1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * Alignment properties: 82 * - All power-of-2 sized allocations are power-of-2 aligned. 83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest 84 * power-of-2 round up of 'size'. 85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the 86 * above table 'Chunking' column). 87 * 88 * API REQUIREMENTS AND SIDE EFFECTS 89 * 90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 91 * have remained compatible with the following API requirements: 92 * 93 * + malloc(0) is allowed and returns non-NULL (ahc driver) 94 * + ability to allocate arbitrarily large chunks of memory 95 */ 96 97 #include "opt_vm.h" 98 99 #include <sys/param.h> 100 #include <sys/systm.h> 101 #include <sys/kernel.h> 102 #include <sys/slaballoc.h> 103 #include <sys/mbuf.h> 104 #include <sys/vmmeter.h> 105 #include <sys/lock.h> 106 #include <sys/thread.h> 107 #include <sys/globaldata.h> 108 #include <sys/sysctl.h> 109 #include <sys/ktr.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_extern.h> 115 #include <vm/vm_object.h> 116 #include <vm/pmap.h> 117 #include <vm/vm_map.h> 118 #include <vm/vm_page.h> 119 #include <vm/vm_pageout.h> 120 121 #include <machine/cpu.h> 122 123 #include <sys/thread2.h> 124 #include <vm/vm_page2.h> 125 126 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 127 128 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x" 129 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags 130 131 #if !defined(KTR_MEMORY) 132 #define KTR_MEMORY KTR_ALL 133 #endif 134 KTR_INFO_MASTER(memory); 135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin"); 136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS); 137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS); 138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS); 139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS); 140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS); 141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS); 142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS); 143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS); 144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin"); 145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end"); 146 147 #define logmemory(name, ptr, type, size, flags) \ 148 KTR_LOG(memory_ ## name, ptr, type, size, flags) 149 #define logmemory_quick(name) \ 150 KTR_LOG(memory_ ## name) 151 152 /* 153 * Fixed globals (not per-cpu) 154 */ 155 static int ZoneSize; 156 static int ZoneLimit; 157 static int ZonePageCount; 158 static uintptr_t ZoneMask; 159 static int ZoneBigAlloc; /* in KB */ 160 static int ZoneGenAlloc; /* in KB */ 161 struct malloc_type *kmemstatistics; /* exported to vmstat */ 162 static int32_t weirdary[16]; 163 164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 165 static void kmem_slab_free(void *ptr, vm_size_t bytes); 166 167 #if defined(INVARIANTS) 168 static void chunk_mark_allocated(SLZone *z, void *chunk); 169 static void chunk_mark_free(SLZone *z, void *chunk); 170 #else 171 #define chunk_mark_allocated(z, chunk) 172 #define chunk_mark_free(z, chunk) 173 #endif 174 175 /* 176 * Misc constants. Note that allocations that are exact multiples of 177 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 178 */ 179 #define ZONE_RELS_THRESH 32 /* threshold number of zones */ 180 181 /* 182 * The WEIRD_ADDR is used as known text to copy into free objects to 183 * try to create deterministic failure cases if the data is accessed after 184 * free. 185 */ 186 #define WEIRD_ADDR 0xdeadc0de 187 #define MAX_COPY sizeof(weirdary) 188 #define ZERO_LENGTH_PTR ((void *)-8) 189 190 /* 191 * Misc global malloc buckets 192 */ 193 194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 197 198 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 199 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 200 201 /* 202 * Initialize the slab memory allocator. We have to choose a zone size based 203 * on available physical memory. We choose a zone side which is approximately 204 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 205 * 128K. The zone size is limited to the bounds set in slaballoc.h 206 * (typically 32K min, 128K max). 207 */ 208 static void kmeminit(void *dummy); 209 210 char *ZeroPage; 211 212 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL) 213 214 #ifdef INVARIANTS 215 /* 216 * If enabled any memory allocated without M_ZERO is initialized to -1. 217 */ 218 static int use_malloc_pattern; 219 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 220 &use_malloc_pattern, 0, 221 "Initialize memory to -1 if M_ZERO not specified"); 222 #endif 223 224 static int ZoneRelsThresh = ZONE_RELS_THRESH; 225 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 226 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 227 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, ""); 228 static long SlabsAllocated; 229 static long SlabsFreed; 230 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, &SlabsAllocated, 0, ""); 231 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, &SlabsFreed, 0, ""); 232 233 /* 234 * Returns the kernel memory size limit for the purposes of initializing 235 * various subsystem caches. The smaller of available memory and the KVM 236 * memory space is returned. 237 * 238 * The size in megabytes is returned. 