if (--z->z_NFree <= 0) {
642 	    KKASSERT(z->z_NFree == 0);
643 
644 #ifdef SMP
645 	    /*
646 	     * WARNING! This code competes with other cpus.  It is ok
647 	     * for us to not drain RChunks here but we might as well, and
648 	     * it is ok if more accumulate after we're done.
649 	     *
650 	     * Set RSignal before pulling rchunks off, indicating that we
651 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
652 	     * read RSignal before putting rchunks on thus interlocking
653 	     * their IPI signaling.
654 	     */
655 	    if (z->z_RChunks == NULL)
656 		atomic_swap_int(&z->z_RSignal, 1);
657 
658 	    while ((bchunk = z->z_RChunks) != NULL) {
659 		cpu_ccfence();
660 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
661 		    *z->z_LChunksp = bchunk;
662 		    while (bchunk) {
663 			chunk_mark_free(z, bchunk);
664 			z->z_LChunksp = &bchunk->c_Next;
665 			bchunk = bchunk->c_Next;
666 			++z->z_NFree;
667 		    }
668 		    break;
669 		}
670 	    }
671 #endif
672 	    /*
673 	     * Remove from the zone list if no free chunks remain.
674 	     * Clear RSignal
675 	     */
676 	    if (z->z_NFree == 0) {
677 		slgd->ZoneAry[zi] = z->z_Next;
678 		z->z_Next = NULL;
679 	    } else {
680 		z->z_RSignal = 0;
681 	    }
682 	}
683 
684 	/*
685 	 * Fast path, we have chunks available in z_LChunks.
686 	 */
687 	chunk = z->z_LChunks;
688 	if (chunk) {
689 		chunk_mark_allocated(z, chunk);
690 		z->z_LChunks = chunk->c_Next;
691 		if (z->z_LChunks == NULL)
692 			z->z_LChunksp = &z->z_LChunks;
693 #ifdef SLAB_DEBUG
694 		slab_record_source(z, file, line);
695 #endif
696 		goto done;
697 	}
698 
699 	/*
700 	 * No chunks are available in LChunks, the free chunk MUST be
701 	 * in the never-before-used memory area, controlled by UIndex.
702 	 *
703 	 * The consequences are very serious if our zone got corrupted so
704 	 * we use an explicit panic rather than a KASSERT.
705 	 */
706 	if (z->z_UIndex + 1 != z->z_NMax)
707 	    ++z->z_UIndex;
708 	else
709 	    z->z_UIndex = 0;
710 
711 	if (z->z_UIndex == z->z_UEndIndex)
712 	    panic("slaballoc: corrupted zone");
713 
714 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
715 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
716 	    flags &= ~M_ZERO;
717 	    flags |= M_PASSIVE_ZERO;
718 	}
719 	chunk_mark_allocated(z, chunk);
720 #ifdef SLAB_DEBUG
721 	slab_record_source(z, file, line);
722 #endif
723 	goto done;
724     }
725 
726     /*
727      * If all zones are exhausted we need to allocate a new zone for this
728      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
729      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
730      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
731      * we do not pre-zero it because we do not want to mess up the L1 cache.
732      *
733      * At least one subsystem, the tty code (see CROUND) expects power-of-2
734      * allocations to be power-of-2 aligned.  We maintain compatibility by
735      * adjusting the base offset below.
736      */
737     {
738 	int off;
739 	int *kup;
740 
741 	if ((z = slgd->FreeZones) != NULL) {
742 	    slgd->FreeZones = z->z_Next;
743 	    --slgd->NFreeZones;
744 	    bzero(z, sizeof(SLZone));
745 	    z->z_Flags |= SLZF_UNOTZEROD;
746 	} else {
747 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
748 	    if (z == NULL)
749 		goto fail;
750 	    atomic_add_int(&ZoneGenAlloc, (int)ZoneSize / 1024);
751 	}
752 
753 	/*
754 	 * How big is the base structure?
755 	 */
756 #if defined(INVARIANTS)
757 	/*
758 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
759 	 * complicated so don't make an exact calculation.
760 	 */
761 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
762 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
763 #else
764 	off = sizeof(SLZone);
765 #endif
766 
767 	/*
768 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
769 	 * Otherwise just 8-byte align the data.
