xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 4badba3841ae9f4d60211d1c5ed006e17b38c299)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 
121 #include <machine/cpu.h>
122 
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
125 
126 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
127 
128 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
129 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
130 
131 #if !defined(KTR_MEMORY)
132 #define KTR_MEMORY	KTR_ALL
133 #endif
134 KTR_INFO_MASTER(memory);
135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
146 
147 #define logmemory(name, ptr, type, size, flags)				\
148 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
149 #define logmemory_quick(name)						\
150 	KTR_LOG(memory_ ## name)
151 
152 /*
153  * Fixed globals (not per-cpu)
154  */
155 static int ZoneSize;
156 static int ZoneLimit;
157 static int ZonePageCount;
158 static uintptr_t ZoneMask;
159 static int ZoneBigAlloc;		/* in KB */
160 static int ZoneGenAlloc;		/* in KB */
161 struct malloc_type *kmemstatistics;	/* exported to vmstat */
162 static int32_t weirdary[16];
163 
164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
166 
167 #if defined(INVARIANTS)
168 static void chunk_mark_allocated(SLZone *z, void *chunk);
169 static void chunk_mark_free(SLZone *z, void *chunk);
170 #else
171 #define chunk_mark_allocated(z, chunk)
172 #define chunk_mark_free(z, chunk)
173 #endif
174 
175 /*
176  * Misc constants.  Note that allocations that are exact multiples of
177  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
178  */
179 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
180 
181 /*
182  * The WEIRD_ADDR is used as known text to copy into free objects to
183  * try to create deterministic failure cases if the data is accessed after
184  * free.
185  */
186 #define WEIRD_ADDR      0xdeadc0de
187 #define MAX_COPY        sizeof(weirdary)
188 #define ZERO_LENGTH_PTR	((void *)-8)
189 
190 /*
191  * Misc global malloc buckets
192  */
193 
194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
197 
198 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
199 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
200 
201 /*
202  * Initialize the slab memory allocator.  We have to choose a zone size based
203  * on available physical memory.  We choose a zone side which is approximately
204  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
205  * 128K.  The zone size is limited to the bounds set in slaballoc.h
206  * (typically 32K min, 128K max).
207  */
208 static void kmeminit(void *dummy);
209 
210 char *ZeroPage;
211 
212 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL)
213 
214 #ifdef INVARIANTS
215 /*
216  * If enabled any memory allocated without M_ZERO is initialized to -1.
217  */
218 static int  use_malloc_pattern;
219 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
220     &use_malloc_pattern, 0,
221     "Initialize memory to -1 if M_ZERO not specified");
222 #endif
223 
224 static int ZoneRelsThresh = ZONE_RELS_THRESH;
225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
228 static long SlabsAllocated;
229 static long SlabsFreed;
230 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, &SlabsAllocated, 0, "");
231 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, &SlabsFreed, 0, "");
232 
233 /*
234  * Returns the kernel memory size limit for the purposes of initializing
235  * various subsystem caches.  The smaller of available memory and the KVM
236  * memory space is returned.
237  *
238  * The size in megabytes is returned.
239  */
240 size_t
241 kmem_lim_size(void)
242 {
243     size_t limsize;
244 
245     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
246     if (limsize > KvaSize)
247 	limsize = KvaSize;
248     return (limsize / (1024 * 1024));
249 }
250 
251 static void
252 kmeminit(void *dummy)
253 {
254     size_t limsize;
255     int usesize;
256     int i;
257 
258     limsize = kmem_lim_size();
259     usesize = (int)(limsize * 1024);	/* convert to KB */
260 
261     /*
262      * If the machine has a large KVM space and more than 8G of ram,
263      * double the zone release threshold to reduce SMP invalidations.
264      * If more than 16G of ram, do it again.
265      *
266      * The BIOS eats a little ram so add some slop.  We want 8G worth of
267      * memory sticks to trigger the first adjustment.
268      */
269     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
270 	    if (limsize >= 7 * 1024)
271 		    ZoneRelsThresh *= 2;
272 	    if (limsize >= 15 * 1024)
273 		    ZoneRelsThresh *= 2;
274     }
275 
276     /*
277      * Calculate the zone size.  This typically calculates to
278      * ZALLOC_MAX_ZONE_SIZE
279      */
280     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
281     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
282 	ZoneSize <<= 1;
283     ZoneLimit = ZoneSize / 4;
284     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
285 	ZoneLimit = ZALLOC_ZONE_LIMIT;
286     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
287     ZonePageCount = ZoneSize / PAGE_SIZE;
288 
289     for (i = 0; i < NELEM(weirdary); ++i)
290 	weirdary[i] = WEIRD_ADDR;
291 
292     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
293 
294     if (bootverbose)
295 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
296 }
297 
298 /*
299  * Initialize a malloc type tracking structure.
300  */
301 void
302 malloc_init(void *data)
303 {
304     struct malloc_type *type = data;
305     size_t limsize;
306 
307     if (type->ks_magic != M_MAGIC)
308 	panic("malloc type lacks magic");
309 
310     if (type->ks_limit != 0)
311 	return;
312 
313     if (vmstats.v_page_count == 0)
314 	panic("malloc_init not allowed before vm init");
315 
316     limsize = kmem_lim_size() * (1024 * 1024);
317     type->ks_limit = limsize / 10;
318 
319     type->ks_next = kmemstatistics;
320     kmemstatistics = type;
321 }
322 
323 void
324 malloc_uninit(void *data)
325 {
326     struct malloc_type *type = data;
327     struct malloc_type *t;
328 #ifdef INVARIANTS
329     int i;
330     long ttl;
331 #endif
332 
333     if (type->ks_magic != M_MAGIC)
334 	panic("malloc type lacks magic");
335 
336     if (vmstats.v_page_count == 0)
337 	panic("malloc_uninit not allowed before vm init");
338 
339     if (type->ks_limit == 0)
340 	panic("malloc_uninit on uninitialized type");
341 
342     /* Make sure that all pending kfree()s are finished. */
343     lwkt_synchronize_ipiqs("muninit");
344 
345 #ifdef INVARIANTS
346     /*
347      * memuse is only correct in aggregation.  Due to memory being allocated
348      * on one cpu and freed on another individual array entries may be
349      * negative or positive (canceling each other out).