239 */ 240 size_t 241 kmem_lim_size(void) 242 { 243 size_t limsize; 244 245 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 246 if (limsize > KvaSize) 247 limsize = KvaSize; 248 return (limsize / (1024 * 1024)); 249 } 250 251 static void 252 kmeminit(void *dummy) 253 { 254 size_t limsize; 255 int usesize; 256 int i; 257 258 limsize = kmem_lim_size(); 259 usesize = (int)(limsize * 1024); /* convert to KB */ 260 261 /* 262 * If the machine has a large KVM space and more than 8G of ram, 263 * double the zone release threshold to reduce SMP invalidations. 264 * If more than 16G of ram, do it again. 265 * 266 * The BIOS eats a little ram so add some slop. We want 8G worth of 267 * memory sticks to trigger the first adjustment. 268 */ 269 if (ZoneRelsThresh == ZONE_RELS_THRESH) { 270 if (limsize >= 7 * 1024) 271 ZoneRelsThresh *= 2; 272 if (limsize >= 15 * 1024) 273 ZoneRelsThresh *= 2; 274 } 275 276 /* 277 * Calculate the zone size. This typically calculates to 278 * ZALLOC_MAX_ZONE_SIZE 279 */ 280 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 281 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 282 ZoneSize <<= 1; 283 ZoneLimit = ZoneSize / 4; 284 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 285 ZoneLimit = ZALLOC_ZONE_LIMIT; 286 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 287 ZonePageCount = ZoneSize / PAGE_SIZE; 288 289 for (i = 0; i < NELEM(weirdary); ++i) 290 weirdary[i] = WEIRD_ADDR; 291 292 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 293 294 if (bootverbose) 295 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 296 } 297 298 /* 299 * Initialize a malloc type tracking structure. 300 */ 301 void 302 malloc_init(void *data) 303 { 304 struct malloc_type *type = data; 305 size_t limsize; 306 307 if (type->ks_magic != M_MAGIC) 308 panic("malloc type lacks magic"); 309 310 if (type->ks_limit != 0) 311 return; 312 313 if (vmstats.v_page_count == 0) 314 panic("malloc_init not allowed before vm init"); 315 316 limsize = kmem_lim_size() * (1024 * 1024); 317 type->ks_limit = limsize / 10; 318 319 type->ks_next = kmemstatistics; 320 kmemstatistics = type; 321 } 322 323 void 324 malloc_uninit(void *data) 325 { 326 struct malloc_type *type = data; 327 struct malloc_type *t; 328 #ifdef INVARIANTS 329 int i; 330 long ttl; 331 #endif 332 333 if (type->ks_magic != M_MAGIC) 334 panic("malloc type lacks magic"); 335 336 if (vmstats.v_page_count == 0) 337 panic("malloc_uninit not allowed before vm init"); 338 339 if (type->ks_limit == 0) 340 panic("malloc_uninit on uninitialized type"); 341 342 /* Make sure that all pending kfree()s are finished. */ 343 lwkt_synchronize_ipiqs("muninit"); 344 345 #ifdef INVARIANTS 346 /* 347 * memuse is only correct in aggregation. Due to memory being allocated 348 * on one cpu and freed on another individual array entries may be 349 * negative or positive (canceling each other out). 350 */ 351 for (i = ttl = 0; i < ncpus; ++i) 352 ttl += type->ks_memuse[i]; 353 if (ttl) { 354 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 355 ttl, type->ks_shortdesc, i); 356 } 357 #endif 358 if (type == kmemstatistics) { 359 kmemstatistics = type->ks_next; 360 } else { 361 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 362 if (t->ks_next == type) { 363 t->ks_next = type->ks_next; 364 break; 365 } 366 } 367 } 368 type->ks_next = NULL; 369 type->ks_limit = 0; 370 } 371 372 /* 373 * Increase the kmalloc pool limit for the specified pool. No changes 374 * are the made if the pool would shrink. 375 */ 376 void 377 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 378 { 379 if (type->ks_limit == 0) 380 malloc_init(type); 381 if (bytes == 0) 382 bytes = KvaSize; 383 if (type->ks_limit < bytes) 384 type->ks_limit = bytes; 385 } 386 387 /* 388 * Dynamically create a malloc pool. This function is a NOP if *typep is 389 * already non-NULL. 390 */ 391 void 392 kmalloc_create(struct malloc_type **typep, const char *descr) 393 { 394 struct malloc_type *type; 395 396 if (*typep == NULL) { 397 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 398 type->ks_magic = M_MAGIC; 399 type->ks_shortdesc = descr; 400 malloc_init(type); 401 *typep = type; 402 } 403 } 404 405 /* 406 * Destroy a dynamically created malloc pool. This function is a NOP if 407 * the pool has already been destroyed. 408 */ 409 void 410 kmalloc_destroy(struct malloc_type **typep) 411 { 412 if (*typep != NULL) { 413 malloc_uninit(*typep); 414 kfree(*typep, M_TEMP); 415 *typep = NULL; 416 } 417 } 418 419 /* 420 * Calculate the zone index for the allocation request size and set the 421 * allocation request size to that particular zone's chunk size. 422 */ 423 static __inline int 424 zoneindex(unsigned long *bytes, unsigned long *align) 425 { 426 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 427 if (n < 128) { 428 *bytes = n = (n + 7) & ~7; 429 *align = 8; 430 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 431 } 432 if (n < 256) { 433 *bytes = n = (n + 15) & ~15; 434 *align = 16; 435 return(n / 16 + 7); 436 } 437 if (n < 8192) { 438 if (n < 512) { 439 *bytes = n = (n + 31) & ~31; 440 *align = 32; 441 return(n / 32 + 15); 442 } 443 if (n < 1024) { 444 *bytes = n = (n + 63) & ~63; 445 *align = 64; 446 return(n / 64 + 23); 447 } 448 if (n < 2048) { 449 *bytes = n = (n + 127) & ~127; 450 *align = 128; 451 return(n / 128 + 31); 452 } 453 if (n < 4096) { 454 *bytes = n = (n + 255) & ~255; 455 *align = 256; 456 return(n / 256 + 39); 457 } 458 *bytes = n = (n + 511) & ~511; 459 *align = 512; 460 return(n / 512 + 47); 461 } 462 #if ZALLOC_ZONE_LIMIT > 8192 463 if (n < 16384) { 464 *bytes = n = (n + 1023) & ~1023; 465 *align = 1024; 466 return(n / 1024 + 55); 467 } 468 #endif 469 #if ZALLOC_ZONE_LIMIT > 16384 470 if (n < 32768) { 471 *bytes = n = (n + 2047) & ~2047; 472 *align = 2048; 473 return(n / 2048 + 63); 474 } 475 #endif 476 panic("Unexpected byte count %d", n); 477 return(0); 478 } 479 480 #ifdef SLAB_DEBUG 481 /* 482 * Used to debug memory corruption issues. Record up to (typically 32) 483 * allocation sources for this zone (for a particular chunk size). 