1 /* 2 * (MPSAFE) 3 * 4 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 5 * 6 * Copyright (c) 2003,2004,2010 The DragonFly Project. All rights reserved. 7 * 8 * This code is derived from software contributed to The DragonFly Project 9 * by Matthew Dillon <dillon@backplane.com> 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in 19 * the documentation and/or other materials provided with the 20 * distribution. 21 * 3. Neither the name of The DragonFly Project nor the names of its 22 * contributors may be used to endorse or promote products derived 23 * from this software without specific, prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * This module implements a slab allocator drop-in replacement for the 39 * kernel malloc(). 40 * 41 * A slab allocator reserves a ZONE for each chunk size, then lays the 42 * chunks out in an array within the zone. Allocation and deallocation 43 * is nearly instantanious, and fragmentation/overhead losses are limited 44 * to a fixed worst-case amount. 45 * 46 * The downside of this slab implementation is in the chunk size 47 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 48 * In a kernel implementation all this memory will be physical so 49 * the zone size is adjusted downward on machines with less physical 50 * memory. The upside is that overhead is bounded... this is the *worst* 51 * case overhead. 52 * 53 * Slab management is done on a per-cpu basis and no locking or mutexes 54 * are required, only a critical section. When one cpu frees memory 55 * belonging to another cpu's slab manager an asynchronous IPI message 56 * will be queued to execute the operation. In addition, both the 57 * high level slab allocator and the low level zone allocator optimize 58 * M_ZERO requests, and the slab allocator does not have to pre initialize 59 * the linked list of chunks. 60 * 61 * XXX Balancing is needed between cpus. Balance will be handled through 62 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 63 * 64 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 65 * the new zone should be restricted to M_USE_RESERVE requests only. 66 * 67 * Alloc Size Chunking Number of zones 68 * 0-127 8 16 69 * 128-255 16 8 70 * 256-511 32 8 71 * 512-1023 64 8 72 * 1024-2047 128 8 73 * 2048-4095 256 8 74 * 4096-8191 512 8 75 * 8192-16383 1024 8 76 * 16384-32767 2048 8 77 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 78 * 79 * Allocations >= ZoneLimit go directly to kmem. 80 * 81 * Alignment properties: 82 * - All power-of-2 sized allocations are power-of-2 aligned. 83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest 84 * power-of-2 round up of 'size'. 85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the 86 * above table 'Chunking' column). 87 * 88 * API REQUIREMENTS AND SIDE EFFECTS 89 * 90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 91 * have remained compatible with the following API requirements: 92 * 93 * + malloc(0) is allowed and returns non-NULL (ahc driver) 94 * + ability to allocate arbitrarily large chunks of memory 95 */ 96 97 #include "opt_vm.h" 98 99 #include <sys/param.h> 100 #include <sys/systm.h> 101 #include <sys/kernel.h> 102 #include <sys/slaballoc.h> 103 #include <sys/mbuf.h> 104 #include <sys/vmmeter.h> 105 #include <sys/lock.h> 106 #include <sys/thread.h> 107 #include <sys/globaldata.h> 108 #include <sys/sysctl.h> 109 #include <sys/ktr.h> 110 111 #include <vm/vm.h> 112 #include <vm/vm_param.h> 113 #include <vm/vm_kern.h> 114 #include <vm/vm_extern.h> 115 #include <vm/vm_object.h> 116 #include <vm/pmap.h> 117 #include <vm/vm_map.h> 118 #include <vm/vm_page.h> 119 #include <vm/vm_pageout.h> 120 121 #include <machine/cpu.h> 122 123 #include <sys/thread2.h> 124 #include <vm/vm_page2.h> 125 126 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 127 128 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x" 129 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags 130 131 #if !defined(KTR_MEMORY) 132 #define KTR_MEMORY KTR_ALL 133 #endif 134 KTR_INFO_MASTER(memory); 135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin"); 136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS); 137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS); 138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS); 139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS); 140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS); 141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS); 142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS); 143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS); 144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin"); 145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end"); 146 147 #define logmemory(name, ptr, type, size, flags) \ 148 KTR_LOG(memory_ ## name, ptr, type, size, flags) 149 #define logmemory_quick(name) \ 150 KTR_LOG(memory_ ## name) 151 152 /* 153 * Fixed globals (not per-cpu) 154 */ 155 static int ZoneSize; 156 static int ZoneLimit; 157 static int ZonePageCount; 158 static uintptr_t ZoneMask; 159 static int ZoneBigAlloc; /* in KB */ 160 static int ZoneGenAlloc; /* in KB */ 161 struct malloc_type *kmemstatistics; /* exported to vmstat */ 162 static int32_t weirdary[16]; 163 164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 165 static void kmem_slab_free(void *ptr, vm_size_t bytes); 166 167 #if defined(INVARIANTS) 168 static void chunk_mark_allocated(SLZone *z, void *chunk); 169 static void chunk_mark_free(SLZone *z, void *chunk); 170 #else 171 #define chunk_mark_allocated(z, chunk) 172 #define chunk_mark_free(z, chunk) 173 #endif 174 175 /* 176 * Misc constants. Note that allocations that are exact multiples of 177 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 178 */ 179 #define ZONE_RELS_THRESH 32 /* threshold number of zones */ 180 181 /* 182 * The WEIRD_ADDR is used as known text to copy into free objects to 183 * try to create deterministic failure cases if the data is accessed after 184 * free. 185 */ 186 #define WEIRD_ADDR 0xdeadc0de 187 #define MAX_COPY sizeof(weirdary) 188 #define ZERO_LENGTH_PTR ((void *)-8) 189 190 /* 191 * Misc global malloc buckets 192 */ 193 194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 197 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations"); 198 199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 201 202 /* 203 * Initialize the slab memory allocator. We have to choose a zone size based 204 * on available physical memory. We choose a zone side which is approximately 205 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 206 * 128K. The zone size is limited to the bounds set in slaballoc.h 207 * (typically 32K min, 128K max). 