770 	 */
771 	if ((size | (size - 1)) + 1 == (size << 1))
772 	    off = (off + size - 1) & ~(size - 1);
773 	else
774 	    off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
775 	z->z_Magic = ZALLOC_SLAB_MAGIC;
776 	z->z_ZoneIndex = zi;
777 	z->z_NMax = (ZoneSize - off) / size;
778 	z->z_NFree = z->z_NMax - 1;
779 	z->z_BasePtr = (char *)z + off;
780 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
781 	z->z_ChunkSize = size;
782 	z->z_CpuGd = gd;
783 	z->z_Cpu = gd->gd_cpuid;
784 	z->z_LChunksp = &z->z_LChunks;
785 #ifdef SLAB_DEBUG
786 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
787 	bzero(z->z_Sources, sizeof(z->z_Sources));
788 #endif
789 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
790 	z->z_Next = slgd->ZoneAry[zi];
791 	slgd->ZoneAry[zi] = z;
792 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
793 	    flags &= ~M_ZERO;	/* already zero'd */
794 	    flags |= M_PASSIVE_ZERO;
795 	}
796 	kup = btokup(z);
797 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
798 	chunk_mark_allocated(z, chunk);
799 #ifdef SLAB_DEBUG
800 	slab_record_source(z, file, line);
801 #endif
802 
803 	/*
804 	 * Slide the base index for initial allocations out of the next
805 	 * zone we create so we do not over-weight the lower part of the
806 	 * cpu memory caches.
807 	 */
808 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
809 				& (ZALLOC_MAX_ZONE_SIZE - 1);
810     }
811 
812 done:
813     ++type->ks_inuse[gd->gd_cpuid];
814     type->ks_memuse[gd->gd_cpuid] += size;
815     type->ks_loosememuse += size;	/* not MP synchronized */
816     crit_exit();
817 
818     if (flags & M_ZERO)
819 	bzero(chunk, size);
820 #ifdef INVARIANTS
821     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
822 	if (use_malloc_pattern) {
823 	    for (i = 0; i < size; i += sizeof(int)) {
824 		*(int *)((char *)chunk + i) = -1;
825 	    }
826 	}
827 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
828     }
829 #endif
830     logmemory(malloc_end, chunk, type, size, flags);
831     return(chunk);
832 fail:
833     crit_exit();
834     logmemory(malloc_end, NULL, type, size, flags);
835     return(NULL);
836 }
837 
838 /*
839  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
840  *
841  * Generally speaking this routine is not called very often and we do
842  * not attempt to optimize it beyond reusing the same pointer if the
843  * new size fits within the chunking of the old pointer's zone.
844  */
845 #ifdef SLAB_DEBUG
846 void *
847 krealloc_debug(void *ptr, unsigned long size,
848 	       struct malloc_type *type, int flags,
849 	       const char *file, int line)
850 #else
851 void *
852 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
853 #endif
854 {
855     unsigned long osize;
856     SLZone *z;
857     void *nptr;
858     int *kup;
859 
860     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
861 
862     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
863 	return(kmalloc_debug(size, type, flags, file, line));
864     if (size == 0) {
865 	kfree(ptr, type);
866 	return(NULL);
867     }
868 
869     /*
870      * Handle oversized allocations.  XXX we really should require that a
871      * size be passed to free() instead of this nonsense.
872      */
873     kup = btokup(ptr);
874     if (*kup > 0) {
875 	osize = *kup << PAGE_SHIFT;
876 	if (osize == round_page(size))
877 	    return(ptr);
878 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
879 	    return(NULL);
880 	bcopy(ptr, nptr, min(size, osize));
881 	kfree(ptr, type);
882 	return(nptr);
883     }
884 
885     /*
886      * Get the original allocation's zone.  If the new request winds up
887      * using the same chunk size we do not have to do anything.
888      */
889     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
890     kup = btokup(z);
891     KKASSERT(*kup < 0);
892     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
893 
894     /*
895      * Allocate memory for the new request size.  Note that zoneindex has
896      * already adjusted the request size to the appropriate chunk size, which
897      * should optimize our bcopy().  Then copy and return the new pointer.
898      *
899      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
900      * necessary align the result.