484 */ 485 486 static void 487 slab_record_source(SLZone *z, const char *file, int line) 488 { 489 int i; 490 int b = line & (SLAB_DEBUG_ENTRIES - 1); 491 492 i = b; 493 do { 494 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line) 495 return; 496 if (z->z_Sources[i].file == NULL) 497 break; 498 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1); 499 } while (i != b); 500 z->z_Sources[i].file = file; 501 z->z_Sources[i].line = line; 502 } 503 504 #endif 505 506 static __inline unsigned long 507 powerof2_size(unsigned long size) 508 { 509 int i; 510 511 if (size == 0 || powerof2(size)) 512 return size; 513 514 i = flsl(size); 515 return (1UL << i); 516 } 517 518 /* 519 * kmalloc() (SLAB ALLOCATOR) 520 * 521 * Allocate memory via the slab allocator. If the request is too large, 522 * or if it page-aligned beyond a certain size, we fall back to the 523 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 524 * &SlabMisc if you don't care. 525 * 526 * M_RNOWAIT - don't block. 527 * M_NULLOK - return NULL instead of blocking. 528 * M_ZERO - zero the returned memory. 529 * M_USE_RESERVE - allow greater drawdown of the free list 530 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 531 * M_POWEROF2 - roundup size to the nearest power of 2 532 * 533 * MPSAFE 534 */ 535 536 #ifdef SLAB_DEBUG 537 void * 538 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags, 539 const char *file, int line) 540 #else 541 void * 542 kmalloc(unsigned long size, struct malloc_type *type, int flags) 543 #endif 544 { 545 SLZone *z; 546 SLChunk *chunk; 547 SLChunk *bchunk; 548 SLGlobalData *slgd; 549 struct globaldata *gd; 550 unsigned long align; 551 int zi; 552 #ifdef INVARIANTS 553 int i; 554 #endif 555 556 logmemory_quick(malloc_beg); 557 gd = mycpu; 558 slgd = &gd->gd_slab; 559 560 /* 561 * XXX silly to have this in the critical path. 562 */ 563 if (type->ks_limit == 0) { 564 crit_enter(); 565 if (type->ks_limit == 0) 566 malloc_init(type); 567 crit_exit(); 568 } 569 ++type->ks_calls; 570 571 if (flags & M_POWEROF2) 572 size = powerof2_size(size); 573 574 /* 575 * Handle the case where the limit is reached. Panic if we can't return 576 * NULL. The original malloc code looped, but this tended to 577 * simply deadlock the computer. 578 * 579 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 580 * to determine if a more complete limit check should be done. The 581 * actual memory use is tracked via ks_memuse[cpu]. 582 */ 583 while (type->ks_loosememuse >= type->ks_limit) { 584 int i; 585 long ttl; 586 587 for (i = ttl = 0; i < ncpus; ++i) 588 ttl += type->ks_memuse[i]; 589 type->ks_loosememuse = ttl; /* not MP synchronized */ 590 if ((ssize_t)ttl < 0) /* deal with occassional race */ 591 ttl = 0; 592 if (ttl >= type->ks_limit) { 593 if (flags & M_NULLOK) { 594 logmemory(malloc_end, NULL, type, size, flags); 595 return(NULL); 596 } 597 panic("%s: malloc limit exceeded", type->ks_shortdesc); 598 } 599 } 600 601 /* 602 * Handle the degenerate size == 0 case. Yes, this does happen. 603 * Return a special pointer. This is to maintain compatibility with 604 * the original malloc implementation. Certain devices, such as the 605 * adaptec driver, not only allocate 0 bytes, they check for NULL and 606 * also realloc() later on. Joy. 607 */ 608 if (size == 0) { 609 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 610 return(ZERO_LENGTH_PTR); 611 } 612 613 /* 614 * Handle hysteresis from prior frees here in malloc(). We cannot 615 * safely manipulate the kernel_map in free() due to free() possibly 616 * being called via an IPI message or from sensitive interrupt code. 617 * 618 * NOTE: ku_pagecnt must be cleared before we free the slab or we 619 * might race another cpu allocating the kva and setting 620 * ku_pagecnt. 621 */ 622 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) { 623 crit_enter(); 624 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */ 625 int *kup; 626 627 z = slgd->FreeZones; 628 slgd->FreeZones = z->z_Next; 629 --slgd->NFreeZones; 630 kup = btokup(z); 631 *kup = 0; 632 kmem_slab_free(z, ZoneSize); /* may block */ 633 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024); 634 } 635 crit_exit(); 636 } 637 638 /* 639 * XXX handle oversized frees that were queued from kfree(). 640 */ 641 while (slgd->FreeOvZones && (flags & M_RNOWAIT) == 0) { 642 crit_enter(); 643 if ((z = slgd->FreeOvZones) != NULL) { 644 vm_size_t tsize; 645 646 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 647 slgd->FreeOvZones = z->z_Next; 648 tsize = z->z_ChunkSize; 649 kmem_slab_free(z, tsize); /* may block */ 650 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 651 } 652 crit_exit(); 653 } 654 655 /* 656 * Handle large allocations directly. There should not be very many of 657 * these so performance is not a big issue. 658 * 659 * The backend allocator is pretty nasty on a SMP system. Use the 660 * slab allocator for one and two page-sized chunks even though we lose 661 * some efficiency. XXX maybe fix mmio and the elf loader instead. 