xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 475c7069e94570a897d1467613efd2b3f0212ff9)
1 /*
2  * (MPSAFE)
3  *
4  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
5  *
6  * Copyright (c) 2003,2004,2010 The DragonFly Project.  All rights reserved.
7  *
8  * This code is derived from software contributed to The DragonFly Project
9  * by Matthew Dillon <dillon@backplane.com>
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in
19  *    the documentation and/or other materials provided with the
20  *    distribution.
21  * 3. Neither the name of The DragonFly Project nor the names of its
22  *    contributors may be used to endorse or promote products derived
23  *    from this software without specific, prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
29  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * This module implements a slab allocator drop-in replacement for the
39  * kernel malloc().
40  *
41  * A slab allocator reserves a ZONE for each chunk size, then lays the
42  * chunks out in an array within the zone.  Allocation and deallocation
43  * is nearly instantanious, and fragmentation/overhead losses are limited
44  * to a fixed worst-case amount.
45  *
46  * The downside of this slab implementation is in the chunk size
47  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
48  * In a kernel implementation all this memory will be physical so
49  * the zone size is adjusted downward on machines with less physical
50  * memory.  The upside is that overhead is bounded... this is the *worst*
51  * case overhead.
52  *
53  * Slab management is done on a per-cpu basis and no locking or mutexes
54  * are required, only a critical section.  When one cpu frees memory
55  * belonging to another cpu's slab manager an asynchronous IPI message
56  * will be queued to execute the operation.   In addition, both the
57  * high level slab allocator and the low level zone allocator optimize
58  * M_ZERO requests, and the slab allocator does not have to pre initialize
59  * the linked list of chunks.
60  *
61  * XXX Balancing is needed between cpus.  Balance will be handled through
62  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
63  *
64  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
65  * the new zone should be restricted to M_USE_RESERVE requests only.
66  *
67  *	Alloc Size	Chunking        Number of zones
68  *	0-127		8		16
69  *	128-255		16		8
70  *	256-511		32		8
71  *	512-1023	64		8
72  *	1024-2047	128		8
73  *	2048-4095	256		8
74  *	4096-8191	512		8
75  *	8192-16383	1024		8
76  *	16384-32767	2048		8
77  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
78  *
79  *	Allocations >= ZoneLimit go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 
111 #include <vm/vm.h>
112 #include <vm/vm_param.h>
113 #include <vm/vm_kern.h>
114 #include <vm/vm_extern.h>
115 #include <vm/vm_object.h>
116 #include <vm/pmap.h>
117 #include <vm/vm_map.h>
118 #include <vm/vm_page.h>
119 #include <vm/vm_pageout.h>
120 
121 #include <machine/cpu.h>
122 
123 #include <sys/thread2.h>
124 #include <vm/vm_page2.h>
125 
126 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
127 
128 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
129 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
130 
131 #if !defined(KTR_MEMORY)
132 #define KTR_MEMORY	KTR_ALL
133 #endif
134 KTR_INFO_MASTER(memory);
135 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
136 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
137 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
138 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
139 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
140 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
141 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
142 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
143 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
144 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
145 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
146 
147 #define logmemory(name, ptr, type, size, flags)				\
148 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
149 #define logmemory_quick(name)						\
150 	KTR_LOG(memory_ ## name)
151 
152 /*
153  * Fixed globals (not per-cpu)
154  */
155 static int ZoneSize;
156 static int ZoneLimit;
157 static int ZonePageCount;
158 static uintptr_t ZoneMask;
159 static int ZoneBigAlloc;		/* in KB */
160 static int ZoneGenAlloc;		/* in KB */
161 struct malloc_type *kmemstatistics;	/* exported to vmstat */
162 static int32_t weirdary[16];
163 
164 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
165 static void kmem_slab_free(void *ptr, vm_size_t bytes);
166 
167 #if defined(INVARIANTS)
168 static void chunk_mark_allocated(SLZone *z, void *chunk);
169 static void chunk_mark_free(SLZone *z, void *chunk);
170 #else
171 #define chunk_mark_allocated(z, chunk)
172 #define chunk_mark_free(z, chunk)
173 #endif
174 
175 /*
176  * Misc constants.  Note that allocations that are exact multiples of
177  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
178  */
179 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
180 
181 /*
182  * The WEIRD_ADDR is used as known text to copy into free objects to
183  * try to create deterministic failure cases if the data is accessed after
184  * free.