208 */ 209 static void kmeminit(void *dummy); 210 211 char *ZeroPage; 212 213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL); 214 215 #ifdef INVARIANTS 216 /* 217 * If enabled any memory allocated without M_ZERO is initialized to -1. 218 */ 219 static int use_malloc_pattern; 220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 221 &use_malloc_pattern, 0, 222 "Initialize memory to -1 if M_ZERO not specified"); 223 #endif 224 225 static int ZoneRelsThresh = ZONE_RELS_THRESH; 226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 228 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, ""); 229 static long SlabsAllocated; 230 static long SlabsFreed; 231 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, 232 &SlabsAllocated, 0, ""); 233 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, 234 &SlabsFreed, 0, ""); 235 static int SlabFreeToTail; 236 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW, 237 &SlabFreeToTail, 0, ""); 238 239 /* 240 * Returns the kernel memory size limit for the purposes of initializing 241 * various subsystem caches. The smaller of available memory and the KVM 242 * memory space is returned. 243 * 244 * The size in megabytes is returned. 245 */ 246 size_t 247 kmem_lim_size(void) 248 { 249 size_t limsize; 250 251 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 252 if (limsize > KvaSize) 253 limsize = KvaSize; 254 return (limsize / (1024 * 1024)); 255 } 256 257 static void 258 kmeminit(void *dummy) 259 { 260 size_t limsize; 261 int usesize; 262 int i; 263 264 limsize = kmem_lim_size(); 265 usesize = (int)(limsize * 1024); /* convert to KB */ 266 267 /* 268 * If the machine has a large KVM space and more than 8G of ram, 269 * double the zone release threshold to reduce SMP invalidations. 270 * If more than 16G of ram, do it again. 271 * 272 * The BIOS eats a little ram so add some slop. We want 8G worth of 273 * memory sticks to trigger the first adjustment. 274 */ 275 if (ZoneRelsThresh == ZONE_RELS_THRESH) { 276 if (limsize >= 7 * 1024) 277 ZoneRelsThresh *= 2; 278 if (limsize >= 15 * 1024) 279 ZoneRelsThresh *= 2; 280 } 281 282 /* 283 * Calculate the zone size. This typically calculates to 284 * ZALLOC_MAX_ZONE_SIZE 285 */ 286 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 287 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 288 ZoneSize <<= 1; 289 ZoneLimit = ZoneSize / 4; 290 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 291 ZoneLimit = ZALLOC_ZONE_LIMIT; 292 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 293 ZonePageCount = ZoneSize / PAGE_SIZE; 294 295 for (i = 0; i < NELEM(weirdary); ++i) 296 weirdary[i] = WEIRD_ADDR; 297 298 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 299 300 if (bootverbose) 301 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 302 } 303 304 /* 305 * (low level) Initialize slab-related elements in the globaldata structure. 306 * 307 * Occurs after kmeminit(). 308 */ 309 void 310 slab_gdinit(globaldata_t gd) 311 { 312 SLGlobalData *slgd; 313 int i; 314 315 slgd = &gd->gd_slab; 316 for (i = 0; i < NZONES; ++i) 317 TAILQ_INIT(&slgd->ZoneAry[i]); 318 TAILQ_INIT(&slgd->FreeZones); 319 TAILQ_INIT(&slgd->FreeOvZones); 320 } 321 322 /* 323 * Initialize a malloc type tracking structure. 324 */ 325 void 326 malloc_init(void *data) 327 { 328 struct malloc_type *type = data; 329 size_t limsize; 330 331 if (type->ks_magic != M_MAGIC) 332 panic("malloc type lacks magic"); 333 334 if (type->ks_limit != 0) 335 return; 336 337 if (vmstats.v_page_count == 0) 338 panic("malloc_init not allowed before vm init"); 339 340 limsize = kmem_lim_size() * (1024 * 1024); 341 type->ks_limit = limsize / 10; 342 343 type->ks_next = kmemstatistics; 344 kmemstatistics = type; 345 } 346 347 void 348 malloc_uninit(void *data) 349 { 350 struct malloc_type *type = data; 351 struct malloc_type *t; 352 #ifdef INVARIANTS 353 int i; 354 long ttl; 355 #endif 356 357 if (type->ks_magic != M_MAGIC) 358 panic("malloc type lacks magic"); 359 360 if (vmstats.v_page_count == 0) 361 panic("malloc_uninit not allowed before vm init"); 362 363 if (type->ks_limit == 0) 364 panic("malloc_uninit on uninitialized type"); 365 366 /* Make sure that all pending kfree()s are finished. */ 367 lwkt_synchronize_ipiqs("muninit"); 368 369 #ifdef INVARIANTS 370 /* 371 * memuse is only correct in aggregation. Due to memory being allocated 372 * on one cpu and freed on another individual array entries may be 373 * negative or positive (canceling each other out). 374 */ 375 for (i = ttl = 0; i < ncpus; ++i) 376 ttl += type->ks_use[i].memuse; 377 if (ttl) { 378 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 379 ttl, type->ks_shortdesc, i); 380 } 381 #endif 382 if (type == kmemstatistics) { 383 kmemstatistics = type->ks_next; 384 } else { 385 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 386 if (t->ks_next == type) { 387 t->ks_next = type->ks_next; 388 break; 389 } 390 } 391 } 392 type->ks_next = NULL; 393 type->ks_limit = 0; 394 } 395 396 /* 397 * Increase the kmalloc pool limit for the specified pool. No changes 398 * are the made if the pool would shrink. 399 */ 400 void 401 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 402 { 403 if (type->ks_limit == 0) 404 malloc_init(type); 405 if (bytes == 0) 406 bytes = KvaSize; 407 if (type->ks_limit < bytes) 408 type->ks_limit = bytes; 409 } 410 411 void 412 kmalloc_set_unlimited(struct malloc_type *type) 413 { 414 type->ks_limit = kmem_lim_size() * (1024 * 1024); 415 } 416 417 /* 418 * Dynamically create a malloc pool. This function is a NOP if *typep is 419 * already non-NULL. 420 */ 421 void 422 kmalloc_create(struct malloc_type **typep, const char *descr) 423 { 424 struct malloc_type *type; 425 426 if (*typep == NULL) { 427 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 428 type->ks_magic = M_MAGIC; 429 type->ks_shortdesc = descr; 430 malloc_init(type); 431 *typep = type; 432 } 433 } 434 435 /* 436 * Destroy a dynamically created malloc pool. This function is a NOP if 437 * the pool has already been destroyed. 