662 */ 663 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 664 int *kup; 665 666 size = round_page(size); 667 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 668 if (chunk == NULL) { 669 logmemory(malloc_end, NULL, type, size, flags); 670 return(NULL); 671 } 672 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 673 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 674 flags |= M_PASSIVE_ZERO; 675 kup = btokup(chunk); 676 *kup = size / PAGE_SIZE; 677 crit_enter(); 678 goto done; 679 } 680 681 /* 682 * Attempt to allocate out of an existing zone. First try the free list, 683 * then allocate out of unallocated space. If we find a good zone move 684 * it to the head of the list so later allocations find it quickly 685 * (we might have thousands of zones in the list). 686 * 687 * Note: zoneindex() will panic of size is too large. 688 */ 689 zi = zoneindex(&size, &align); 690 KKASSERT(zi < NZONES); 691 crit_enter(); 692 693 if ((z = slgd->ZoneAry[zi]) != NULL) { 694 /* 695 * Locate a chunk - we have to have at least one. If this is the 696 * last chunk go ahead and do the work to retrieve chunks freed 697 * from remote cpus, and if the zone is still empty move it off 698 * the ZoneAry. 699 */ 700 if (--z->z_NFree <= 0) { 701 KKASSERT(z->z_NFree == 0); 702 703 /* 704 * WARNING! This code competes with other cpus. It is ok 705 * for us to not drain RChunks here but we might as well, and 706 * it is ok if more accumulate after we're done. 707 * 708 * Set RSignal before pulling rchunks off, indicating that we 709 * will be moving ourselves off of the ZoneAry. Remote ends will 710 * read RSignal before putting rchunks on thus interlocking 711 * their IPI signaling. 712 */ 713 if (z->z_RChunks == NULL) 714 atomic_swap_int(&z->z_RSignal, 1); 715 716 while ((bchunk = z->z_RChunks) != NULL) { 717 cpu_ccfence(); 718 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 719 *z->z_LChunksp = bchunk; 720 while (bchunk) { 721 chunk_mark_free(z, bchunk); 722 z->z_LChunksp = &bchunk->c_Next; 723 bchunk = bchunk->c_Next; 724 ++z->z_NFree; 725 } 726 break; 727 } 728 } 729 /* 730 * Remove from the zone list if no free chunks remain. 731 * Clear RSignal 732 */ 733 if (z->z_NFree == 0) { 734 slgd->ZoneAry[zi] = z->z_Next; 735 z->z_Next = NULL; 736 } else { 737 z->z_RSignal = 0; 738 } 739 } 740 741 /* 742 * Fast path, we have chunks available in z_LChunks. 743 */ 744 chunk = z->z_LChunks; 745 if (chunk) { 746 chunk_mark_allocated(z, chunk); 747 z->z_LChunks = chunk->c_Next; 748 if (z->z_LChunks == NULL) 749 z->z_LChunksp = &z->z_LChunks; 750 #ifdef SLAB_DEBUG 751 slab_record_source(z, file, line); 752 #endif 753 goto done; 754 } 755 756 /* 757 * No chunks are available in LChunks, the free chunk MUST be 758 * in the never-before-used memory area, controlled by UIndex. 759 * 760 * The consequences are very serious if our zone got corrupted so 761 * we use an explicit panic rather than a KASSERT. 762 */ 763 if (z->z_UIndex + 1 != z->z_NMax) 764 ++z->z_UIndex; 765 else 766 z->z_UIndex = 0; 767 768 if (z->z_UIndex == z->z_UEndIndex) 769 panic("slaballoc: corrupted zone"); 770 771 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 772 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 773 flags &= ~M_ZERO; 774 flags |= M_PASSIVE_ZERO; 775 } 776 chunk_mark_allocated(z, chunk); 777 #ifdef SLAB_DEBUG 778 slab_record_source(z, file, line); 779 #endif 780 goto done; 781 } 782 783 /* 784 * If all zones are exhausted we need to allocate a new zone for this 785 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 786 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 787 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 788 * we do not pre-zero it because we do not want to mess up the L1 cache. 789 * 790 * At least one subsystem, the tty code (see CROUND) expects power-of-2 791 * allocations to be power-of-2 aligned. We maintain compatibility by 792 * adjusting the base offset below. 793 */ 794 { 795 int off; 796 int *kup; 797 798 if ((z = slgd->FreeZones) != NULL) { 799 slgd->FreeZones = z->z_Next; 800 --slgd->NFreeZones; 801 bzero(z, sizeof(SLZone)); 802 z->z_Flags |= SLZF_UNOTZEROD; 803 } else { 804 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 805 if (z == NULL) 806 goto fail; 807 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024); 808 } 809 810 /* 811 * How big is the base structure? 812 */ 813 #if defined(INVARIANTS) 814 /* 815 * Make room for z_Bitmap. An exact calculation is somewhat more 816 * complicated so don't make an exact calculation. 817 */ 818 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 819 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 820 #else 821 off = sizeof(SLZone); 822 #endif 823 824 /* 825 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 826 * Otherwise properly align the data according to the chunk size. 827 */ 828 if (powerof2(size)) 829 align = size; 830 off = (off + align - 1) & ~(align - 1); 831 832 z->z_Magic = ZALLOC_SLAB_MAGIC; 833 z->z_ZoneIndex = zi; 834 z->z_NMax = (ZoneSize - off) / size; 835 z->z_NFree = z->z_NMax - 1; 836 z->z_BasePtr = (char *)z + off; 837 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 838 z->z_ChunkSize = size; 839 z->z_CpuGd = gd; 840 z->z_Cpu = gd->gd_cpuid; 841 z->z_LChunksp = &z->z_LChunks; 842 #ifdef SLAB_DEBUG 843 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources)); 844 bzero(z->z_Sources, sizeof(z->z_Sources)); 845 #endif 846 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 847 z->z_Next = slgd->ZoneAry[zi]; 848 slgd->ZoneAry[zi] = z; 849 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 850 flags &= ~M_ZERO; /* already zero'd */ 851 flags |= M_PASSIVE_ZERO; 852 } 853 kup = btokup(z); 854 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 855 chunk_mark_allocated(z, chunk); 856 #ifdef SLAB_DEBUG 857 slab_record_source(z, file, line); 858 #endif 859 860 /* 861 * Slide the base index for initial allocations out of the next 862 * zone we create so we do not over-weight the lower part of the 863 * cpu memory caches. 