185  */
186 #define WEIRD_ADDR      0xdeadc0de
187 #define MAX_COPY        sizeof(weirdary)
188 #define ZERO_LENGTH_PTR	((void *)-8)
189 
190 /*
191  * Misc global malloc buckets
192  */
193 
194 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
195 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
196 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
197 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
198 
199 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
200 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
201 
202 /*
203  * Initialize the slab memory allocator.  We have to choose a zone size based
204  * on available physical memory.  We choose a zone side which is approximately
205  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
206  * 128K.  The zone size is limited to the bounds set in slaballoc.h
207  * (typically 32K min, 128K max).
208  */
209 static void kmeminit(void *dummy);
210 
211 char *ZeroPage;
212 
213 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
214 
215 #ifdef INVARIANTS
216 /*
217  * If enabled any memory allocated without M_ZERO is initialized to -1.
218  */
219 static int  use_malloc_pattern;
220 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
221     &use_malloc_pattern, 0,
222     "Initialize memory to -1 if M_ZERO not specified");
223 #endif
224 
225 static int ZoneRelsThresh = ZONE_RELS_THRESH;
226 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
227 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
228 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
229 static long SlabsAllocated;
230 static long SlabsFreed;
231 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
232 	    &SlabsAllocated, 0, "");
233 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
234 	    &SlabsFreed, 0, "");
235 static int SlabFreeToTail;
236 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
237 	    &SlabFreeToTail, 0, "");
238 
239 /*
240  * Returns the kernel memory size limit for the purposes of initializing
241  * various subsystem caches.  The smaller of available memory and the KVM
242  * memory space is returned.
243  *
244  * The size in megabytes is returned.
245  */
246 size_t
247 kmem_lim_size(void)
248 {
249     size_t limsize;
250 
251     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
252     if (limsize > KvaSize)
253 	limsize = KvaSize;
254     return (limsize / (1024 * 1024));
255 }
256 
257 static void
258 kmeminit(void *dummy)
259 {
260     size_t limsize;
261     int usesize;
262     int i;
263 
264     limsize = kmem_lim_size();
265     usesize = (int)(limsize * 1024);	/* convert to KB */
266 
267     /*
268      * If the machine has a large KVM space and more than 8G of ram,
269      * double the zone release threshold to reduce SMP invalidations.
270      * If more than 16G of ram, do it again.
271      *
272      * The BIOS eats a little ram so add some slop.  We want 8G worth of
273      * memory sticks to trigger the first adjustment.
274      */
275     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
276 	    if (limsize >= 7 * 1024)
277 		    ZoneRelsThresh *= 2;
278 	    if (limsize >= 15 * 1024)
279 		    ZoneRelsThresh *= 2;
280     }
281 
282     /*
283      * Calculate the zone size.  This typically calculates to
284      * ZALLOC_MAX_ZONE_SIZE
285      */
286     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
287     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
288 	ZoneSize <<= 1;
289     ZoneLimit = ZoneSize / 4;
290     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
291 	ZoneLimit = ZALLOC_ZONE_LIMIT;
292     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
293     ZonePageCount = ZoneSize / PAGE_SIZE;
294 
295     for (i = 0; i < NELEM(weirdary); ++i)
296 	weirdary[i] = WEIRD_ADDR;
297 
298     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
299 
300     if (bootverbose)
301 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
302 }
303 
304 /*
305  * (low level) Initialize slab-related elements in the globaldata structure.
306  *
307  * Occurs after kmeminit().
308  */
309 void
310 slab_gdinit(globaldata_t gd)
311 {
312 	SLGlobalData *slgd;
313 	int i;
314 
315 	slgd = &gd->gd_slab;
316 	for (i = 0; i < NZONES; ++i)
317 		TAILQ_INIT(&slgd->ZoneAry[i]);
318 	TAILQ_INIT(&slgd->FreeZones);
319 	TAILQ_INIT(&slgd->FreeOvZones);
320 }
321 
322 /*
323  * Initialize a malloc type tracking structure.