350      */
351     for (i = ttl = 0; i < ncpus; ++i)
352 	ttl += type->ks_memuse[i];
353     if (ttl) {
354 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
355 	    ttl, type->ks_shortdesc, i);
356     }
357 #endif
358     if (type == kmemstatistics) {
359 	kmemstatistics = type->ks_next;
360     } else {
361 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
362 	    if (t->ks_next == type) {
363 		t->ks_next = type->ks_next;
364 		break;
365 	    }
366 	}
367     }
368     type->ks_next = NULL;
369     type->ks_limit = 0;
370 }
371 
372 /*
373  * Increase the kmalloc pool limit for the specified pool.  No changes
374  * are the made if the pool would shrink.
375  */
376 void
377 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
378 {
379     if (type->ks_limit == 0)
380 	malloc_init(type);
381     if (bytes == 0)
382 	bytes = KvaSize;
383     if (type->ks_limit < bytes)
384 	type->ks_limit = bytes;
385 }
386 
387 /*
388  * Dynamically create a malloc pool.  This function is a NOP if *typep is
389  * already non-NULL.
390  */
391 void
392 kmalloc_create(struct malloc_type **typep, const char *descr)
393 {
394 	struct malloc_type *type;
395 
396 	if (*typep == NULL) {
397 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
398 		type->ks_magic = M_MAGIC;
399 		type->ks_shortdesc = descr;
400 		malloc_init(type);
401 		*typep = type;
402 	}
403 }
404 
405 /*
406  * Destroy a dynamically created malloc pool.  This function is a NOP if
407  * the pool has already been destroyed.
408  */
409 void
410 kmalloc_destroy(struct malloc_type **typep)
411 {
412 	if (*typep != NULL) {
413 		malloc_uninit(*typep);
414 		kfree(*typep, M_TEMP);
415 		*typep = NULL;
416 	}
417 }
418 
419 /*
420  * Calculate the zone index for the allocation request size and set the
421  * allocation request size to that particular zone's chunk size.
422  */
423 static __inline int
424 zoneindex(unsigned long *bytes, unsigned long *align)
425 {
426     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
427     if (n < 128) {
428 	*bytes = n = (n + 7) & ~7;
429 	*align = 8;
430 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
431     }
432     if (n < 256) {
433 	*bytes = n = (n + 15) & ~15;
434 	*align = 16;
435 	return(n / 16 + 7);
436     }
437     if (n < 8192) {
438 	if (n < 512) {
439 	    *bytes = n = (n + 31) & ~31;
440 	    *align = 32;
441 	    return(n / 32 + 15);
442 	}
443 	if (n < 1024) {
444 	    *bytes = n = (n + 63) & ~63;
445 	    *align = 64;
446 	    return(n / 64 + 23);
447 	}
448 	if (n < 2048) {
449 	    *bytes = n = (n + 127) & ~127;
450 	    *align = 128;
451 	    return(n / 128 + 31);
452 	}
453 	if (n < 4096) {
454 	    *bytes = n = (n + 255) & ~255;
455 	    *align = 256;
456 	    return(n / 256 + 39);
457 	}
458 	*bytes = n = (n + 511) & ~511;
459 	*align = 512;
460 	return(n / 512 + 47);
461     }
462 #if ZALLOC_ZONE_LIMIT > 8192
463     if (n < 16384) {
464 	*bytes = n = (n + 1023) & ~1023;
465 	*align = 1024;
466 	return(n / 1024 + 55);
467     }
468 #endif
469 #if ZALLOC_ZONE_LIMIT > 16384
470     if (n < 32768) {
471 	*bytes = n = (n + 2047) & ~2047;
472 	*align = 2048;
473 	return(n / 2048 + 63);
474     }
475 #endif
476     panic("Unexpected byte count %d", n);
477     return(0);
478 }
479 
480 #ifdef SLAB_DEBUG
481 /*
482  * Used to debug memory corruption issues.  Record up to (typically 32)
483  * allocation sources for this zone (for a particular chunk size).
484  */
485 
486 static void
487 slab_record_source(SLZone *z, const char *file, int line)
488 {
489     int i;
490     int b = line & (SLAB_DEBUG_ENTRIES - 1);
491 
492     i = b;
493     do {
494 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
495 		return;
496 	if (z->z_Sources[i].file == NULL)
497 		break;
498 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
499     } while (i != b);
500     z->z_Sources[i].file = file;
501     z->z_Sources[i].line = line;
502 }
503 
504 #endif
505 
506 static __inline unsigned long
507 powerof2_size(unsigned long size)
508 {
509 	int i;
510 
511 	if (size == 0 || powerof2(size))
512 		return size;
513 
514 	i = flsl(size);
515 	return (1UL << i);
516 }
517 
518 /*
519  * kmalloc()	(SLAB ALLOCATOR)
520  *
521  *	Allocate memory via the slab allocator.  If the request is too large,
522  *	or if it page-aligned beyond a certain size, we fall back to the
523  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
524  *	&SlabMisc if you don't care.
525  *
526  *	M_RNOWAIT	- don't block.
527  *	M_NULLOK	- return NULL instead of blocking.
528  *	M_ZERO		- zero the returned memory.