438 */ 439 void 440 kmalloc_destroy(struct malloc_type **typep) 441 { 442 if (*typep != NULL) { 443 malloc_uninit(*typep); 444 kfree(*typep, M_TEMP); 445 *typep = NULL; 446 } 447 } 448 449 /* 450 * Calculate the zone index for the allocation request size and set the 451 * allocation request size to that particular zone's chunk size. 452 */ 453 static __inline int 454 zoneindex(unsigned long *bytes, unsigned long *align) 455 { 456 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 457 if (n < 128) { 458 *bytes = n = (n + 7) & ~7; 459 *align = 8; 460 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 461 } 462 if (n < 256) { 463 *bytes = n = (n + 15) & ~15; 464 *align = 16; 465 return(n / 16 + 7); 466 } 467 if (n < 8192) { 468 if (n < 512) { 469 *bytes = n = (n + 31) & ~31; 470 *align = 32; 471 return(n / 32 + 15); 472 } 473 if (n < 1024) { 474 *bytes = n = (n + 63) & ~63; 475 *align = 64; 476 return(n / 64 + 23); 477 } 478 if (n < 2048) { 479 *bytes = n = (n + 127) & ~127; 480 *align = 128; 481 return(n / 128 + 31); 482 } 483 if (n < 4096) { 484 *bytes = n = (n + 255) & ~255; 485 *align = 256; 486 return(n / 256 + 39); 487 } 488 *bytes = n = (n + 511) & ~511; 489 *align = 512; 490 return(n / 512 + 47); 491 } 492 #if ZALLOC_ZONE_LIMIT > 8192 493 if (n < 16384) { 494 *bytes = n = (n + 1023) & ~1023; 495 *align = 1024; 496 return(n / 1024 + 55); 497 } 498 #endif 499 #if ZALLOC_ZONE_LIMIT > 16384 500 if (n < 32768) { 501 *bytes = n = (n + 2047) & ~2047; 502 *align = 2048; 503 return(n / 2048 + 63); 504 } 505 #endif 506 panic("Unexpected byte count %d", n); 507 return(0); 508 } 509 510 static __inline 511 void 512 clean_zone_rchunks(SLZone *z) 513 { 514 SLChunk *bchunk; 515 516 while ((bchunk = z->z_RChunks) != NULL) { 517 cpu_ccfence(); 518 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 519 *z->z_LChunksp = bchunk; 520 while (bchunk) { 521 chunk_mark_free(z, bchunk); 522 z->z_LChunksp = &bchunk->c_Next; 523 bchunk = bchunk->c_Next; 524 ++z->z_NFree; 525 } 526 break; 527 } 528 /* retry */ 529 } 530 } 531 532 /* 533 * If the zone becomes totally free and is not the only zone listed for a 534 * chunk size we move it to the FreeZones list. We always leave at least 535 * one zone per chunk size listed, even if it is freeable. 536 * 537 * Do not move the zone if there is an IPI in_flight (z_RCount != 0), 538 * otherwise MP races can result in our free_remote code accessing a 539 * destroyed zone. The remote end interlocks z_RCount with z_RChunks 540 * so one has to test both z_NFree and z_RCount. 541 * 542 * Since this code can be called from an IPI callback, do *NOT* try to mess 543 * with kernel_map here. Hysteresis will be performed at kmalloc() time. 544 */ 545 static __inline 546 SLZone * 547 check_zone_free(SLGlobalData *slgd, SLZone *z) 548 { 549 SLZone *znext; 550 551 znext = TAILQ_NEXT(z, z_Entry); 552 if (z->z_NFree == z->z_NMax && z->z_RCount == 0 && 553 (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext) 554 ) { 555 int *kup; 556 557 TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 558 559 z->z_Magic = -1; 560 TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry); 561 ++slgd->NFreeZones; 562 kup = btokup(z); 563 *kup = 0; 564 } 565 return znext; 566 } 567 568 #ifdef SLAB_DEBUG 569 /* 570 * Used to debug memory corruption issues. Record up to (typically 32) 571 * allocation sources for this zone (for a particular chunk size). 572 */ 573 574 static void 575 slab_record_source(SLZone *z, const char *file, int line) 576 { 577 int i; 578 int b = line & (SLAB_DEBUG_ENTRIES - 1); 579 580 i = b; 581 do { 582 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line) 583 return; 584 if (z->z_Sources[i].file == NULL) 585 break; 586 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1); 587 } while (i != b); 588 z->z_Sources[i].file = file; 589 z->z_Sources[i].line = line; 590 } 591 592 #endif 593 594 static __inline unsigned long 595 powerof2_size(unsigned long size) 596 { 597 int i; 598 599 if (size == 0 || powerof2(size)) 600 return size; 601 602 i = flsl(size); 603 return (1UL << i); 604 } 605 606 /* 607 * kmalloc() (SLAB ALLOCATOR) 608 * 609 * Allocate memory via the slab allocator. If the request is too large, 610 * or if it page-aligned beyond a certain size, we fall back to the 611 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 612 * &SlabMisc if you don't care. 613 * 614 * M_RNOWAIT - don't block. 615 * M_NULLOK - return NULL instead of blocking. 616 * M_ZERO - zero the returned memory. 617 * M_USE_RESERVE - allow greater drawdown of the free list 618 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 619 * M_POWEROF2 - roundup size to the nearest power of 2 620 * 621 * MPSAFE 622 */ 623 624 #ifdef SLAB_DEBUG 625 void * 626 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags, 627 const char *file, int line) 628 #else 629 void * 630 kmalloc(unsigned long size, struct malloc_type *type, int flags) 631 #endif 632 { 633 SLZone *z; 634 SLChunk *chunk; 635 SLGlobalData *slgd; 636 struct globaldata *gd; 637 unsigned long align; 638 int zi; 639 #ifdef INVARIANTS 640 int i; 641 #endif 642 643 logmemory_quick(malloc_beg); 644 gd = mycpu; 645 slgd = &gd->gd_slab; 646 647 /* 648 * XXX silly to have this in the critical path. 649 */ 650 if (type->ks_limit == 0) { 651 crit_enter(); 652 malloc_init(type); 653 crit_exit(); 654 } 655 ++type->ks_calls; 656 657 if (flags & M_POWEROF2) 658 size = powerof2_size(size); 659 660 /* 661 * Handle the case where the limit is reached. Panic if we can't return 662 * NULL. The original malloc code looped, but this tended to 663 * simply deadlock the computer. 664 * 665 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 666 * to determine if a more complete limit check should be done. The 667 * actual memory use is tracked via ks_use[cpu].memuse. 