864 */ 865 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 866 & (ZALLOC_MAX_ZONE_SIZE - 1); 867 } 868 869 done: 870 ++type->ks_inuse[gd->gd_cpuid]; 871 type->ks_memuse[gd->gd_cpuid] += size; 872 type->ks_loosememuse += size; /* not MP synchronized */ 873 crit_exit(); 874 875 if (flags & M_ZERO) 876 bzero(chunk, size); 877 #ifdef INVARIANTS 878 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 879 if (use_malloc_pattern) { 880 for (i = 0; i < size; i += sizeof(int)) { 881 *(int *)((char *)chunk + i) = -1; 882 } 883 } 884 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 885 } 886 #endif 887 logmemory(malloc_end, chunk, type, size, flags); 888 return(chunk); 889 fail: 890 crit_exit(); 891 logmemory(malloc_end, NULL, type, size, flags); 892 return(NULL); 893 } 894 895 /* 896 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 897 * 898 * Generally speaking this routine is not called very often and we do 899 * not attempt to optimize it beyond reusing the same pointer if the 900 * new size fits within the chunking of the old pointer's zone. 901 */ 902 #ifdef SLAB_DEBUG 903 void * 904 krealloc_debug(void *ptr, unsigned long size, 905 struct malloc_type *type, int flags, 906 const char *file, int line) 907 #else 908 void * 909 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 910 #endif 911 { 912 unsigned long osize; 913 unsigned long align; 914 SLZone *z; 915 void *nptr; 916 int *kup; 917 918 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 919 920 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 921 return(kmalloc_debug(size, type, flags, file, line)); 922 if (size == 0) { 923 kfree(ptr, type); 924 return(NULL); 925 } 926 927 /* 928 * Handle oversized allocations. XXX we really should require that a 929 * size be passed to free() instead of this nonsense. 930 */ 931 kup = btokup(ptr); 932 if (*kup > 0) { 933 osize = *kup << PAGE_SHIFT; 934 if (osize == round_page(size)) 935 return(ptr); 936 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 937 return(NULL); 938 bcopy(ptr, nptr, min(size, osize)); 939 kfree(ptr, type); 940 return(nptr); 941 } 942 943 /* 944 * Get the original allocation's zone. If the new request winds up 945 * using the same chunk size we do not have to do anything. 946 */ 947 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 948 kup = btokup(z); 949 KKASSERT(*kup < 0); 950 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 951 952 /* 953 * Allocate memory for the new request size. Note that zoneindex has 954 * already adjusted the request size to the appropriate chunk size, which 955 * should optimize our bcopy(). Then copy and return the new pointer. 956 * 957 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 958 * necessary align the result. 959 * 960 * We can only zoneindex (to align size to the chunk size) if the new 961 * size is not too large. 962 */ 963 if (size < ZoneLimit) { 964 zoneindex(&size, &align); 965 if (z->z_ChunkSize == size) 966 return(ptr); 967 } 968 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 969 return(NULL); 970 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 971 kfree(ptr, type); 972 return(nptr); 973 } 974 975 /* 976 * Return the kmalloc limit for this type, in bytes. 977 */ 978 long 979 kmalloc_limit(struct malloc_type *type) 980 { 981 if (type->ks_limit == 0) { 982 crit_enter(); 983 if (type->ks_limit == 0) 984 malloc_init(type); 985 crit_exit(); 986 } 987 return(type->ks_limit); 988 } 989 990 /* 991 * Allocate a copy of the specified string. 992 * 993 * (MP SAFE) (MAY BLOCK) 994 */ 995 #ifdef SLAB_DEBUG 996 char * 997 kstrdup_debug(const char *str, struct malloc_type *type, 998 const char *file, int line) 999 #else 1000 char * 1001 kstrdup(const char *str, struct malloc_type *type) 1002 #endif 1003 { 1004 int zlen; /* length inclusive of terminating NUL */ 1005 char *nstr; 1006 1007 if (str == NULL) 1008 return(NULL); 1009 zlen = strlen(str) + 1; 1010 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1011 bcopy(str, nstr, zlen); 1012 return(nstr); 1013 } 1014 1015 /* 1016 * Notify our cpu that a remote cpu has freed some chunks in a zone that 1017 * we own. RCount will be bumped so the memory should be good, but validate 1018 * that it really is. 1019 */ 1020 static 1021 void 1022 kfree_remote(void *ptr) 1023 { 1024 SLGlobalData *slgd; 1025 SLChunk *bchunk; 1026 SLZone *z; 1027 int nfree; 1028 int *kup; 1029 1030 slgd = &mycpu->gd_slab; 1031 z = ptr; 1032 kup = btokup(z); 1033 KKASSERT(*kup == -((int)mycpuid + 1)); 1034 KKASSERT(z->z_RCount > 0); 1035 atomic_subtract_int(&z->z_RCount, 1); 1036 1037 logmemory(free_rem_beg, z, NULL, 0L, 0); 1038 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1039 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 1040 nfree = z->z_NFree; 1041 1042 /* 1043 * Indicate that we will no longer be off of the ZoneAry by 1044 * clearing RSignal. 1045 */ 1046 if (z->z_RChunks) 1047 z->z_RSignal = 0; 1048 1049 /* 1050 * Atomically extract the bchunks list and then process it back 1051 * into the lchunks list. We want to append our bchunks to the 1052 * lchunks list and not prepend since we likely do not have 1053 * cache mastership of the related data (not that it helps since 1054 * we are using c_Next). 