529  *	M_USE_RESERVE	- allow greater drawdown of the free list
530  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
531  *	M_POWEROF2	- roundup size to the nearest power of 2
532  *
533  * MPSAFE
534  */
535 
536 #ifdef SLAB_DEBUG
537 void *
538 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
539 	      const char *file, int line)
540 #else
541 void *
542 kmalloc(unsigned long size, struct malloc_type *type, int flags)
543 #endif
544 {
545     SLZone *z;
546     SLChunk *chunk;
547     SLChunk *bchunk;
548     SLGlobalData *slgd;
549     struct globaldata *gd;
550     unsigned long align;
551     int zi;
552 #ifdef INVARIANTS
553     int i;
554 #endif
555 
556     logmemory_quick(malloc_beg);
557     gd = mycpu;
558     slgd = &gd->gd_slab;
559 
560     /*
561      * XXX silly to have this in the critical path.
562      */
563     if (type->ks_limit == 0) {
564 	crit_enter();
565 	if (type->ks_limit == 0)
566 	    malloc_init(type);
567 	crit_exit();
568     }
569     ++type->ks_calls;
570 
571     if (flags & M_POWEROF2)
572 	size = powerof2_size(size);
573 
574     /*
575      * Handle the case where the limit is reached.  Panic if we can't return
576      * NULL.  The original malloc code looped, but this tended to
577      * simply deadlock the computer.
578      *
579      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
580      * to determine if a more complete limit check should be done.  The
581      * actual memory use is tracked via ks_memuse[cpu].
582      */
583     while (type->ks_loosememuse >= type->ks_limit) {
584 	int i;
585 	long ttl;
586 
587 	for (i = ttl = 0; i < ncpus; ++i)
588 	    ttl += type->ks_memuse[i];
589 	type->ks_loosememuse = ttl;	/* not MP synchronized */
590 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
591 		ttl = 0;
592 	if (ttl >= type->ks_limit) {
593 	    if (flags & M_NULLOK) {
594 		logmemory(malloc_end, NULL, type, size, flags);
595 		return(NULL);
596 	    }
597 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
598 	}
599     }
600 
601     /*
602      * Handle the degenerate size == 0 case.  Yes, this does happen.
603      * Return a special pointer.  This is to maintain compatibility with
604      * the original malloc implementation.  Certain devices, such as the
605      * adaptec driver, not only allocate 0 bytes, they check for NULL and
606      * also realloc() later on.  Joy.
607      */
608     if (size == 0) {
609 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
610 	return(ZERO_LENGTH_PTR);
611     }
612 
613     /*
614      * Handle hysteresis from prior frees here in malloc().  We cannot
615      * safely manipulate the kernel_map in free() due to free() possibly
616      * being called via an IPI message or from sensitive interrupt code.
617      *
618      * NOTE: ku_pagecnt must be cleared before we free the slab or we
619      *	     might race another cpu allocating the kva and setting
620      *	     ku_pagecnt.
621      */
622     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
623 	crit_enter();
624 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
625 	    int *kup;
626 
627 	    z = slgd->FreeZones;
628 	    slgd->FreeZones = z->z_Next;
629 	    --slgd->NFreeZones;
630 	    kup = btokup(z);
631 	    *kup = 0;
632 	    kmem_slab_free(z, ZoneSize);	/* may block */
633 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
634 	}
635 	crit_exit();
636     }
637 
638     /*
639      * XXX handle oversized frees that were queued from kfree().
640      */
641     while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) {
642 	crit_enter();
643 	if ((z = slgd->FreeOvZones) != NULL) {
644 	    vm_size_t tsize;
645 
646 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
647 	    slgd->FreeOvZones = z->z_Next;
648 	    tsize = z->z_ChunkSize;
649 	    kmem_slab_free(z, tsize);	/* may block */
650 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
651 	}
652 	crit_exit();
653     }
654 
655     /*
656      * Handle large allocations directly.  There should not be very many of
657      * these so performance is not a big issue.
658      *
659      * The backend allocator is pretty nasty on a SMP system.   Use the
660      * slab allocator for one and two page-sized chunks even though we lose
661      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
662      */
663     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
664 	int *kup;
665 
666 	size = round_page(size);
667 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
668 	if (chunk == NULL) {
669 	    logmemory(malloc_end, NULL, type, size, flags);
670 	    return(NULL);
671 	}
672 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
673 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
674 	flags |= M_PASSIVE_ZERO;
675 	kup = btokup(chunk);
676 	*kup = size / PAGE_SIZE;
677 	crit_enter();
678 	goto done;
679     }
680 
681     /*
682      * Attempt to allocate out of an existing zone.  First try the free list,
683      * then allocate out of unallocated space.  If we find a good zone move
684      * it to the head of the list so later allocations find it quickly
685      * (we might have thousands of zones in the list).
686      *
687      * Note: zoneindex() will panic of size is too large.
688      */
689     zi = zoneindex(&size, &align);
690     KKASSERT(zi < NZONES);
691     crit_enter();
692 
693     if ((z = slgd->ZoneAry[zi]) != NULL) {
694 	/*
695 	 * Locate a chunk - we have to have at least one.  If this is the
696 	 * last chunk go ahead and do the work to retrieve chunks freed
697 	 * from remote cpus, and if the zone is still empty move it off
698 	 * the ZoneAry.
699 	 */
700 	if (--z->z_NFree <= 0) {
701 	    KKASSERT(z->z_NFree == 0);
702 
703 	    /*
704 	     * WARNING! This code competes with other cpus.  It is ok
705 	     * for us to not drain RChunks here but we might as well, and
706 	     * it is ok if more accumulate after we're done.
707 	     *
708 	     * Set RSignal before pulling rchunks off, indicating that we
709 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
710 	     * read RSignal before putting rchunks on thus interlocking
711 	     * their IPI signaling.