901      *
902      * We can only zoneindex (to align size to the chunk size) if the new
903      * size is not too large.
904      */
905     if (size < ZoneLimit) {
906 	zoneindex(&size);
907 	if (z->z_ChunkSize == size)
908 	    return(ptr);
909     }
910     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
911 	return(NULL);
912     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
913     kfree(ptr, type);
914     return(nptr);
915 }
916 
917 /*
918  * Return the kmalloc limit for this type, in bytes.
919  */
920 long
921 kmalloc_limit(struct malloc_type *type)
922 {
923     if (type->ks_limit == 0) {
924 	crit_enter();
925 	if (type->ks_limit == 0)
926 	    malloc_init(type);
927 	crit_exit();
928     }
929     return(type->ks_limit);
930 }
931 
932 /*
933  * Allocate a copy of the specified string.
934  *
935  * (MP SAFE) (MAY BLOCK)
936  */
937 #ifdef SLAB_DEBUG
938 char *
939 kstrdup_debug(const char *str, struct malloc_type *type,
940 	      const char *file, int line)
941 #else
942 char *
943 kstrdup(const char *str, struct malloc_type *type)
944 #endif
945 {
946     int zlen;	/* length inclusive of terminating NUL */
947     char *nstr;
948 
949     if (str == NULL)
950 	return(NULL);
951     zlen = strlen(str) + 1;
952     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
953     bcopy(str, nstr, zlen);
954     return(nstr);
955 }
956 
957 #ifdef SMP
958 /*
959  * Notify our cpu that a remote cpu has freed some chunks in a zone that
960  * we own.  RCount will be bumped so the memory should be good, but validate
961  * that it really is.
962  */
963 static
964 void
965 kfree_remote(void *ptr)
966 {
967     SLGlobalData *slgd;
968     SLChunk *bchunk;
969     SLZone *z;
970     int nfree;
971     int *kup;
972 
973     slgd = &mycpu->gd_slab;
974     z = ptr;
975     kup = btokup(z);
976     KKASSERT(*kup == -((int)mycpuid + 1));
977     KKASSERT(z->z_RCount > 0);
978     atomic_subtract_int(&z->z_RCount, 1);
979 
980     logmemory(free_rem_beg, z, NULL, 0, 0);
981     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
982     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
983     nfree = z->z_NFree;
984 
985     /*
986      * Indicate that we will no longer be off of the ZoneAry by
987      * clearing RSignal.
988      */
989     if (z->z_RChunks)
990 	z->z_RSignal = 0;
991 
992     /*
993      * Atomically extract the bchunks list and then process it back
994      * into the lchunks list.  We want to append our bchunks to the
995      * lchunks list and not prepend since we likely do not have
996      * cache mastership of the related data (not that it helps since
997      * we are using c_Next).
998      */
999     while ((bchunk = z->z_RChunks) != NULL) {
1000 	cpu_ccfence();
1001 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
1002 	    *z->z_LChunksp = bchunk;
1003 	    while (bchunk) {
1004 		    chunk_mark_free(z, bchunk);
1005 		    z->z_LChunksp = &bchunk->c_Next;
1006 		    bchunk = bchunk->c_Next;
1007 		    ++z->z_NFree;
1008 	    }
1009 	    break;
1010 	}
1011     }
1012     if (z->z_NFree && nfree == 0) {
1013 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1014 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1015     }
1016 
1017     /*
1018      * If the zone becomes totally free, and there are other zones we
1019      * can allocate from, move this zone to the FreeZones list.  Since
1020      * this code can be called from an IPI callback, do *NOT* try to mess
1021      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1022      *
1023      * Do not move the zone if there is an IPI inflight, otherwise MP
1024      * races can result in our free_remote code accessing a destroyed
1025      * zone.