1055 */ 1056 while ((bchunk = z->z_RChunks) != NULL) { 1057 cpu_ccfence(); 1058 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 1059 *z->z_LChunksp = bchunk; 1060 while (bchunk) { 1061 chunk_mark_free(z, bchunk); 1062 z->z_LChunksp = &bchunk->c_Next; 1063 bchunk = bchunk->c_Next; 1064 ++z->z_NFree; 1065 } 1066 break; 1067 } 1068 } 1069 if (z->z_NFree && nfree == 0) { 1070 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1071 slgd->ZoneAry[z->z_ZoneIndex] = z; 1072 } 1073 1074 /* 1075 * If the zone becomes totally free, and there are other zones we 1076 * can allocate from, move this zone to the FreeZones list. Since 1077 * this code can be called from an IPI callback, do *NOT* try to mess 1078 * with kernel_map here. Hysteresis will be performed at malloc() time. 1079 * 1080 * Do not move the zone if there is an IPI inflight, otherwise MP 1081 * races can result in our free_remote code accessing a destroyed 1082 * zone. 1083 */ 1084 if (z->z_NFree == z->z_NMax && 1085 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 1086 z->z_RCount == 0 1087 ) { 1088 SLZone **pz; 1089 int *kup; 1090 1091 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; 1092 z != *pz; 1093 pz = &(*pz)->z_Next) { 1094 ; 1095 } 1096 *pz = z->z_Next; 1097 z->z_Magic = -1; 1098 z->z_Next = slgd->FreeZones; 1099 slgd->FreeZones = z; 1100 ++slgd->NFreeZones; 1101 kup = btokup(z); 1102 *kup = 0; 1103 } 1104 logmemory(free_rem_end, z, bchunk, 0L, 0); 1105 } 1106 1107 /* 1108 * free (SLAB ALLOCATOR) 1109 * 1110 * Free a memory block previously allocated by malloc. Note that we do not 1111 * attempt to update ks_loosememuse as MP races could prevent us from 1112 * checking memory limits in malloc. 1113 * 1114 * MPSAFE 1115 */ 1116 void 1117 kfree(void *ptr, struct malloc_type *type) 1118 { 1119 SLZone *z; 1120 SLChunk *chunk; 1121 SLGlobalData *slgd; 1122 struct globaldata *gd; 1123 int *kup; 1124 unsigned long size; 1125 SLChunk *bchunk; 1126 int rsignal; 1127 1128 logmemory_quick(free_beg); 1129 gd = mycpu; 1130 slgd = &gd->gd_slab; 1131 1132 if (ptr == NULL) 1133 panic("trying to free NULL pointer"); 1134 1135 /* 1136 * Handle special 0-byte allocations 1137 */ 1138 if (ptr == ZERO_LENGTH_PTR) { 1139 logmemory(free_zero, ptr, type, -1UL, 0); 1140 logmemory_quick(free_end); 1141 return; 1142 } 1143 1144 /* 1145 * Panic on bad malloc type 1146 */ 1147 if (type->ks_magic != M_MAGIC) 1148 panic("free: malloc type lacks magic"); 1149 1150 /* 1151 * Handle oversized allocations. XXX we really should require that a 1152 * size be passed to free() instead of this nonsense. 1153 * 1154 * This code is never called via an ipi. 1155 */ 1156 kup = btokup(ptr); 1157 if (*kup > 0) { 1158 size = *kup << PAGE_SHIFT; 1159 *kup = 0; 1160 #ifdef INVARIANTS 1161 KKASSERT(sizeof(weirdary) <= size); 1162 bcopy(weirdary, ptr, sizeof(weirdary)); 1163 #endif 1164 /* 1165 * NOTE: For oversized allocations we do not record the 1166 * originating cpu. It gets freed on the cpu calling 1167 * kfree(). The statistics are in aggregate. 1168 * 1169 * note: XXX we have still inherited the interrupts-can't-block 1170 * assumption. An interrupt thread does not bump 1171 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1172 * primarily until we can fix softupdate's assumptions about free(). 1173 */ 1174 crit_enter(); 1175 --type->ks_inuse[gd->gd_cpuid]; 1176 type->ks_memuse[gd->gd_cpuid] -= size; 1177 if (mycpu->gd_intr_nesting_level || 1178 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) 1179 { 1180 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1181 z = (SLZone *)ptr; 1182 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1183 z->z_Next = slgd->FreeOvZones; 1184 z->z_ChunkSize = size; 1185 slgd->FreeOvZones = z; 1186 crit_exit(); 1187 } else { 1188 crit_exit(); 1189 logmemory(free_ovsz, ptr, type, size, 0); 1190 kmem_slab_free(ptr, size); /* may block */ 1191 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1192 } 1193 logmemory_quick(free_end); 1194 return; 1195 } 1196 1197 /* 1198 * Zone case. Figure out the zone based on the fact that it is 1199 * ZoneSize aligned. 1200 */ 1201 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1202 kup = btokup(z); 1203 KKASSERT(*kup < 0); 1204 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1205 1206 /* 1207 * If we do not own the zone then use atomic ops to free to the 1208 * remote cpu linked list and notify the target zone using a 1209 * passive message. 1210 * 1211 * The target zone cannot be deallocated while we own a chunk of it, 1212 * so the zone header's storage is stable until the very moment 1213 * we adjust z_RChunks. After that we cannot safely dereference (z). 1214 * 1215 * (no critical section needed) 1216 */ 1217 if (z->z_CpuGd != gd) { 1218 /* 1219 * Making these adjustments now allow us to avoid passing (type) 1220 * to the remote cpu. Note that ks_inuse/ks_memuse is being 1221 * adjusted on OUR cpu, not the zone cpu, but it should all still 1222 * sum up properly and cancel out. 1223 */ 1224 crit_enter(); 1225 --type->ks_inuse[gd->gd_cpuid]; 1226 type->ks_memuse[gd->gd_cpuid] -= z->z_ChunkSize; 1227 crit_exit(); 1228 1229 /* 1230 * WARNING! This code competes with other cpus. Once we 1231 * successfully link the chunk to RChunks the remote 1232 * cpu can rip z's storage out from under us. 1233 * 1234 * Bumping RCount prevents z's storage from getting 1235 * ripped out. 1236 */ 1237 rsignal = z->z_RSignal; 1238 cpu_lfence(); 1239 if (rsignal) 1240 atomic_add_int(&z->z_RCount, 1); 1241 1242 chunk = ptr; 1243 for (;;) { 1244 bchunk = z->z_RChunks; 1245 cpu_ccfence(); 1246 chunk->c_Next = bchunk; 1247 cpu_sfence(); 1248 1249 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1250 break; 1251 } 1252 1253 /* 1254 * We have to signal the remote cpu if our actions will cause 1255 * the remote zone to be placed back on ZoneAry so it can 1256 * move the zone back on. 1257 * 1258 * We only need to deal with NULL->non-NULL RChunk transitions 1259 * and only if z_RSignal is set. We interlock by reading rsignal 1260 * before adding our chunk to RChunks. This should result in 1261 * virtually no IPI traffic. 