712 	     */
713 	    if (z->z_RChunks == NULL)
714 		atomic_swap_int(&z->z_RSignal, 1);
715 
716 	    while ((bchunk = z->z_RChunks) != NULL) {
717 		cpu_ccfence();
718 		if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
719 		    *z->z_LChunksp = bchunk;
720 		    while (bchunk) {
721 			chunk_mark_free(z, bchunk);
722 			z->z_LChunksp = &bchunk->c_Next;
723 			bchunk = bchunk->c_Next;
724 			++z->z_NFree;
725 		    }
726 		    break;
727 		}
728 	    }
729 	    /*
730 	     * Remove from the zone list if no free chunks remain.
731 	     * Clear RSignal
732 	     */
733 	    if (z->z_NFree == 0) {
734 		slgd->ZoneAry[zi] = z->z_Next;
735 		z->z_Next = NULL;
736 	    } else {
737 		z->z_RSignal = 0;
738 	    }
739 	}
740 
741 	/*
742 	 * Fast path, we have chunks available in z_LChunks.
743 	 */
744 	chunk = z->z_LChunks;
745 	if (chunk) {
746 		chunk_mark_allocated(z, chunk);
747 		z->z_LChunks = chunk->c_Next;
748 		if (z->z_LChunks == NULL)
749 			z->z_LChunksp = &z->z_LChunks;
750 #ifdef SLAB_DEBUG
751 		slab_record_source(z, file, line);
752 #endif
753 		goto done;
754 	}
755 
756 	/*
757 	 * No chunks are available in LChunks, the free chunk MUST be
758 	 * in the never-before-used memory area, controlled by UIndex.
759 	 *
760 	 * The consequences are very serious if our zone got corrupted so
761 	 * we use an explicit panic rather than a KASSERT.
762 	 */
763 	if (z->z_UIndex + 1 != z->z_NMax)
764 	    ++z->z_UIndex;
765 	else
766 	    z->z_UIndex = 0;
767 
768 	if (z->z_UIndex == z->z_UEndIndex)
769 	    panic("slaballoc: corrupted zone");
770 
771 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
772 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
773 	    flags &= ~M_ZERO;
774 	    flags |= M_PASSIVE_ZERO;
775 	}
776 	chunk_mark_allocated(z, chunk);
777 #ifdef SLAB_DEBUG
778 	slab_record_source(z, file, line);
779 #endif
780 	goto done;
781     }
782 
783     /*
784      * If all zones are exhausted we need to allocate a new zone for this
785      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
786      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
787      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
788      * we do not pre-zero it because we do not want to mess up the L1 cache.
789      *
790      * At least one subsystem, the tty code (see CROUND) expects power-of-2
791      * allocations to be power-of-2 aligned.  We maintain compatibility by
792      * adjusting the base offset below.
793      */
794     {
795 	int off;
796 	int *kup;
797 
798 	if ((z = slgd->FreeZones) != NULL) {
799 	    slgd->FreeZones = z->z_Next;
800 	    --slgd->NFreeZones;
801 	    bzero(z, sizeof(SLZone));
802 	    z->z_Flags |= SLZF_UNOTZEROD;
803 	} else {
804 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
805 	    if (z == NULL)
806 		goto fail;
807 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
808 	}
809 
810 	/*
811 	 * How big is the base structure?
812 	 */
813 #if defined(INVARIANTS)
814 	/*
815 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
816 	 * complicated so don't make an exact calculation.
817 	 */
818 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
819 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
820 #else
821 	off = sizeof(SLZone);
822 #endif
823 
824 	/*
825 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
826 	 * Otherwise properly align the data according to the chunk size.
827 	 */
828 	if (powerof2(size))
829 	    align = size;
830 	off = (off + align - 1) & ~(align - 1);
831 
832 	z->z_Magic = ZALLOC_SLAB_MAGIC;
833 	z->z_ZoneIndex = zi;
834 	z->z_NMax = (ZoneSize - off) / size;
835 	z->z_NFree = z->z_NMax - 1;
836 	z->z_BasePtr = (char *)z + off;
837 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
838 	z->z_ChunkSize = size;
839 	z->z_CpuGd = gd;
840 	z->z_Cpu = gd->gd_cpuid;
841 	z->z_LChunksp = &z->z_LChunks;
842 #ifdef SLAB_DEBUG
843 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
844 	bzero(z->z_Sources, sizeof(z->z_Sources));
845 #endif
846 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
847 	z->z_Next = slgd->ZoneAry[zi];
848 	slgd->ZoneAry[zi] = z;
849 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
850 	    flags &= ~M_ZERO;	/* already zero'd */
851 	    flags |= M_PASSIVE_ZERO;
852 	}
853 	kup = btokup(z);
854 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
855 	chunk_mark_allocated(z, chunk);
856 #ifdef SLAB_DEBUG
857 	slab_record_source(z, file, line);
858 #endif
859 
860 	/*
861 	 * Slide the base index for initial allocations out of the next
862 	 * zone we create so we do not over-weight the lower part of the
863 	 * cpu memory caches.
864 	 */
865 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
866 				& (ZALLOC_MAX_ZONE_SIZE - 1);
867     }
868 
869 done:
870     ++type->ks_inuse[gd->gd_cpuid];
871     type->ks_memuse[gd->gd_cpuid] += size;
872     type->ks_loosememuse += size;	/* not MP synchronized */
873     crit_exit();
874 
875     if (flags & M_ZERO)
876 	bzero(chunk, size);
877 #ifdef INVARIANTS
878     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
879 	if (use_malloc_pattern) {
880 	    for (i = 0; i < size; i += sizeof(int)) {
881 		*(int *)((char *)chunk + i) = -1;
882 	    }
883 	}
884 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
885     }
886 #endif
887     logmemory(malloc_end, chunk, type, size, flags);
888     return(chunk);
889 fail:
890     crit_exit();
891     logmemory(malloc_end, NULL, type, size, flags);
892     return(NULL);
893 }
894 
895 /*
896  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
897  *
898  * Generally speaking this routine is not called very often and we do
899  * not attempt to optimize it beyond reusing the same pointer if the
900  * new size fits within the chunking of the old pointer's zone.