324  */
325 void
326 malloc_init(void *data)
327 {
328     struct malloc_type *type = data;
329     size_t limsize;
330 
331     if (type->ks_magic != M_MAGIC)
332 	panic("malloc type lacks magic");
333 
334     if (type->ks_limit != 0)
335 	return;
336 
337     if (vmstats.v_page_count == 0)
338 	panic("malloc_init not allowed before vm init");
339 
340     limsize = kmem_lim_size() * (1024 * 1024);
341     type->ks_limit = limsize / 10;
342 
343     type->ks_next = kmemstatistics;
344     kmemstatistics = type;
345 }
346 
347 void
348 malloc_uninit(void *data)
349 {
350     struct malloc_type *type = data;
351     struct malloc_type *t;
352 #ifdef INVARIANTS
353     int i;
354     long ttl;
355 #endif
356 
357     if (type->ks_magic != M_MAGIC)
358 	panic("malloc type lacks magic");
359 
360     if (vmstats.v_page_count == 0)
361 	panic("malloc_uninit not allowed before vm init");
362 
363     if (type->ks_limit == 0)
364 	panic("malloc_uninit on uninitialized type");
365 
366     /* Make sure that all pending kfree()s are finished. */
367     lwkt_synchronize_ipiqs("muninit");
368 
369 #ifdef INVARIANTS
370     /*
371      * memuse is only correct in aggregation.  Due to memory being allocated
372      * on one cpu and freed on another individual array entries may be
373      * negative or positive (canceling each other out).
374      */
375     for (i = ttl = 0; i < ncpus; ++i)
376 	ttl += type->ks_use[i].memuse;
377     if (ttl) {
378 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
379 	    ttl, type->ks_shortdesc, i);
380     }
381 #endif
382     if (type == kmemstatistics) {
383 	kmemstatistics = type->ks_next;
384     } else {
385 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
386 	    if (t->ks_next == type) {
387 		t->ks_next = type->ks_next;
388 		break;
389 	    }
390 	}
391     }
392     type->ks_next = NULL;
393     type->ks_limit = 0;
394 }
395 
396 /*
397  * Increase the kmalloc pool limit for the specified pool.  No changes
398  * are the made if the pool would shrink.
399  */
400 void
401 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
402 {
403     if (type->ks_limit == 0)
404 	malloc_init(type);
405     if (bytes == 0)
406 	bytes = KvaSize;
407     if (type->ks_limit < bytes)
408 	type->ks_limit = bytes;
409 }
410 
411 void
412 kmalloc_set_unlimited(struct malloc_type *type)
413 {
414     type->ks_limit = kmem_lim_size() * (1024 * 1024);
415 }
416 
417 /*
418  * Dynamically create a malloc pool.  This function is a NOP if *typep is
419  * already non-NULL.
420  */
421 void
422 kmalloc_create(struct malloc_type **typep, const char *descr)
423 {
424 	struct malloc_type *type;
425 
426 	if (*typep == NULL) {
427 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
428 		type->ks_magic = M_MAGIC;
429 		type->ks_shortdesc = descr;
430 		malloc_init(type);
431 		*typep = type;
432 	}
433 }
434 
435 /*
436  * Destroy a dynamically created malloc pool.  This function is a NOP if
437  * the pool has already been destroyed.
438  */
439 void
440 kmalloc_destroy(struct malloc_type **typep)
441 {
442 	if (*typep != NULL) {
443 		malloc_uninit(*typep);
444 		kfree(*typep, M_TEMP);
445 		*typep = NULL;
446 	}
447 }
448 
449 /*
450  * Calculate the zone index for the allocation request size and set the
451  * allocation request size to that particular zone's chunk size.