668 */ 669 while (type->ks_loosememuse >= type->ks_limit) { 670 int i; 671 long ttl; 672 673 for (i = ttl = 0; i < ncpus; ++i) 674 ttl += type->ks_use[i].memuse; 675 type->ks_loosememuse = ttl; /* not MP synchronized */ 676 if ((ssize_t)ttl < 0) /* deal with occassional race */ 677 ttl = 0; 678 if (ttl >= type->ks_limit) { 679 if (flags & M_NULLOK) { 680 logmemory(malloc_end, NULL, type, size, flags); 681 return(NULL); 682 } 683 panic("%s: malloc limit exceeded", type->ks_shortdesc); 684 } 685 } 686 687 /* 688 * Handle the degenerate size == 0 case. Yes, this does happen. 689 * Return a special pointer. This is to maintain compatibility with 690 * the original malloc implementation. Certain devices, such as the 691 * adaptec driver, not only allocate 0 bytes, they check for NULL and 692 * also realloc() later on. Joy. 693 */ 694 if (size == 0) { 695 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 696 return(ZERO_LENGTH_PTR); 697 } 698 699 /* 700 * Handle hysteresis from prior frees here in malloc(). We cannot 701 * safely manipulate the kernel_map in free() due to free() possibly 702 * being called via an IPI message or from sensitive interrupt code. 703 * 704 * NOTE: ku_pagecnt must be cleared before we free the slab or we 705 * might race another cpu allocating the kva and setting 706 * ku_pagecnt. 707 */ 708 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) { 709 crit_enter(); 710 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */ 711 int *kup; 712 713 z = TAILQ_LAST(&slgd->FreeZones, SLZoneList); 714 KKASSERT(z != NULL); 715 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry); 716 --slgd->NFreeZones; 717 kup = btokup(z); 718 *kup = 0; 719 kmem_slab_free(z, ZoneSize); /* may block */ 720 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024); 721 } 722 crit_exit(); 723 } 724 725 /* 726 * XXX handle oversized frees that were queued from kfree(). 727 */ 728 while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) { 729 crit_enter(); 730 if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) { 731 vm_size_t tsize; 732 733 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 734 TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry); 735 tsize = z->z_ChunkSize; 736 kmem_slab_free(z, tsize); /* may block */ 737 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 738 } 739 crit_exit(); 740 } 741 742 /* 743 * Handle large allocations directly. There should not be very many of 744 * these so performance is not a big issue. 745 * 746 * The backend allocator is pretty nasty on a SMP system. Use the 747 * slab allocator for one and two page-sized chunks even though we lose 748 * some efficiency. XXX maybe fix mmio and the elf loader instead. 749 */ 750 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 751 int *kup; 752 753 size = round_page(size); 754 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 755 if (chunk == NULL) { 756 logmemory(malloc_end, NULL, type, size, flags); 757 return(NULL); 758 } 759 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 760 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 761 flags |= M_PASSIVE_ZERO; 762 kup = btokup(chunk); 763 *kup = size / PAGE_SIZE; 764 crit_enter(); 765 goto done; 766 } 767 768 /* 769 * Attempt to allocate out of an existing zone. First try the free list, 770 * then allocate out of unallocated space. If we find a good zone move 771 * it to the head of the list so later allocations find it quickly 772 * (we might have thousands of zones in the list). 773 * 774 * Note: zoneindex() will panic of size is too large. 775 */ 776 zi = zoneindex(&size, &align); 777 KKASSERT(zi < NZONES); 778 crit_enter(); 779 780 if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) { 781 /* 782 * Locate a chunk - we have to have at least one. If this is the 783 * last chunk go ahead and do the work to retrieve chunks freed 784 * from remote cpus, and if the zone is still empty move it off 785 * the ZoneAry. 786 */ 787 if (--z->z_NFree <= 0) { 788 KKASSERT(z->z_NFree == 0); 789 790 /* 791 * WARNING! This code competes with other cpus. It is ok 792 * for us to not drain RChunks here but we might as well, and 793 * it is ok if more accumulate after we're done. 794 * 795 * Set RSignal before pulling rchunks off, indicating that we 796 * will be moving ourselves off of the ZoneAry. Remote ends will 797 * read RSignal before putting rchunks on thus interlocking 798 * their IPI signaling. 799 */ 800 if (z->z_RChunks == NULL) 801 atomic_swap_int(&z->z_RSignal, 1); 802 803 clean_zone_rchunks(z); 804 805 /* 806 * Remove from the zone list if no free chunks remain. 807 * Clear RSignal 808 */ 809 if (z->z_NFree == 0) { 810 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry); 811 } else { 812 z->z_RSignal = 0; 813 } 814 } 815 816 /* 817 * Fast path, we have chunks available in z_LChunks. 818 */ 819 chunk = z->z_LChunks; 820 if (chunk) { 821 chunk_mark_allocated(z, chunk); 822 z->z_LChunks = chunk->c_Next; 823 if (z->z_LChunks == NULL) 824 z->z_LChunksp = &z->z_LChunks; 825 #ifdef SLAB_DEBUG 826 slab_record_source(z, file, line); 827 #endif 828 goto done; 829 } 830 831 /* 832 * No chunks are available in LChunks, the free chunk MUST be 833 * in the never-before-used memory area, controlled by UIndex. 834 * 835 * The consequences are very serious if our zone got corrupted so 836 * we use an explicit panic rather than a KASSERT. 837 */ 838 if (z->z_UIndex + 1 != z->z_NMax) 839 ++z->z_UIndex; 840 else 841 z->z_UIndex = 0; 842 843 if (z->z_UIndex == z->z_UEndIndex) 844 panic("slaballoc: corrupted zone"); 845 846 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 847 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 848 flags &= ~M_ZERO; 849 flags |= M_PASSIVE_ZERO; 850 } 851 chunk_mark_allocated(z, chunk); 852 #ifdef SLAB_DEBUG 853 slab_record_source(z, file, line); 854 #endif 855 goto done; 856 } 857 858 /* 859 * If all zones are exhausted we need to allocate a new zone for this 860 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 861 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 862 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 863 * we do not pre-zero it because we do not want to mess up the L1 cache. 