1026      */
1027     if (z->z_NFree == z->z_NMax &&
1028 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1029 	z->z_RCount == 0
1030     ) {
1031 	SLZone **pz;
1032 	int *kup;
1033 
1034 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
1035 	     z != *pz;
1036 	     pz = &(*pz)->z_Next) {
1037 	    ;
1038 	}
1039 	*pz = z->z_Next;
1040 	z->z_Magic = -1;
1041 	z->z_Next = slgd->FreeZones;
1042 	slgd->FreeZones = z;
1043 	++slgd->NFreeZones;
1044 	kup = btokup(z);
1045 	*kup = 0;
1046     }
1047     logmemory(free_rem_end, z, bchunk, 0, 0);
1048 }
1049 
1050 #endif
1051 
1052 /*
1053  * free (SLAB ALLOCATOR)
1054  *
1055  * Free a memory block previously allocated by malloc.  Note that we do not
1056  * attempt to update ks_loosememuse as MP races could prevent us from
1057  * checking memory limits in malloc.
1058  *
1059  * MPSAFE
1060  */
1061 void
1062 kfree(void *ptr, struct malloc_type *type)
1063 {
1064     SLZone *z;
1065     SLChunk *chunk;
1066     SLGlobalData *slgd;
1067     struct globaldata *gd;
1068     int *kup;
1069     unsigned long size;
1070 #ifdef SMP
1071     SLChunk *bchunk;
1072     int rsignal;
1073 #endif
1074 
1075     logmemory_quick(free_beg);
1076     gd = mycpu;
1077     slgd = &gd->gd_slab;
1078 
1079     if (ptr == NULL)
1080 	panic("trying to free NULL pointer");
1081 
1082     /*
1083      * Handle special 0-byte allocations
1084      */
1085     if (ptr == ZERO_LENGTH_PTR) {
1086 	logmemory(free_zero, ptr, type, -1, 0);
1087 	logmemory_quick(free_end);
1088 	return;
1089     }
1090 
1091     /*
1092      * Panic on bad malloc type
1093      */
1094     if (type->ks_magic != M_MAGIC)
1095 	panic("free: malloc type lacks magic");
1096 
1097     /*
1098      * Handle oversized allocations.  XXX we really should require that a
1099      * size be passed to free() instead of this nonsense.
1100      *
1101      * This code is never called via an ipi.
1102      */
1103     kup = btokup(ptr);
1104     if (*kup > 0) {
1105 	size = *kup << PAGE_SHIFT;
1106 	*kup = 0;
1107 #ifdef INVARIANTS
1108 	KKASSERT(sizeof(weirdary) <= size);
1109 	bcopy(weirdary, ptr, sizeof(weirdary));
1110 #endif
1111 	/*
1112 	 * NOTE: For oversized allocations we do not record the
1113 	 *	     originating cpu.  It gets freed on the cpu calling
1114 	 *	     kfree().  The statistics are in aggregate.
1115 	 *
1116 	 * note: XXX we have still inherited the interrupts-can't-block
1117 	 * assumption.  An interrupt thread does not bump
1118 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1119 	 * primarily until we can fix softupdate's assumptions about free().
1120 	 */
1121 	crit_enter();
1122 	--type->ks_inuse[gd->gd_cpuid];
1123 	type->ks_memuse[gd->gd_cpuid] -= size;
1124 	if (mycpu->gd_intr_nesting_level ||
1125 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1126 	{
1127 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1128 	    z = (SLZone *)ptr;
1129 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1130 	    z->z_Next = slgd->FreeOvZones;
1131 	    z->z_ChunkSize = size;
1132 	    slgd->FreeOvZones = z;
1133 	    crit_exit();
1134 	} else {
1135 	    crit_exit();
1136 	    logmemory(free_ovsz, ptr, type, size, 0);
1137 	    kmem_slab_free(ptr, size);	/* may block */
1138 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1139 	}
1140 	logmemory_quick(free_end);
1141 	return;
1142     }
1143 
1144     /*
1145      * Zone case.  Figure out the zone based on the fact that it is
1146      * ZoneSize aligned.
1147      */
1148     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1149     kup = btokup(z);
1150     KKASSERT(*kup < 0);
1151     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1152 
1153     /*
1154      * If we do not own the zone then use atomic ops to free to the
1155      * remote cpu linked list and notify the target zone using a
1156      * passive message.
1157      *
1158      * The target zone cannot be deallocated while we own a chunk of it,
1159      * so the zone header's storage is stable until the very moment
1160      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1161      *
1162      * (no critical section needed)
1163      */
1164     if (z->z_CpuGd != gd) {
1165 #ifdef SMP
1166 	/*
1167 	 * Making these adjustments now allow us to avoid passing (type)
1168 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1169 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1170 	 * sum up properly and cancel out.