901  */
902 #ifdef SLAB_DEBUG
903 void *
904 krealloc_debug(void *ptr, unsigned long size,
905 	       struct malloc_type *type, int flags,
906 	       const char *file, int line)
907 #else
908 void *
909 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
910 #endif
911 {
912     unsigned long osize;
913     unsigned long align;
914     SLZone *z;
915     void *nptr;
916     int *kup;
917 
918     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
919 
920     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
921 	return(kmalloc_debug(size, type, flags, file, line));
922     if (size == 0) {
923 	kfree(ptr, type);
924 	return(NULL);
925     }
926 
927     /*
928      * Handle oversized allocations.  XXX we really should require that a
929      * size be passed to free() instead of this nonsense.
930      */
931     kup = btokup(ptr);
932     if (*kup > 0) {
933 	osize = *kup << PAGE_SHIFT;
934 	if (osize == round_page(size))
935 	    return(ptr);
936 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
937 	    return(NULL);
938 	bcopy(ptr, nptr, min(size, osize));
939 	kfree(ptr, type);
940 	return(nptr);
941     }
942 
943     /*
944      * Get the original allocation's zone.  If the new request winds up
945      * using the same chunk size we do not have to do anything.
946      */
947     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
948     kup = btokup(z);
949     KKASSERT(*kup < 0);
950     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
951 
952     /*
953      * Allocate memory for the new request size.  Note that zoneindex has
954      * already adjusted the request size to the appropriate chunk size, which
955      * should optimize our bcopy().  Then copy and return the new pointer.
956      *
957      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
958      * necessary align the result.
959      *
960      * We can only zoneindex (to align size to the chunk size) if the new
961      * size is not too large.
962      */
963     if (size < ZoneLimit) {
964 	zoneindex(&size, &align);
965 	if (z->z_ChunkSize == size)
966 	    return(ptr);
967     }
968     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
969 	return(NULL);
970     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
971     kfree(ptr, type);
972     return(nptr);
973 }
974 
975 /*
976  * Return the kmalloc limit for this type, in bytes.
977  */
978 long
979 kmalloc_limit(struct malloc_type *type)
980 {
981     if (type->ks_limit == 0) {
982 	crit_enter();
983 	if (type->ks_limit == 0)
984 	    malloc_init(type);
985 	crit_exit();
986     }
987     return(type->ks_limit);
988 }
989 
990 /*
991  * Allocate a copy of the specified string.
992  *
993  * (MP SAFE) (MAY BLOCK)
994  */
995 #ifdef SLAB_DEBUG
996 char *
997 kstrdup_debug(const char *str, struct malloc_type *type,
998 	      const char *file, int line)
999 #else
1000 char *
1001 kstrdup(const char *str, struct malloc_type *type)
1002 #endif
1003 {
1004     int zlen;	/* length inclusive of terminating NUL */
1005     char *nstr;
1006 
1007     if (str == NULL)
1008 	return(NULL);
1009     zlen = strlen(str) + 1;
1010     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1011     bcopy(str, nstr, zlen);
1012     return(nstr);
1013 }
1014 
1015 /*
1016  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1017  * we own.  RCount will be bumped so the memory should be good, but validate
1018  * that it really is.
1019  */
1020 static
1021 void
1022 kfree_remote(void *ptr)
1023 {
1024     SLGlobalData *slgd;
1025     SLChunk *bchunk;
1026     SLZone *z;
1027     int nfree;
1028     int *kup;
1029 
1030     slgd = &mycpu->gd_slab;
1031     z = ptr;
1032     kup = btokup(z);
1033     KKASSERT(*kup == -((int)mycpuid + 1));
1034     KKASSERT(z->z_RCount > 0);
1035     atomic_subtract_int(&z->z_RCount, 1);
1036 
1037     logmemory(free_rem_beg, z, NULL, 0L, 0);
1038     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1039     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1040     nfree = z->z_NFree;
1041 
1042     /*
1043      * Indicate that we will no longer be off of the ZoneAry by
1044      * clearing RSignal.
1045      */
1046     if (z->z_RChunks)
1047 	z->z_RSignal = 0;
1048 
1049     /*
1050      * Atomically extract the bchunks list and then process it back
1051      * into the lchunks list.  We want to append our bchunks to the
1052      * lchunks list and not prepend since we likely do not have
1053      * cache mastership of the related data (not that it helps since
1054      * we are using c_Next).
1055      */
1056     while ((bchunk = z->z_RChunks) != NULL) {
1057 	cpu_ccfence();
1058 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
1059 	    *z->z_LChunksp = bchunk;
1060 	    while (bchunk) {
1061 		    chunk_mark_free(z, bchunk);
1062 		    z->z_LChunksp = &bchunk->c_Next;
1063 		    bchunk = bchunk->c_Next;
1064 		    ++z->z_NFree;
1065 	    }
1066 	    break;
1067 	}
1068     }
1069     if (z->z_NFree && nfree == 0) {
1070 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1071 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1072     }
1073 
1074     /*
1075      * If the zone becomes totally free, and there are other zones we
1076      * can allocate from, move this zone to the FreeZones list.  Since
1077      * this code can be called from an IPI callback, do *NOT* try to mess
1078      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1079      *
1080      * Do not move the zone if there is an IPI inflight, otherwise MP
1081      * races can result in our free_remote code accessing a destroyed
1082      * zone.