864 * 865 * At least one subsystem, the tty code (see CROUND) expects power-of-2 866 * allocations to be power-of-2 aligned. We maintain compatibility by 867 * adjusting the base offset below. 868 */ 869 { 870 int off; 871 int *kup; 872 873 if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) { 874 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry); 875 --slgd->NFreeZones; 876 bzero(z, sizeof(SLZone)); 877 z->z_Flags |= SLZF_UNOTZEROD; 878 } else { 879 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 880 if (z == NULL) 881 goto fail; 882 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024); 883 } 884 885 /* 886 * How big is the base structure? 887 */ 888 #if defined(INVARIANTS) 889 /* 890 * Make room for z_Bitmap. An exact calculation is somewhat more 891 * complicated so don't make an exact calculation. 892 */ 893 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 894 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 895 #else 896 off = sizeof(SLZone); 897 #endif 898 899 /* 900 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 901 * Otherwise properly align the data according to the chunk size. 902 */ 903 if (powerof2(size)) 904 align = size; 905 off = roundup2(off, align); 906 907 z->z_Magic = ZALLOC_SLAB_MAGIC; 908 z->z_ZoneIndex = zi; 909 z->z_NMax = (ZoneSize - off) / size; 910 z->z_NFree = z->z_NMax - 1; 911 z->z_BasePtr = (char *)z + off; 912 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 913 z->z_ChunkSize = size; 914 z->z_CpuGd = gd; 915 z->z_Cpu = gd->gd_cpuid; 916 z->z_LChunksp = &z->z_LChunks; 917 #ifdef SLAB_DEBUG 918 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources)); 919 bzero(z->z_Sources, sizeof(z->z_Sources)); 920 #endif 921 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 922 TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry); 923 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 924 flags &= ~M_ZERO; /* already zero'd */ 925 flags |= M_PASSIVE_ZERO; 926 } 927 kup = btokup(z); 928 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 929 chunk_mark_allocated(z, chunk); 930 #ifdef SLAB_DEBUG 931 slab_record_source(z, file, line); 932 #endif 933 934 /* 935 * Slide the base index for initial allocations out of the next 936 * zone we create so we do not over-weight the lower part of the 937 * cpu memory caches. 938 */ 939 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 940 & (ZALLOC_MAX_ZONE_SIZE - 1); 941 } 942 943 done: 944 ++type->ks_use[gd->gd_cpuid].inuse; 945 type->ks_use[gd->gd_cpuid].memuse += size; 946 type->ks_loosememuse += size; /* not MP synchronized */ 947 crit_exit(); 948 949 if (flags & M_ZERO) 950 bzero(chunk, size); 951 #ifdef INVARIANTS 952 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 953 if (use_malloc_pattern) { 954 for (i = 0; i < size; i += sizeof(int)) { 955 *(int *)((char *)chunk + i) = -1; 956 } 957 } 958 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 959 } 960 #endif 961 logmemory(malloc_end, chunk, type, size, flags); 962 return(chunk); 963 fail: 964 crit_exit(); 965 logmemory(malloc_end, NULL, type, size, flags); 966 return(NULL); 967 } 968 969 /* 970 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 971 * 972 * Generally speaking this routine is not called very often and we do 973 * not attempt to optimize it beyond reusing the same pointer if the 974 * new size fits within the chunking of the old pointer's zone. 975 */ 976 #ifdef SLAB_DEBUG 977 void * 978 krealloc_debug(void *ptr, unsigned long size, 979 struct malloc_type *type, int flags, 980 const char *file, int line) 981 #else 982 void * 983 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 984 #endif 985 { 986 unsigned long osize; 987 unsigned long align; 988 SLZone *z; 989 void *nptr; 990 int *kup; 991 992 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 993 994 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 995 return(kmalloc_debug(size, type, flags, file, line)); 996 if (size == 0) { 997 kfree(ptr, type); 998 return(NULL); 999 } 1000 1001 /* 1002 * Handle oversized allocations. XXX we really should require that a 1003 * size be passed to free() instead of this nonsense. 1004 */ 1005 kup = btokup(ptr); 1006 if (*kup > 0) { 1007 osize = *kup << PAGE_SHIFT; 1008 if (osize == round_page(size)) 1009 return(ptr); 1010 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 1011 return(NULL); 1012 bcopy(ptr, nptr, min(size, osize)); 1013 kfree(ptr, type); 1014 return(nptr); 1015 } 1016 1017 /* 1018 * Get the original allocation's zone. If the new request winds up 1019 * using the same chunk size we do not have to do anything. 1020 */ 1021 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1022 kup = btokup(z); 1023 KKASSERT(*kup < 0); 1024 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1025 1026 /* 1027 * Allocate memory for the new request size. Note that zoneindex has 1028 * already adjusted the request size to the appropriate chunk size, which 1029 * should optimize our bcopy(). Then copy and return the new pointer. 1030 * 1031 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 1032 * necessary align the result. 1033 * 1034 * We can only zoneindex (to align size to the chunk size) if the new 1035 * size is not too large. 1036 */ 1037 if (size < ZoneLimit) { 1038 zoneindex(&size, &align); 1039 if (z->z_ChunkSize == size) 1040 return(ptr); 1041 } 1042 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 1043 return(NULL); 1044 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 1045 kfree(ptr, type); 1046 return(nptr); 1047 } 1048 1049 /* 1050 * Return the kmalloc limit for this type, in bytes. 1051 */ 1052 long 1053 kmalloc_limit(struct malloc_type *type) 1054 { 1055 if (type->ks_limit == 0) { 1056 crit_enter(); 1057 if (type->ks_limit == 0) 1058 malloc_init(type); 1059 crit_exit(); 1060 } 1061 return(type->ks_limit); 1062 } 1063 1064 /* 1065 * Allocate a copy of the specified string. 