1171 	 */
1172 	crit_enter();
1173 	--type->ks_inuse[gd->gd_cpuid];
1174 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1175 	crit_exit();
1176 
1177 	/*
1178 	 * WARNING! This code competes with other cpus.  Once we
1179 	 *	    successfully link the chunk to RChunks the remote
1180 	 *	    cpu can rip z's storage out from under us.
1181 	 *
1182 	 *	    Bumping RCount prevents z's storage from getting
1183 	 *	    ripped out.
1184 	 */
1185 	rsignal = z->z_RSignal;
1186 	cpu_lfence();
1187 	if (rsignal)
1188 		atomic_add_int(&z->z_RCount, 1);
1189 
1190 	chunk = ptr;
1191 	for (;;) {
1192 	    bchunk = z->z_RChunks;
1193 	    cpu_ccfence();
1194 	    chunk->c_Next = bchunk;
1195 	    cpu_sfence();
1196 
1197 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1198 		break;
1199 	}
1200 
1201 	/*
1202 	 * We have to signal the remote cpu if our actions will cause
1203 	 * the remote zone to be placed back on ZoneAry so it can
1204 	 * move the zone back on.
1205 	 *
1206 	 * We only need to deal with NULL->non-NULL RChunk transitions
1207 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1208 	 * before adding our chunk to RChunks.  This should result in
1209 	 * virtually no IPI traffic.
1210 	 *
1211 	 * We can use a passive IPI to reduce overhead even further.
1212 	 */
1213 	if (bchunk == NULL && rsignal) {
1214 	    logmemory(free_request, ptr, type, z->z_ChunkSize, 0);
1215 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1216 	    /* z can get ripped out from under us from this point on */
1217 	} else if (rsignal) {
1218 	    atomic_subtract_int(&z->z_RCount, 1);
1219 	    /* z can get ripped out from under us from this point on */
1220 	}
1221 #else
1222 	panic("Corrupt SLZone");
1223 #endif
1224 	logmemory_quick(free_end);
1225 	return;
1226     }
1227 
1228     /*
1229      * kfree locally
1230      */
1231     logmemory(free_chunk, ptr, type, z->z_ChunkSize, 0);
1232 
1233     crit_enter();
1234     chunk = ptr;
1235     chunk_mark_free(z, chunk);
1236 
1237     /*
1238      * Put weird data into the memory to detect modifications after freeing,
1239      * illegal pointer use after freeing (we should fault on the odd address),
1240      * and so forth.  XXX needs more work, see the old malloc code.
1241      */
1242 #ifdef INVARIANTS
1243     if (z->z_ChunkSize < sizeof(weirdary))
1244 	bcopy(weirdary, chunk, z->z_ChunkSize);
1245     else
1246 	bcopy(weirdary, chunk, sizeof(weirdary));
1247 #endif
1248 
1249     /*
1250      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1251      * to the front of the linked list so it is more likely to be
1252      * reallocated, since it is already in our L1 cache.
1253      */
1254 #ifdef INVARIANTS
1255     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1256 	panic("BADFREE %p", chunk);
1257 #endif
1258     chunk->c_Next = z->z_LChunks;
1259     z->z_LChunks = chunk;
1260     if (chunk->c_Next == NULL)
1261 	    z->z_LChunksp = &chunk->c_Next;
1262 
1263 #ifdef INVARIANTS
1264     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1265 	panic("BADFREE2");
1266 #endif
1267 
1268     /*
1269      * Bump the number of free chunks.  If it becomes non-zero the zone
1270      * must be added back onto the appropriate list.