1083      */
1084     if (z->z_NFree == z->z_NMax &&
1085 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1086 	z->z_RCount == 0
1087     ) {
1088 	SLZone **pz;
1089 	int *kup;
1090 
1091 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex];
1092 	     z != *pz;
1093 	     pz = &(*pz)->z_Next) {
1094 	    ;
1095 	}
1096 	*pz = z->z_Next;
1097 	z->z_Magic = -1;
1098 	z->z_Next = slgd->FreeZones;
1099 	slgd->FreeZones = z;
1100 	++slgd->NFreeZones;
1101 	kup = btokup(z);
1102 	*kup = 0;
1103     }
1104     logmemory(free_rem_end, z, bchunk, 0L, 0);
1105 }
1106 
1107 /*
1108  * free (SLAB ALLOCATOR)
1109  *
1110  * Free a memory block previously allocated by malloc.  Note that we do not
1111  * attempt to update ks_loosememuse as MP races could prevent us from
1112  * checking memory limits in malloc.
1113  *
1114  * MPSAFE
1115  */
1116 void
1117 kfree(void *ptr, struct malloc_type *type)
1118 {
1119     SLZone *z;
1120     SLChunk *chunk;
1121     SLGlobalData *slgd;
1122     struct globaldata *gd;
1123     int *kup;
1124     unsigned long size;
1125     SLChunk *bchunk;
1126     int rsignal;
1127 
1128     logmemory_quick(free_beg);
1129     gd = mycpu;
1130     slgd = &gd->gd_slab;
1131 
1132     if (ptr == NULL)
1133 	panic("trying to free NULL pointer");
1134 
1135     /*
1136      * Handle special 0-byte allocations
1137      */
1138     if (ptr == ZERO_LENGTH_PTR) {
1139 	logmemory(free_zero, ptr, type, -1UL, 0);
1140 	logmemory_quick(free_end);
1141 	return;
1142     }
1143 
1144     /*
1145      * Panic on bad malloc type
1146      */
1147     if (type->ks_magic != M_MAGIC)
1148 	panic("free: malloc type lacks magic");
1149 
1150     /*
1151      * Handle oversized allocations.  XXX we really should require that a
1152      * size be passed to free() instead of this nonsense.
1153      *
1154      * This code is never called via an ipi.
1155      */
1156     kup = btokup(ptr);
1157     if (*kup > 0) {
1158 	size = *kup << PAGE_SHIFT;
1159 	*kup = 0;
1160 #ifdef INVARIANTS
1161 	KKASSERT(sizeof(weirdary) <= size);
1162 	bcopy(weirdary, ptr, sizeof(weirdary));
1163 #endif
1164 	/*
1165 	 * NOTE: For oversized allocations we do not record the
1166 	 *	     originating cpu.  It gets freed on the cpu calling
1167 	 *	     kfree().  The statistics are in aggregate.
1168 	 *
1169 	 * note: XXX we have still inherited the interrupts-can't-block
1170 	 * assumption.  An interrupt thread does not bump
1171 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1172 	 * primarily until we can fix softupdate's assumptions about free().
1173 	 */
1174 	crit_enter();
1175 	--type->ks_inuse[gd->gd_cpuid];
1176 	type->ks_memuse[gd->gd_cpuid] -= size;
1177 	if (mycpu->gd_intr_nesting_level ||
1178 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1179 	{
1180 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1181 	    z = (SLZone *)ptr;
1182 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1183 	    z->z_Next = slgd->FreeOvZones;
1184 	    z->z_ChunkSize = size;
1185 	    slgd->FreeOvZones = z;
1186 	    crit_exit();
1187 	} else {
1188 	    crit_exit();
1189 	    logmemory(free_ovsz, ptr, type, size, 0);
1190 	    kmem_slab_free(ptr, size);	/* may block */
1191 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1192 	}
1193 	logmemory_quick(free_end);
1194 	return;
1195     }
1196 
1197     /*
1198      * Zone case.  Figure out the zone based on the fact that it is
1199      * ZoneSize aligned.
1200      */
1201     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1202     kup = btokup(z);
1203     KKASSERT(*kup < 0);
1204     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1205 
1206     /*
1207      * If we do not own the zone then use atomic ops to free to the
1208      * remote cpu linked list and notify the target zone using a
1209      * passive message.
1210      *
1211      * The target zone cannot be deallocated while we own a chunk of it,
1212      * so the zone header's storage is stable until the very moment
1213      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1214      *
1215      * (no critical section needed)
1216      */
1217     if (z->z_CpuGd != gd) {
1218 	/*
1219 	 * Making these adjustments now allow us to avoid passing (type)
1220 	 * to the remote cpu.  Note that ks_inuse/ks_memuse is being
1221 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1222 	 * sum up properly and cancel out.
1223 	 */
1224 	crit_enter();
1225 	--type->ks_inuse[gd->gd_cpuid];
1226 	type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize;
1227 	crit_exit();
1228 
1229 	/*
1230 	 * WARNING! This code competes with other cpus.  Once we
1231 	 *	    successfully link the chunk to RChunks the remote
1232 	 *	    cpu can rip z's storage out from under us.
1233 	 *
1234 	 *	    Bumping RCount prevents z's storage from getting
1235 	 *	    ripped out.
1236 	 */
1237 	rsignal = z->z_RSignal;
1238 	cpu_lfence();
1239 	if (rsignal)
1240 		atomic_add_int(&z->z_RCount, 1);
1241 
1242 	chunk = ptr;
1243 	for (;;) {
1244 	    bchunk = z->z_RChunks;
1245 	    cpu_ccfence();
1246 	    chunk->c_Next = bchunk;
1247 	    cpu_sfence();
1248 
1249 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1250 		break;
1251 	}
1252 
1253 	/*
1254 	 * We have to signal the remote cpu if our actions will cause
1255 	 * the remote zone to be placed back on ZoneAry so it can
1256 	 * move the zone back on.