1066 * 1067 * (MP SAFE) (MAY BLOCK) 1068 */ 1069 #ifdef SLAB_DEBUG 1070 char * 1071 kstrdup_debug(const char *str, struct malloc_type *type, 1072 const char *file, int line) 1073 #else 1074 char * 1075 kstrdup(const char *str, struct malloc_type *type) 1076 #endif 1077 { 1078 int zlen; /* length inclusive of terminating NUL */ 1079 char *nstr; 1080 1081 if (str == NULL) 1082 return(NULL); 1083 zlen = strlen(str) + 1; 1084 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1085 bcopy(str, nstr, zlen); 1086 return(nstr); 1087 } 1088 1089 #ifdef SLAB_DEBUG 1090 char * 1091 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type, 1092 const char *file, int line) 1093 #else 1094 char * 1095 kstrndup(const char *str, size_t maxlen, struct malloc_type *type) 1096 #endif 1097 { 1098 int zlen; /* length inclusive of terminating NUL */ 1099 char *nstr; 1100 1101 if (str == NULL) 1102 return(NULL); 1103 zlen = strnlen(str, maxlen) + 1; 1104 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1105 bcopy(str, nstr, zlen); 1106 nstr[zlen - 1] = '\0'; 1107 return(nstr); 1108 } 1109 1110 /* 1111 * Notify our cpu that a remote cpu has freed some chunks in a zone that 1112 * we own. RCount will be bumped so the memory should be good, but validate 1113 * that it really is. 1114 */ 1115 static 1116 void 1117 kfree_remote(void *ptr) 1118 { 1119 SLGlobalData *slgd; 1120 SLZone *z; 1121 int nfree; 1122 int *kup; 1123 1124 slgd = &mycpu->gd_slab; 1125 z = ptr; 1126 kup = btokup(z); 1127 KKASSERT(*kup == -((int)mycpuid + 1)); 1128 KKASSERT(z->z_RCount > 0); 1129 atomic_subtract_int(&z->z_RCount, 1); 1130 1131 logmemory(free_rem_beg, z, NULL, 0L, 0); 1132 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1133 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 1134 nfree = z->z_NFree; 1135 1136 /* 1137 * Indicate that we will no longer be off of the ZoneAry by 1138 * clearing RSignal. 1139 */ 1140 if (z->z_RChunks) 1141 z->z_RSignal = 0; 1142 1143 /* 1144 * Atomically extract the bchunks list and then process it back 1145 * into the lchunks list. We want to append our bchunks to the 1146 * lchunks list and not prepend since we likely do not have 1147 * cache mastership of the related data (not that it helps since 1148 * we are using c_Next). 1149 */ 1150 clean_zone_rchunks(z); 1151 if (z->z_NFree && nfree == 0) { 1152 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1153 } 1154 1155 /* 1156 * If the zone becomes totally free and is not the only zone listed for a 1157 * chunk size we move it to the FreeZones list. We always leave at least 1158 * one zone per chunk size listed, even if it is freeable. 1159 * 1160 * Since this code can be called from an IPI callback, do *NOT* try to 1161 * mess with kernel_map here. Hysteresis will be performed at malloc() 1162 * time. 1163 * 1164 * Do not move the zone if there is an IPI in_flight (z_RCount != 0), 1165 * otherwise MP races can result in our free_remote code accessing a 1166 * destroyed zone. The remote end interlocks z_RCount with z_RChunks 1167 * so one has to test both z_NFree and z_RCount. 1168 */ 1169 if (z->z_NFree == z->z_NMax && z->z_RCount == 0 && 1170 (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || 1171 TAILQ_NEXT(z, z_Entry)) 1172 ) { 1173 int *kup; 1174 1175 TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1176 z->z_Magic = -1; 1177 TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry); 1178 ++slgd->NFreeZones; 1179 kup = btokup(z); 1180 *kup = 0; 1181 } 1182 logmemory(free_rem_end, z, NULL, 0L, 0); 1183 } 1184 1185 /* 1186 * free (SLAB ALLOCATOR) 1187 * 1188 * Free a memory block previously allocated by malloc. Note that we do not 1189 * attempt to update ks_loosememuse as MP races could prevent us from 1190 * checking memory limits in malloc. 1191 * 1192 * MPSAFE 1193 */ 1194 void 1195 kfree(void *ptr, struct malloc_type *type) 1196 { 1197 SLZone *z; 1198 SLChunk *chunk; 1199 SLGlobalData *slgd; 1200 struct globaldata *gd; 1201 int *kup; 1202 unsigned long size; 1203 SLChunk *bchunk; 1204 int rsignal; 1205 1206 logmemory_quick(free_beg); 1207 gd = mycpu; 1208 slgd = &gd->gd_slab; 1209 1210 if (ptr == NULL) 1211 panic("trying to free NULL pointer"); 1212 1213 /* 1214 * Handle special 0-byte allocations 1215 */ 1216 if (ptr == ZERO_LENGTH_PTR) { 1217 logmemory(free_zero, ptr, type, -1UL, 0); 1218 logmemory_quick(free_end); 1219 return; 1220 } 1221 1222 /* 1223 * Panic on bad malloc type 1224 */ 1225 if (type->ks_magic != M_MAGIC) 1226 panic("free: malloc type lacks magic"); 1227 1228 /* 1229 * Handle oversized allocations. XXX we really should require that a 1230 * size be passed to free() instead of this nonsense. 1231 * 1232 * This code is never called via an ipi. 1233 */ 1234 kup = btokup(ptr); 1235 if (*kup > 0) { 1236 size = *kup << PAGE_SHIFT; 1237 *kup = 0; 1238 #ifdef INVARIANTS 1239 KKASSERT(sizeof(weirdary) <= size); 1240 bcopy(weirdary, ptr, sizeof(weirdary)); 1241 #endif 1242 /* 1243 * NOTE: For oversized allocations we do not record the 1244 * originating cpu. It gets freed on the cpu calling 1245 * kfree(). The statistics are in aggregate. 1246 * 1247 * note: XXX we have still inherited the interrupts-can't-block 1248 * assumption. An interrupt thread does not bump 1249 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1250 * primarily until we can fix softupdate's assumptions about free(). 1251 */ 1252 crit_enter(); 1253 --type->ks_use[gd->gd_cpuid].inuse; 1254 type->ks_use[gd->gd_cpuid].memuse -= size; 1255 if (mycpu->gd_intr_nesting_level || 1256 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) 1257 { 1258 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1259 z = (SLZone *)ptr; 1260 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1261 z->z_ChunkSize = size; 1262 1263 TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry); 1264 crit_exit(); 1265 } else { 1266 crit_exit(); 1267 logmemory(free_ovsz, ptr, type, size, 0); 1268 kmem_slab_free(ptr, size); /* may block */ 1269 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1270 } 1271 logmemory_quick(free_end); 1272 return; 1273 } 1274 1275 /* 1276 * Zone case. Figure out the zone based on the fact that it is 1277 * ZoneSize aligned. 1278 */ 1279 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1280 kup = btokup(z); 1281 KKASSERT(*kup < 0); 1282 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1283 1284 /* 1285 * If we do not own the zone then use atomic ops to free to the 1286 * remote cpu linked list and notify the target zone using a 1287 * passive message. 