1262 * 1263 * We can use a passive IPI to reduce overhead even further. 1264 */ 1265 if (bchunk == NULL && rsignal) { 1266 logmemory(free_request, ptr, type, (unsigned long)z->z_ChunkSize, 0); 1267 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1268 /* z can get ripped out from under us from this point on */ 1269 } else if (rsignal) { 1270 atomic_subtract_int(&z->z_RCount, 1); 1271 /* z can get ripped out from under us from this point on */ 1272 } 1273 logmemory_quick(free_end); 1274 return; 1275 } 1276 1277 /* 1278 * kfree locally 1279 */ 1280 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0); 1281 1282 crit_enter(); 1283 chunk = ptr; 1284 chunk_mark_free(z, chunk); 1285 1286 /* 1287 * Put weird data into the memory to detect modifications after freeing, 1288 * illegal pointer use after freeing (we should fault on the odd address), 1289 * and so forth. XXX needs more work, see the old malloc code. 1290 */ 1291 #ifdef INVARIANTS 1292 if (z->z_ChunkSize < sizeof(weirdary)) 1293 bcopy(weirdary, chunk, z->z_ChunkSize); 1294 else 1295 bcopy(weirdary, chunk, sizeof(weirdary)); 1296 #endif 1297 1298 /* 1299 * Add this free non-zero'd chunk to a linked list for reuse. Add 1300 * to the front of the linked list so it is more likely to be 1301 * reallocated, since it is already in our L1 cache. 1302 */ 1303 #ifdef INVARIANTS 1304 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1305 panic("BADFREE %p", chunk); 1306 #endif 1307 chunk->c_Next = z->z_LChunks; 1308 z->z_LChunks = chunk; 1309 if (chunk->c_Next == NULL) 1310 z->z_LChunksp = &chunk->c_Next; 1311 1312 #ifdef INVARIANTS 1313 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1314 panic("BADFREE2"); 1315 #endif 1316 1317 /* 1318 * Bump the number of free chunks. If it becomes non-zero the zone 1319 * must be added back onto the appropriate list. 1320 */ 1321 if (z->z_NFree++ == 0) { 1322 z->z_Next = slgd->ZoneAry[z->z_ZoneIndex]; 1323 slgd->ZoneAry[z->z_ZoneIndex] = z; 1324 } 1325 1326 --type->ks_inuse[z->z_Cpu]; 1327 type->ks_memuse[z->z_Cpu] -= z->z_ChunkSize; 1328 1329 /* 1330 * If the zone becomes totally free, and there are other zones we 1331 * can allocate from, move this zone to the FreeZones list. Since 1332 * this code can be called from an IPI callback, do *NOT* try to mess 1333 * with kernel_map here. Hysteresis will be performed at malloc() time. 1334 */ 1335 if (z->z_NFree == z->z_NMax && 1336 (z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z) && 1337 z->z_RCount == 0 1338 ) { 1339 SLZone **pz; 1340 int *kup; 1341 1342 for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next) 1343 ; 1344 *pz = z->z_Next; 1345 z->z_Magic = -1; 1346 z->z_Next = slgd->FreeZones; 1347 slgd->FreeZones = z; 1348 ++slgd->NFreeZones; 1349 kup = btokup(z); 1350 *kup = 0; 1351 } 1352 logmemory_quick(free_end); 1353 crit_exit(); 1354 } 1355 1356 #if defined(INVARIANTS) 1357 1358 /* 1359 * Helper routines for sanity checks 1360 */ 1361 static 1362 void 1363 chunk_mark_allocated(SLZone *z, void *chunk) 1364 { 1365 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1366 __uint32_t *bitptr; 1367 1368 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1369 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1370 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1371 bitptr = &z->z_Bitmap[bitdex >> 5]; 1372 bitdex &= 31; 1373 KASSERT((*bitptr & (1 << bitdex)) == 0, 1374 ("memory chunk %p is already allocated!", chunk)); 1375 *bitptr |= 1 << bitdex; 1376 } 1377 1378 static 1379 void 1380 chunk_mark_free(SLZone *z, void *chunk) 1381 { 1382 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1383 __uint32_t *bitptr; 1384 1385 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1386 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1387 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1388 bitptr = &z->z_Bitmap[bitdex >> 5]; 1389 bitdex &= 31; 1390 KASSERT((*bitptr & (1 << bitdex)) != 0, 1391 ("memory chunk %p is already free!", chunk)); 1392 *bitptr &= ~(1 << bitdex); 1393 } 1394 1395 #endif 1396 1397 /* 1398 * kmem_slab_alloc() 1399 * 1400 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1401 * specified alignment. M_* flags are expected in the flags field. 1402 * 1403 * Alignment must be a multiple of PAGE_SIZE. 1404 * 1405 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1406 * but when we move zalloc() over to use this function as its backend 1407 * we will have to switch to kreserve/krelease and call reserve(0) 1408 * after the new space is made available. 