1257 	 *
1258 	 * We only need to deal with NULL->non-NULL RChunk transitions
1259 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1260 	 * before adding our chunk to RChunks.  This should result in
1261 	 * virtually no IPI traffic.
1262 	 *
1263 	 * We can use a passive IPI to reduce overhead even further.
1264 	 */
1265 	if (bchunk == NULL && rsignal) {
1266 		logmemory(free_request, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1267 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1268 	    /* z can get ripped out from under us from this point on */
1269 	} else if (rsignal) {
1270 	    atomic_subtract_int(&z->z_RCount, 1);
1271 	    /* z can get ripped out from under us from this point on */
1272 	}
1273 	logmemory_quick(free_end);
1274 	return;
1275     }
1276 
1277     /*
1278      * kfree locally
1279      */
1280     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1281 
1282     crit_enter();
1283     chunk = ptr;
1284     chunk_mark_free(z, chunk);
1285 
1286     /*
1287      * Put weird data into the memory to detect modifications after freeing,
1288      * illegal pointer use after freeing (we should fault on the odd address),
1289      * and so forth.  XXX needs more work, see the old malloc code.
1290      */
1291 #ifdef INVARIANTS
1292     if (z->z_ChunkSize < sizeof(weirdary))
1293 	bcopy(weirdary, chunk, z->z_ChunkSize);
1294     else
1295 	bcopy(weirdary, chunk, sizeof(weirdary));
1296 #endif
1297 
1298     /*
1299      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1300      * to the front of the linked list so it is more likely to be
1301      * reallocated, since it is already in our L1 cache.
1302      */
1303 #ifdef INVARIANTS
1304     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1305 	panic("BADFREE %p", chunk);
1306 #endif
1307     chunk->c_Next = z->z_LChunks;
1308     z->z_LChunks = chunk;
1309     if (chunk->c_Next == NULL)
1310 	    z->z_LChunksp = &chunk->c_Next;
1311 
1312 #ifdef INVARIANTS
1313     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1314 	panic("BADFREE2");
1315 #endif
1316 
1317     /*
1318      * Bump the number of free chunks.  If it becomes non-zero the zone
1319      * must be added back onto the appropriate list.
1320      */
1321     if (z->z_NFree++ == 0) {
1322 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1323 	slgd->ZoneAry[z->z_ZoneIndex] = z;
1324     }
1325 
1326     --type->ks_inuse[z->z_Cpu];
1327     type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize;
1328 
1329     /*
1330      * If the zone becomes totally free, and there are other zones we
1331      * can allocate from, move this zone to the FreeZones list.  Since
1332      * this code can be called from an IPI callback, do *NOT* try to mess
1333      * with kernel_map here.  Hysteresis will be performed at malloc() time.
1334      */
1335     if (z->z_NFree == z->z_NMax &&
1336 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) &&
1337 	z->z_RCount == 0
1338     ) {
1339 	SLZone **pz;
1340 	int *kup;
1341 
1342 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
1343 	    ;
1344 	*pz = z->z_Next;
1345 	z->z_Magic = -1;
1346 	z->z_Next = slgd->FreeZones;
1347 	slgd->FreeZones = z;
1348 	++slgd->NFreeZones;
1349 	kup = btokup(z);
1350 	*kup = 0;
1351     }
1352     logmemory_quick(free_end);
1353     crit_exit();
1354 }
1355 
1356 #if defined(INVARIANTS)
1357 
1358 /*
1359  * Helper routines for sanity checks
1360  */
1361 static
1362 void
1363 chunk_mark_allocated(SLZone *z, void *chunk)
1364 {
1365     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1366     __uint32_t *bitptr;
1367 
1368     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1369     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1370 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1371     bitptr = &z->z_Bitmap[bitdex >> 5];
1372     bitdex &= 31;
1373     KASSERT((*bitptr & (1 << bitdex)) == 0,
1374 	    ("memory chunk %p is already allocated!", chunk));
1375     *bitptr |= 1 << bitdex;
1376 }
1377 
1378 static
1379 void
1380 chunk_mark_free(SLZone *z, void *chunk)
1381 {
1382     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1383     __uint32_t *bitptr;
1384 
1385     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1386     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1387 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1388     bitptr = &z->z_Bitmap[bitdex >> 5];
1389     bitdex &= 31;
1390     KASSERT((*bitptr & (1 << bitdex)) != 0,
1391 	    ("memory chunk %p is already free!", chunk));
1392     *bitptr &= ~(1 << bitdex);
1393 }
1394 
1395 #endif
1396 
1397 /*
1398  * kmem_slab_alloc()
1399  *
1400  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1401  *	specified alignment.  M_* flags are expected in the flags field.
1402  *
1403  *	Alignment must be a multiple of PAGE_SIZE.
1404  *
1405  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1406  *	but when we move zalloc() over to use this function as its backend
1407  *	we will have to switch to kreserve/krelease and call reserve(0)
1408  *	after the new space is made available.
1409  *
1410  *	Interrupt code which has preempted other code is not allowed to
1411  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1412  *	non-preemptively or blocks and then runs non-preemptively, then
1413  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1414  */
1415 static void *
1416 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1417 {
1418     vm_size_t i;
1419     vm_offset_t addr;
1420     int count, vmflags, base_vmflags;
1421     vm_page_t mbase = NULL;
1422     vm_page_t m;
1423     thread_t td;
1424 
1425     size = round_page(size);
1426     addr = vm_map_min(&kernel_map);
1427 
1428     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1429     crit_enter();
1430     vm_map_lock(&kernel_map);
1431     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1432 	vm_map_unlock(&kernel_map);
1433 	if ((flags & M_NULLOK) == 0)
1434 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1435 	vm_map_entry_release(count);
1436 	crit_exit();
1437 	return(NULL);
1438     }
1439 
1440     /*
1441      * kernel_object maps 1:1 to kernel_map.