452  */
453 static __inline int
454 zoneindex(unsigned long *bytes, unsigned long *align)
455 {
456     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
457     if (n < 128) {
458 	*bytes = n = (n + 7) & ~7;
459 	*align = 8;
460 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
461     }
462     if (n < 256) {
463 	*bytes = n = (n + 15) & ~15;
464 	*align = 16;
465 	return(n / 16 + 7);
466     }
467     if (n < 8192) {
468 	if (n < 512) {
469 	    *bytes = n = (n + 31) & ~31;
470 	    *align = 32;
471 	    return(n / 32 + 15);
472 	}
473 	if (n < 1024) {
474 	    *bytes = n = (n + 63) & ~63;
475 	    *align = 64;
476 	    return(n / 64 + 23);
477 	}
478 	if (n < 2048) {
479 	    *bytes = n = (n + 127) & ~127;
480 	    *align = 128;
481 	    return(n / 128 + 31);
482 	}
483 	if (n < 4096) {
484 	    *bytes = n = (n + 255) & ~255;
485 	    *align = 256;
486 	    return(n / 256 + 39);
487 	}
488 	*bytes = n = (n + 511) & ~511;
489 	*align = 512;
490 	return(n / 512 + 47);
491     }
492 #if ZALLOC_ZONE_LIMIT > 8192
493     if (n < 16384) {
494 	*bytes = n = (n + 1023) & ~1023;
495 	*align = 1024;
496 	return(n / 1024 + 55);
497     }
498 #endif
499 #if ZALLOC_ZONE_LIMIT > 16384
500     if (n < 32768) {
501 	*bytes = n = (n + 2047) & ~2047;
502 	*align = 2048;
503 	return(n / 2048 + 63);
504     }
505 #endif
506     panic("Unexpected byte count %d", n);
507     return(0);
508 }
509 
510 static __inline
511 void
512 clean_zone_rchunks(SLZone *z)
513 {
514     SLChunk *bchunk;
515 
516     while ((bchunk = z->z_RChunks) != NULL) {
517 	cpu_ccfence();
518 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
519 	    *z->z_LChunksp = bchunk;
520 	    while (bchunk) {
521 		chunk_mark_free(z, bchunk);
522 		z->z_LChunksp = &bchunk->c_Next;
523 		bchunk = bchunk->c_Next;
524 		++z->z_NFree;
525 	    }
526 	    break;
527 	}
528 	/* retry */
529     }
530 }
531 
532 /*
533  * If the zone becomes totally free and is not the only zone listed for a
534  * chunk size we move it to the FreeZones list.  We always leave at least
535  * one zone per chunk size listed, even if it is freeable.
536  *
537  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
538  * otherwise MP races can result in our free_remote code accessing a
539  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
540  * so one has to test both z_NFree and z_RCount.
541  *
542  * Since this code can be called from an IPI callback, do *NOT* try to mess
543  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
544  */
545 static __inline
546 SLZone *
547 check_zone_free(SLGlobalData *slgd, SLZone *z)
548 {
549     SLZone *znext;
550 
551     znext = TAILQ_NEXT(z, z_Entry);
552     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
553 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)
554     ) {
555 	int *kup;
556 
557 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
558 
559 	z->z_Magic = -1;
560 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
561 	++slgd->NFreeZones;
562 	kup = btokup(z);
563 	*kup = 0;
564     }
565     return znext;
566 }
567 
568 #ifdef SLAB_DEBUG
569 /*
570  * Used to debug memory corruption issues.  Record up to (typically 32)
571  * allocation sources for this zone (for a particular chunk size).
572  */
573 
574 static void
575 slab_record_source(SLZone *z, const char *file, int line)
576 {
577     int i;
578     int b = line & (SLAB_DEBUG_ENTRIES - 1);
579 
580     i = b;
581     do {
582 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
583 		return;
584 	if (z->z_Sources[i].file == NULL)
585 		break;
586 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
587     } while (i != b);
588     z->z_Sources[i].file = file;
589     z->z_Sources[i].line = line;
590 }
591 
592 #endif
593 
594 static __inline unsigned long
595 powerof2_size(unsigned long size)
596 {
597 	int i;
598 
599 	if (size == 0 || powerof2(size))
600 		return size;
601 
602 	i = flsl(size);
603 	return (1UL << i);
604 }
605 
606 /*
607  * kmalloc()	(SLAB ALLOCATOR)
608  *
609  *	Allocate memory via the slab allocator.  If the request is too large,
610  *	or if it page-aligned beyond a certain size, we fall back to the
611  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
612  *	&SlabMisc if you don't care.
613  *
614  *	M_RNOWAIT	- don't block.
615  *	M_NULLOK	- return NULL instead of blocking.
616  *	M_ZERO		- zero the returned memory.