1271      */
1272     if (z->z_NFree++ == 0) {
1273 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1274 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1275     }
1276 
1277     --type->ks_inuse[z->z_Cpu];
1278     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1279 
1280     /*
1281      * If the zone becomes totally free, and there are other zones we
1282      * can allocate from, move this zone to the FreeZones list.  Since
1283      * this code can be called from an IPI callback, do *NOT* try to mess
1284      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1285      */
1286     if (z->z_NFree == z->z_NMax &&
1287 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1288 	z->z_RCount == 0
1289     ) {
1290 	SLZone **pz;
1291 	int *kup;
1292 
1293 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1294 	    ;
1295 	*pz = z->z_Next;
1296 	z->z_Magic = -1;
1297 	z->z_Next = slgd->FreeZones;
1298 	slgd->FreeZones = z;
1299 	++slgd->NFreeZones;
1300 	kup = btokup(z);
1301 	*kup = 0;
1302     }
1303     logmemory_quick(free_end);
1304     crit_exit();
1305 }
1306 
1307 #if defined(INVARIANTS)
1308 
1309 /*
1310  * Helper routines for sanity checks
1311  */
1312 static
1313 void
1314 chunk_mark_allocated(SLZone *z, void *chunk)
1315 {
1316     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1317     __uint32_t *bitptr;
1318 
1319     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1320     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1321 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1322     bitptr = &z->z_Bitmap[bitdex >> 5];
1323     bitdex &= 31;
1324     KASSERT((*bitptr & (1 << bitdex)) == 0,
1325 	    ("memory chunk %p is already allocated!", chunk));
1326     *bitptr |= 1 << bitdex;
1327 }
1328 
1329 static
1330 void
1331 chunk_mark_free(SLZone *z, void *chunk)
1332 {
1333     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1334     __uint32_t *bitptr;
1335 
1336     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1337     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1338 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1339     bitptr = &z->z_Bitmap[bitdex >> 5];
1340     bitdex &= 31;
1341     KASSERT((*bitptr & (1 << bitdex)) != 0,
1342 	    ("memory chunk %p is already free!", chunk));
1343     *bitptr &= ~(1 << bitdex);
1344 }
1345 
1346 #endif
1347 
1348 /*
1349  * kmem_slab_alloc()
1350  *
1351  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1352  *	specified alignment.  M_* flags are expected in the flags field.
1353  *
1354  *	Alignment must be a multiple of PAGE_SIZE.
1355  *
1356  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1357  *	but when we move zalloc() over to use this function as its backend
1358  *	we will have to switch to kreserve/krelease and call reserve(0)
1359  *	after the new space is made available.
1360  *
1361  *	Interrupt code which has preempted other code is not allowed to
1362  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1363  *	non-preemptively or blocks and then runs non-preemptively, then
1364  *	it is free to use PQ_CACHE pages.
1365  */
1366 static void *
1367 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1368 {
1369     vm_size_t i;
1370     vm_offset_t addr;
1371     int count, vmflags, base_vmflags;
1372     vm_page_t mp[ZALLOC_MAX_ZONE_SIZE / PAGE_SIZE];
1373     thread_t td;
1374 
1375     size = round_page(size);
1376     addr = vm_map_min(&kernel_map);
1377 
1378     /*
1379      * Reserve properly aligned space from kernel_map.  RNOWAIT allocations
1380      * cannot block.
1381      */
1382     if (flags & M_RNOWAIT) {
1383 	if (lwkt_trytoken(&vm_token) == 0)
1384 	    return(NULL);
1385     } else {
1386 	lwkt_gettoken(&vm_token);
1387     }
1388     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1389     crit_enter();
1390     vm_map_lock(&kernel_map);
1391     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1392 	vm_map_unlock(&kernel_map);
1393 	if ((flags & M_NULLOK) == 0)
1394 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1395 	vm_map_entry_release(count);
1396 	crit_exit();
1397 	lwkt_reltoken(&vm_token);
1398 	return(NULL);
1399     }
1400 
1401     /*
1402      * kernel_object maps 1:1 to kernel_map.
1403      */
1404     vm_object_reference(&kernel_object);
1405     vm_map_insert(&kernel_map, &count,
1406 		    &kernel_object, addr, addr, addr + size,
1407 		    VM_MAPTYPE_NORMAL,
1408 		    VM_PROT_ALL, VM_PROT_ALL,
1409 		    0);
1410 
1411     td = curthread;
1412 
1413     base_vmflags = 0;
1414     if (flags & M_ZERO)
1415         base_vmflags |= VM_ALLOC_ZERO;
1416     if (flags & M_USE_RESERVE)
1417 	base_vmflags |= VM_ALLOC_SYSTEM;
1418     if (flags & M_USE_INTERRUPT_RESERVE)
1419         base_vmflags |= VM_ALLOC_INTERRUPT;
1420     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1421 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1422 	      flags, ((int **)&size)[-1]);
1423     }
1424 
1425 
1426     /*
1427      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
1428      */
1429     for (i = 0; i < size; i += PAGE_SIZE) {
1430 	vm_page_t m;
1431 
1432 	/*
1433 	 * VM_ALLOC_NORMAL can only be set if we are not preempting.