1442      */
1443     vm_object_hold(&kernel_object);
1444     vm_object_reference_locked(&kernel_object);
1445     vm_map_insert(&kernel_map, &count,
1446 		    &kernel_object, addr, addr, addr + size,
1447 		    VM_MAPTYPE_NORMAL,
1448 		    VM_PROT_ALL, VM_PROT_ALL,
1449 		    0);
1450     vm_object_drop(&kernel_object);
1451     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1452     vm_map_unlock(&kernel_map);
1453 
1454     td = curthread;
1455 
1456     base_vmflags = 0;
1457     if (flags & M_ZERO)
1458         base_vmflags |= VM_ALLOC_ZERO;
1459     if (flags & M_USE_RESERVE)
1460 	base_vmflags |= VM_ALLOC_SYSTEM;
1461     if (flags & M_USE_INTERRUPT_RESERVE)
1462         base_vmflags |= VM_ALLOC_INTERRUPT;
1463     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1464 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1465 	      flags, ((int **)&size)[-1]);
1466     }
1467 
1468     /*
1469      * Allocate the pages.  Do not mess with the PG_ZERO flag or map
1470      * them yet.  VM_ALLOC_NORMAL can only be set if we are not preempting.
1471      *
1472      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1473      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1474      * implied in this case), though I'm not sure if we really need to
1475      * do that.
1476      */
1477     vmflags = base_vmflags;
1478     if (flags & M_WAITOK) {
1479 	if (td->td_preempted)
1480 	    vmflags |= VM_ALLOC_SYSTEM;
1481 	else
1482 	    vmflags |= VM_ALLOC_NORMAL;
1483     }
1484 
1485     vm_object_hold(&kernel_object);
1486     for (i = 0; i < size; i += PAGE_SIZE) {
1487 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1488 	if (i == 0)
1489 		mbase = m;
1490 
1491 	/*
1492 	 * If the allocation failed we either return NULL or we retry.
1493 	 *
1494 	 * If M_WAITOK is specified we wait for more memory and retry.
1495 	 * If M_WAITOK is specified from a preemption we yield instead of
1496 	 * wait.  Livelock will not occur because the interrupt thread
1497 	 * will not be preempting anyone the second time around after the
1498 	 * yield.
1499 	 */
1500 	if (m == NULL) {
1501 	    if (flags & M_WAITOK) {
1502 		if (td->td_preempted) {
1503 		    lwkt_switch();
1504 		} else {
1505 		    vm_wait(0);
1506 		}
1507 		i -= PAGE_SIZE;	/* retry */
1508 		continue;
1509 	    }
1510 	    break;
1511 	}
1512     }
1513 
1514     /*
1515      * Check and deal with an allocation failure
1516      */
1517     if (i != size) {
1518 	while (i != 0) {
1519 	    i -= PAGE_SIZE;
1520 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1521 	    /* page should already be busy */
1522 	    vm_page_free(m);
1523 	}
1524 	vm_map_lock(&kernel_map);
1525 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1526 	vm_map_unlock(&kernel_map);
1527 	vm_object_drop(&kernel_object);
1528 
1529 	vm_map_entry_release(count);
1530 	crit_exit();
1531 	return(NULL);
1532     }
1533 
1534     /*
1535      * Success!
1536      *
1537      * NOTE: The VM pages are still busied.  mbase points to the first one
1538      *	     but we have to iterate via vm_page_next()
1539      */
1540     vm_object_drop(&kernel_object);
1541     crit_exit();
1542 
1543     /*
1544      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
1545      */
1546     m = mbase;
1547     i = 0;
1548 
1549     while (i < size) {
1550 	/*
1551 	 * page should already be busy
1552 	 */
1553 	m->valid = VM_PAGE_BITS_ALL;
1554 	vm_page_wire(m);
1555 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1556 		   1, NULL);
1557 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
1558 	    bzero((char *)addr + i, PAGE_SIZE);
1559 	vm_page_flag_clear(m, PG_ZERO);
1560 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1561 	vm_page_flag_set(m, PG_REFERENCED);
1562 	vm_page_wakeup(m);
1563 
1564 	i += PAGE_SIZE;
1565 	vm_object_hold(&kernel_object);
1566 	m = vm_page_next(m);
1567 	vm_object_drop(&kernel_object);
1568     }
1569     smp_invltlb();
1570     vm_map_entry_release(count);
1571     atomic_add_long(&SlabsAllocated, 1);
1572     return((void *)addr);
1573 }
1574 
1575 /*
1576  * kmem_slab_free()
1577  */
1578 static void
1579 kmem_slab_free(void *ptr, vm_size_t size)
1580 {
1581     crit_enter();
1582     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1583     atomic_add_long(&SlabsFreed, 1);
1584     crit_exit();
1585 }
1586 
1587 void *
1588 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1589     int flags)
1590 {
1591 #if (__VM_CACHELINE_SIZE == 32)
1592 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
1593 #elif (__VM_CACHELINE_SIZE == 64)
1594 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
1595 #elif (__VM_CACHELINE_SIZE == 128)
1596 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
1597 #else
1598 #error "unsupported cacheline size"
1599 #endif
1600 
1601 	void *ret;
1602 
1603 	if (size_alloc < __VM_CACHELINE_SIZE)
1604 		size_alloc = __VM_CACHELINE_SIZE;
1605 	else if (!CAN_CACHEALIGN(size_alloc))
1606 		flags |= M_POWEROF2;
1607 
1608 	ret = kmalloc(size_alloc, type, flags);
1609 	KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1610 	    ("%p(%lu) not cacheline %d aligned",
1611 	     ret, size_alloc, __VM_CACHELINE_SIZE));
1612 	return ret;
1613 
1614 #undef CAN_CACHEALIGN
1615 }
1616