1288 * 1289 * The target zone cannot be deallocated while we own a chunk of it, 1290 * so the zone header's storage is stable until the very moment 1291 * we adjust z_RChunks. After that we cannot safely dereference (z). 1292 * 1293 * (no critical section needed) 1294 */ 1295 if (z->z_CpuGd != gd) { 1296 /* 1297 * Making these adjustments now allow us to avoid passing (type) 1298 * to the remote cpu. Note that inuse/memuse is being 1299 * adjusted on OUR cpu, not the zone cpu, but it should all still 1300 * sum up properly and cancel out. 1301 */ 1302 crit_enter(); 1303 --type->ks_use[gd->gd_cpuid].inuse; 1304 type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize; 1305 crit_exit(); 1306 1307 /* 1308 * WARNING! This code competes with other cpus. Once we 1309 * successfully link the chunk to RChunks the remote 1310 * cpu can rip z's storage out from under us. 1311 * 1312 * Bumping RCount prevents z's storage from getting 1313 * ripped out. 1314 */ 1315 rsignal = z->z_RSignal; 1316 cpu_lfence(); 1317 if (rsignal) 1318 atomic_add_int(&z->z_RCount, 1); 1319 1320 chunk = ptr; 1321 for (;;) { 1322 bchunk = z->z_RChunks; 1323 cpu_ccfence(); 1324 chunk->c_Next = bchunk; 1325 cpu_sfence(); 1326 1327 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1328 break; 1329 } 1330 1331 /* 1332 * We have to signal the remote cpu if our actions will cause 1333 * the remote zone to be placed back on ZoneAry so it can 1334 * move the zone back on. 1335 * 1336 * We only need to deal with NULL->non-NULL RChunk transitions 1337 * and only if z_RSignal is set. We interlock by reading rsignal 1338 * before adding our chunk to RChunks. This should result in 1339 * virtually no IPI traffic. 1340 * 1341 * We can use a passive IPI to reduce overhead even further. 1342 */ 1343 if (bchunk == NULL && rsignal) { 1344 logmemory(free_request, ptr, type, 1345 (unsigned long)z->z_ChunkSize, 0); 1346 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1347 /* z can get ripped out from under us from this point on */ 1348 } else if (rsignal) { 1349 atomic_subtract_int(&z->z_RCount, 1); 1350 /* z can get ripped out from under us from this point on */ 1351 } 1352 logmemory_quick(free_end); 1353 return; 1354 } 1355 1356 /* 1357 * kfree locally 1358 */ 1359 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0); 1360 1361 crit_enter(); 1362 chunk = ptr; 1363 chunk_mark_free(z, chunk); 1364 1365 /* 1366 * Put weird data into the memory to detect modifications after freeing, 1367 * illegal pointer use after freeing (we should fault on the odd address), 1368 * and so forth. XXX needs more work, see the old malloc code. 1369 */ 1370 #ifdef INVARIANTS 1371 if (z->z_ChunkSize < sizeof(weirdary)) 1372 bcopy(weirdary, chunk, z->z_ChunkSize); 1373 else 1374 bcopy(weirdary, chunk, sizeof(weirdary)); 1375 #endif 1376 1377 /* 1378 * Add this free non-zero'd chunk to a linked list for reuse. Add 1379 * to the front of the linked list so it is more likely to be 1380 * reallocated, since it is already in our L1 cache. 1381 */ 1382 #ifdef INVARIANTS 1383 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1384 panic("BADFREE %p", chunk); 1385 #endif 1386 chunk->c_Next = z->z_LChunks; 1387 z->z_LChunks = chunk; 1388 if (chunk->c_Next == NULL) 1389 z->z_LChunksp = &chunk->c_Next; 1390 1391 #ifdef INVARIANTS 1392 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1393 panic("BADFREE2"); 1394 #endif 1395 1396 /* 1397 * Bump the number of free chunks. If it becomes non-zero the zone 1398 * must be added back onto the appropriate list. A fully allocated 1399 * zone that sees its first free is considered 'mature' and is placed 1400 * at the head, giving the system time to potentially free the remaining 1401 * entries even while other allocations are going on and making the zone 1402 * freeable. 1403 */ 1404 if (z->z_NFree++ == 0) { 1405 if (SlabFreeToTail) 1406 TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1407 else 1408 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1409 } 1410 1411 --type->ks_use[z->z_Cpu].inuse; 1412 type->ks_use[z->z_Cpu].memuse -= z->z_ChunkSize; 1413 1414 check_zone_free(slgd, z); 1415 logmemory_quick(free_end); 1416 crit_exit(); 1417 } 1418 1419 /* 1420 * Cleanup slabs which are hanging around due to RChunks or which are wholely 1421 * free and can be moved to the free list if not moved by other means. 1422 * 1423 * Called once every 10 seconds on all cpus. 1424 */ 1425 void 1426 slab_cleanup(void) 1427 { 1428 SLGlobalData *slgd = &mycpu->gd_slab; 1429 SLZone *z; 1430 int i; 1431 1432 crit_enter(); 1433 for (i = 0; i < NZONES; ++i) { 1434 if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL) 1435 continue; 1436 1437 /* 1438 * Scan zones. 1439 */ 1440 while (z) { 1441 /* 1442 * Shift all RChunks to the end of the LChunks list. This is 1443 * an O(1) operation. 1444 * 1445 * Then free the zone if possible. 1446 */ 1447 clean_zone_rchunks(z); 1448 z = check_zone_free(slgd, z); 1449 } 1450 } 1451 crit_exit(); 1452 } 1453 1454 #if defined(INVARIANTS) 1455 1456 /* 1457 * Helper routines for sanity checks 1458 */ 1459 static 1460 void 1461 chunk_mark_allocated(SLZone *z, void *chunk) 1462 { 1463 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1464 uint32_t *bitptr; 1465 1466 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1467 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1468 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1469 bitptr = &z->z_Bitmap[bitdex >> 5]; 1470 bitdex &= 31; 1471 KASSERT((*bitptr & (1 << bitdex)) == 0, 1472 ("memory chunk %p is already allocated!", chunk)); 1473 *bitptr |= 1 << bitdex; 1474 } 1475 1476 static 1477 void 1478 chunk_mark_free(SLZone *z, void *chunk) 1479 { 1480 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1481 uint32_t *bitptr; 1482 1483 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1484 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1485 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1486 bitptr = &z->z_Bitmap[bitdex >> 5]; 1487 bitdex &= 31; 1488 KASSERT((*bitptr & (1 << bitdex)) != 0, 1489 ("memory chunk %p is already free!", chunk)); 1490 *bitptr &= ~(1 << bitdex); 1491 } 1492 1493 #endif 1494 1495 /* 1496 * kmem_slab_alloc() 1497 * 1498 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1499 * specified alignment. M_* flags are expected in the flags field. 