1434 	 *
1435 	 * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1436 	 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1437 	 * implied in this case), though I'm not sure if we really need to
1438 	 * do that.
1439 	 */
1440 	vmflags = base_vmflags;
1441 	if (flags & M_WAITOK) {
1442 	    if (td->td_preempted)
1443 		vmflags |= VM_ALLOC_SYSTEM;
1444 	    else
1445 		vmflags |= VM_ALLOC_NORMAL;
1446 	}
1447 
1448 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1449 	if (i / PAGE_SIZE < NELEM(mp))
1450 		mp[i / PAGE_SIZE] = m;
1451 
1452 	/*
1453 	 * If the allocation failed we either return NULL or we retry.
1454 	 *
1455 	 * If M_WAITOK is specified we wait for more memory and retry.
1456 	 * If M_WAITOK is specified from a preemption we yield instead of
1457 	 * wait.  Livelock will not occur because the interrupt thread
1458 	 * will not be preempting anyone the second time around after the
1459 	 * yield.
1460 	 */
1461 	if (m == NULL) {
1462 	    if (flags & M_WAITOK) {
1463 		if (td->td_preempted) {
1464 		    vm_map_unlock(&kernel_map);
1465 		    lwkt_switch();
1466 		    vm_map_lock(&kernel_map);
1467 		} else {
1468 		    vm_map_unlock(&kernel_map);
1469 		    vm_wait(0);
1470 		    vm_map_lock(&kernel_map);
1471 		}
1472 		i -= PAGE_SIZE;	/* retry */
1473 		continue;
1474 	    }
1475 
1476 	    /*
1477 	     * We were unable to recover, cleanup and return NULL
1478 	     *
1479 	     * (vm_token already held)
1480 	     */
1481 	    while (i != 0) {
1482 		i -= PAGE_SIZE;
1483 		m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1484 		/* page should already be busy */
1485 		vm_page_free(m);
1486 	    }
1487 	    vm_map_delete(&kernel_map, addr, addr + size, &count);
1488 	    vm_map_unlock(&kernel_map);
1489 	    vm_map_entry_release(count);
1490 	    crit_exit();
1491 	    lwkt_reltoken(&vm_token);
1492 	    return(NULL);
1493 	}
1494     }
1495 
1496     /*
1497      * Success!
1498      *
1499      * Mark the map entry as non-pageable using a routine that allows us to
1500      * populate the underlying pages.
1501      *
1502      * The pages were busied by the allocations above.
1503      */
1504     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1505     crit_exit();
1506 
1507     /*
1508      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1509      */
1510     for (i = 0; i < size; i += PAGE_SIZE) {
1511 	vm_page_t m;
1512 
1513 	if (i / PAGE_SIZE < NELEM(mp))
1514 	   m = mp[i / PAGE_SIZE];
1515 	else
1516 	   m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1517 	m->valid = VM_PAGE_BITS_ALL;
1518 	/* page should already be busy */
1519 	vm_page_wire(m);
1520 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
1521 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1522 	    bzero((char *)addr + i, PAGE_SIZE);
1523 	vm_page_flag_clear(m, PG_ZERO);
1524 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1525 	vm_page_flag_set(m, PG_REFERENCED);
1526 	vm_page_wakeup(m);
1527     }
1528     vm_map_unlock(&kernel_map);
1529     vm_map_entry_release(count);
1530     lwkt_reltoken(&vm_token);
1531     return((void *)addr);
1532 }
1533 
1534 /*
1535  * kmem_slab_free()
1536  */
1537 static void
1538 kmem_slab_free(void *ptr, vm_size_t size)
1539 {
1540     crit_enter();
1541     lwkt_gettoken(&vm_token);
1542     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1543     lwkt_reltoken(&vm_token);
1544     crit_exit();
1545 }
1546 
1547