1409 * 1410 * Interrupt code which has preempted other code is not allowed to 1411 * use PQ_CACHE pages. However, if an interrupt thread is run 1412 * non-preemptively or blocks and then runs non-preemptively, then 1413 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX 1414 */ 1415 static void * 1416 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1417 { 1418 vm_size_t i; 1419 vm_offset_t addr; 1420 int count, vmflags, base_vmflags; 1421 vm_page_t mbase = NULL; 1422 vm_page_t m; 1423 thread_t td; 1424 1425 size = round_page(size); 1426 addr = vm_map_min(&kernel_map); 1427 1428 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1429 crit_enter(); 1430 vm_map_lock(&kernel_map); 1431 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1432 vm_map_unlock(&kernel_map); 1433 if ((flags & M_NULLOK) == 0) 1434 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1435 vm_map_entry_release(count); 1436 crit_exit(); 1437 return(NULL); 1438 } 1439 1440 /* 1441 * kernel_object maps 1:1 to kernel_map. 1442 */ 1443 vm_object_hold(&kernel_object); 1444 vm_object_reference_locked(&kernel_object); 1445 vm_map_insert(&kernel_map, &count, 1446 &kernel_object, addr, addr, addr + size, 1447 VM_MAPTYPE_NORMAL, 1448 VM_PROT_ALL, VM_PROT_ALL, 1449 0); 1450 vm_object_drop(&kernel_object); 1451 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1452 vm_map_unlock(&kernel_map); 1453 1454 td = curthread; 1455 1456 base_vmflags = 0; 1457 if (flags & M_ZERO) 1458 base_vmflags |= VM_ALLOC_ZERO; 1459 if (flags & M_USE_RESERVE) 1460 base_vmflags |= VM_ALLOC_SYSTEM; 1461 if (flags & M_USE_INTERRUPT_RESERVE) 1462 base_vmflags |= VM_ALLOC_INTERRUPT; 1463 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1464 panic("kmem_slab_alloc: bad flags %08x (%p)", 1465 flags, ((int **)&size)[-1]); 1466 } 1467 1468 /* 1469 * Allocate the pages. Do not mess with the PG_ZERO flag or map 1470 * them yet. VM_ALLOC_NORMAL can only be set if we are not preempting. 1471 * 1472 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1473 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1474 * implied in this case), though I'm not sure if we really need to 1475 * do that. 1476 */ 1477 vmflags = base_vmflags; 1478 if (flags & M_WAITOK) { 1479 if (td->td_preempted) 1480 vmflags |= VM_ALLOC_SYSTEM; 1481 else 1482 vmflags |= VM_ALLOC_NORMAL; 1483 } 1484 1485 vm_object_hold(&kernel_object); 1486 for (i = 0; i < size; i += PAGE_SIZE) { 1487 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1488 if (i == 0) 1489 mbase = m; 1490 1491 /* 1492 * If the allocation failed we either return NULL or we retry. 1493 * 1494 * If M_WAITOK is specified we wait for more memory and retry. 1495 * If M_WAITOK is specified from a preemption we yield instead of 1496 * wait. Livelock will not occur because the interrupt thread 1497 * will not be preempting anyone the second time around after the 1498 * yield. 1499 */ 1500 if (m == NULL) { 1501 if (flags & M_WAITOK) { 1502 if (td->td_preempted) { 1503 lwkt_switch(); 1504 } else { 1505 vm_wait(0); 1506 } 1507 i -= PAGE_SIZE; /* retry */ 1508 continue; 1509 } 1510 break; 1511 } 1512 } 1513 1514 /* 1515 * Check and deal with an allocation failure 1516 */ 1517 if (i != size) { 1518 while (i != 0) { 1519 i -= PAGE_SIZE; 1520 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1521 /* page should already be busy */ 1522 vm_page_free(m); 1523 } 1524 vm_map_lock(&kernel_map); 1525 vm_map_delete(&kernel_map, addr, addr + size, &count); 1526 vm_map_unlock(&kernel_map); 1527 vm_object_drop(&kernel_object); 1528 1529 vm_map_entry_release(count); 1530 crit_exit(); 1531 return(NULL); 1532 } 1533 1534 /* 1535 * Success! 1536 * 1537 * NOTE: The VM pages are still busied. mbase points to the first one 1538 * but we have to iterate via vm_page_next() 1539 */ 1540 vm_object_drop(&kernel_object); 1541 crit_exit(); 1542 1543 /* 1544 * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO. 1545 */ 1546 m = mbase; 1547 i = 0; 1548 1549 while (i < size) { 1550 /* 1551 * page should already be busy 1552 */ 1553 m->valid = VM_PAGE_BITS_ALL; 1554 vm_page_wire(m); 1555 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC, 1556 1, NULL); 1557 if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO)) 1558 bzero((char *)addr + i, PAGE_SIZE); 1559 vm_page_flag_clear(m, PG_ZERO); 1560 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1561 vm_page_flag_set(m, PG_REFERENCED); 1562 vm_page_wakeup(m); 1563 1564 i += PAGE_SIZE; 1565 vm_object_hold(&kernel_object); 1566 m = vm_page_next(m); 1567 vm_object_drop(&kernel_object); 1568 } 1569 smp_invltlb(); 1570 vm_map_entry_release(count); 1571 atomic_add_long(&SlabsAllocated, 1); 1572 return((void *)addr); 1573 } 1574 1575 /* 1576 * kmem_slab_free() 1577 */ 1578 static void 1579 kmem_slab_free(void *ptr, vm_size_t size) 1580 { 1581 crit_enter(); 1582 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1583 atomic_add_long(&SlabsFreed, 1); 1584 crit_exit(); 1585 } 1586 1587 void * 1588 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type, 1589 int flags) 1590 { 1591 #if (__VM_CACHELINE_SIZE == 32) 1592 #define CAN_CACHEALIGN(sz) ((sz) >= 256) 1593 #elif (__VM_CACHELINE_SIZE == 64) 1594 #define CAN_CACHEALIGN(sz) ((sz) >= 512) 1595 #elif (__VM_CACHELINE_SIZE == 128) 1596 #define CAN_CACHEALIGN(sz) ((sz) >= 1024) 1597 #else 1598 #error "unsupported cacheline size" 1599 #endif 1600 1601 void *ret; 1602 1603 if (size_alloc < __VM_CACHELINE_SIZE) 1604 size_alloc = __VM_CACHELINE_SIZE; 1605 else if (!CAN_CACHEALIGN(size_alloc)) 1606 flags |= M_POWEROF2; 1607 1608 ret = kmalloc(size_alloc, type, flags); 1609 KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0, 1610 ("%p(%lu) not cacheline %d aligned", 1611 ret, size_alloc, __VM_CACHELINE_SIZE)); 1612 return ret; 1613 1614 #undef CAN_CACHEALIGN 1615 } 1616