1500 * 1501 * Alignment must be a multiple of PAGE_SIZE. 1502 * 1503 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1504 * but when we move zalloc() over to use this function as its backend 1505 * we will have to switch to kreserve/krelease and call reserve(0) 1506 * after the new space is made available. 1507 * 1508 * Interrupt code which has preempted other code is not allowed to 1509 * use PQ_CACHE pages. However, if an interrupt thread is run 1510 * non-preemptively or blocks and then runs non-preemptively, then 1511 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX 1512 */ 1513 static void * 1514 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1515 { 1516 vm_size_t i; 1517 vm_offset_t addr; 1518 int count, vmflags, base_vmflags; 1519 vm_page_t mbase = NULL; 1520 vm_page_t m; 1521 thread_t td; 1522 1523 size = round_page(size); 1524 addr = vm_map_min(&kernel_map); 1525 1526 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1527 crit_enter(); 1528 vm_map_lock(&kernel_map); 1529 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1530 vm_map_unlock(&kernel_map); 1531 if ((flags & M_NULLOK) == 0) 1532 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1533 vm_map_entry_release(count); 1534 crit_exit(); 1535 return(NULL); 1536 } 1537 1538 /* 1539 * kernel_object maps 1:1 to kernel_map. 1540 */ 1541 vm_object_hold(&kernel_object); 1542 vm_object_reference_locked(&kernel_object); 1543 vm_map_insert(&kernel_map, &count, 1544 &kernel_object, NULL, 1545 addr, addr, addr + size, 1546 VM_MAPTYPE_NORMAL, 1547 VM_SUBSYS_KMALLOC, 1548 VM_PROT_ALL, VM_PROT_ALL, 0); 1549 vm_object_drop(&kernel_object); 1550 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1551 vm_map_unlock(&kernel_map); 1552 1553 td = curthread; 1554 1555 base_vmflags = 0; 1556 if (flags & M_ZERO) 1557 base_vmflags |= VM_ALLOC_ZERO; 1558 if (flags & M_USE_RESERVE) 1559 base_vmflags |= VM_ALLOC_SYSTEM; 1560 if (flags & M_USE_INTERRUPT_RESERVE) 1561 base_vmflags |= VM_ALLOC_INTERRUPT; 1562 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1563 panic("kmem_slab_alloc: bad flags %08x (%p)", 1564 flags, ((int **)&size)[-1]); 1565 } 1566 1567 /* 1568 * Allocate the pages. Do not map them yet. VM_ALLOC_NORMAL can only 1569 * be set if we are not preempting. 1570 * 1571 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1572 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1573 * implied in this case), though I'm not sure if we really need to 1574 * do that. 1575 */ 1576 vmflags = base_vmflags; 1577 if (flags & M_WAITOK) { 1578 if (td->td_preempted) 1579 vmflags |= VM_ALLOC_SYSTEM; 1580 else 1581 vmflags |= VM_ALLOC_NORMAL; 1582 } 1583 1584 vm_object_hold(&kernel_object); 1585 for (i = 0; i < size; i += PAGE_SIZE) { 1586 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1587 if (i == 0) 1588 mbase = m; 1589 1590 /* 1591 * If the allocation failed we either return NULL or we retry. 1592 * 1593 * If M_WAITOK is specified we wait for more memory and retry. 1594 * If M_WAITOK is specified from a preemption we yield instead of 1595 * wait. Livelock will not occur because the interrupt thread 1596 * will not be preempting anyone the second time around after the 1597 * yield. 1598 */ 1599 if (m == NULL) { 1600 if (flags & M_WAITOK) { 1601 if (td->td_preempted) { 1602 lwkt_switch(); 1603 } else { 1604 vm_wait(0); 1605 } 1606 i -= PAGE_SIZE; /* retry */ 1607 continue; 1608 } 1609 break; 1610 } 1611 } 1612 1613 /* 1614 * Check and deal with an allocation failure 1615 */ 1616 if (i != size) { 1617 while (i != 0) { 1618 i -= PAGE_SIZE; 1619 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1620 /* page should already be busy */ 1621 vm_page_free(m); 1622 } 1623 vm_map_lock(&kernel_map); 1624 vm_map_delete(&kernel_map, addr, addr + size, &count); 1625 vm_map_unlock(&kernel_map); 1626 vm_object_drop(&kernel_object); 1627 1628 vm_map_entry_release(count); 1629 crit_exit(); 1630 return(NULL); 1631 } 1632 1633 /* 1634 * Success! 1635 * 1636 * NOTE: The VM pages are still busied. mbase points to the first one 1637 * but we have to iterate via vm_page_next() 1638 */ 1639 vm_object_drop(&kernel_object); 1640 crit_exit(); 1641 1642 /* 1643 * Enter the pages into the pmap and deal with M_ZERO. 1644 */ 1645 m = mbase; 1646 i = 0; 1647 1648 while (i < size) { 1649 /* 1650 * page should already be busy 1651 */ 1652 m->valid = VM_PAGE_BITS_ALL; 1653 vm_page_wire(m); 1654 pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC, 1655 1, NULL); 1656 if (flags & M_ZERO) 1657 pagezero((char *)addr + i); 1658 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1659 vm_page_flag_set(m, PG_REFERENCED); 1660 vm_page_wakeup(m); 1661 1662 i += PAGE_SIZE; 1663 vm_object_hold(&kernel_object); 1664 m = vm_page_next(m); 1665 vm_object_drop(&kernel_object); 1666 } 1667 smp_invltlb(); 1668 vm_map_entry_release(count); 1669 atomic_add_long(&SlabsAllocated, 1); 1670 return((void *)addr); 1671 } 1672 1673 /* 1674 * kmem_slab_free() 1675 */ 1676 static void 1677 kmem_slab_free(void *ptr, vm_size_t size) 1678 { 1679 crit_enter(); 1680 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1681 atomic_add_long(&SlabsFreed, 1); 1682 crit_exit(); 1683 } 1684 1685 void * 1686 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type, 1687 int flags) 1688 { 1689 #if (__VM_CACHELINE_SIZE == 32) 1690 #define CAN_CACHEALIGN(sz) ((sz) >= 256) 1691 #elif (__VM_CACHELINE_SIZE == 64) 1692 #define CAN_CACHEALIGN(sz) ((sz) >= 512) 1693 #elif (__VM_CACHELINE_SIZE == 128) 1694 #define CAN_CACHEALIGN(sz) ((sz) >= 1024) 1695 #else 1696 #error "unsupported cacheline size" 1697 #endif 1698 1699 void *ret; 1700 1701 if (size_alloc < __VM_CACHELINE_SIZE) 1702 size_alloc = __VM_CACHELINE_SIZE; 1703 else if (!CAN_CACHEALIGN(size_alloc)) 1704 flags |= M_POWEROF2; 1705 1706 ret = kmalloc(size_alloc, type, flags); 1707 KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0, 1708 ("%p(%lu) not cacheline %d aligned", 1709 ret, size_alloc, __VM_CACHELINE_SIZE)); 1710 return ret; 1711 1712 #undef CAN_CACHEALIGN 1713 } 1714