617  *	M_USE_RESERVE	- allow greater drawdown of the free list
618  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
619  *	M_POWEROF2	- roundup size to the nearest power of 2
620  *
621  * MPSAFE
622  */
623 
624 #ifdef SLAB_DEBUG
625 void *
626 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
627 	      const char *file, int line)
628 #else
629 void *
630 kmalloc(unsigned long size, struct malloc_type *type, int flags)
631 #endif
632 {
633     SLZone *z;
634     SLChunk *chunk;
635     SLGlobalData *slgd;
636     struct globaldata *gd;
637     unsigned long align;
638     int zi;
639 #ifdef INVARIANTS
640     int i;
641 #endif
642 
643     logmemory_quick(malloc_beg);
644     gd = mycpu;
645     slgd = &gd->gd_slab;
646 
647     /*
648      * XXX silly to have this in the critical path.
649      */
650     if (type->ks_limit == 0) {
651 	crit_enter();
652 	malloc_init(type);
653 	crit_exit();
654     }
655     ++type->ks_calls;
656 
657     if (flags & M_POWEROF2)
658 	size = powerof2_size(size);
659 
660     /*
661      * Handle the case where the limit is reached.  Panic if we can't return
662      * NULL.  The original malloc code looped, but this tended to
663      * simply deadlock the computer.
664      *
665      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
666      * to determine if a more complete limit check should be done.  The
667      * actual memory use is tracked via ks_use[cpu].memuse.
668      */
669     while (type->ks_loosememuse >= type->ks_limit) {
670 	int i;
671 	long ttl;
672 
673 	for (i = ttl = 0; i < ncpus; ++i)
674 	    ttl += type->ks_use[i].memuse;
675 	type->ks_loosememuse = ttl;	/* not MP synchronized */
676 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
677 		ttl = 0;
678 	if (ttl >= type->ks_limit) {
679 	    if (flags & M_NULLOK) {
680 		logmemory(malloc_end, NULL, type, size, flags);
681 		return(NULL);
682 	    }
683 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
684 	}
685     }
686 
687     /*
688      * Handle the degenerate size == 0 case.  Yes, this does happen.
689      * Return a special pointer.  This is to maintain compatibility with
690      * the original malloc implementation.  Certain devices, such as the
691      * adaptec driver, not only allocate 0 bytes, they check for NULL and
692      * also realloc() later on.  Joy.
693      */
694     if (size == 0) {
695 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
696 	return(ZERO_LENGTH_PTR);
697     }
698 
699     /*
700      * Handle hysteresis from prior frees here in malloc().  We cannot
701      * safely manipulate the kernel_map in free() due to free() possibly
702      * being called via an IPI message or from sensitive interrupt code.
703      *
704      * NOTE: ku_pagecnt must be cleared before we free the slab or we
705      *	     might race another cpu allocating the kva and setting
706      *	     ku_pagecnt.
707      */
708     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
709 	crit_enter();
710 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
711 	    int *kup;
712 
713 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
714 	    KKASSERT(z != NULL);
715 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
716 	    --slgd->NFreeZones;
717 	    kup = btokup(z);
718 	    *kup = 0;
719 	    kmem_slab_free(z, ZoneSize);	/* may block */
720 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
721 	}
722 	crit_exit();
723     }
724 
725     /*
726      * XXX handle oversized frees that were queued from kfree().
727      */
728     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
729 	crit_enter();
730 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
731 	    vm_size_t tsize;
732 
733 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
734 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
735 	    tsize = z->z_ChunkSize;
736 	    kmem_slab_free(z, tsize);	/* may block */
737 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
738 	}
739 	crit_exit();
740     }
741 
742     /*
743      * Handle large allocations directly.  There should not be very many of
744      * these so performance is not a big issue.
745      *
746      * The backend allocator is pretty nasty on a SMP system.   Use the
747      * slab allocator for one and two page-sized chunks even though we lose
748      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
749      */
750     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
751 	int *kup;
752 
753 	size = round_page(size);
754 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
755 	if (chunk == NULL) {
756 	    logmemory(malloc_end, NULL, type, size, flags);
757 	    return(NULL);
758 	}
759 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
760 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
761 	flags |= M_PASSIVE_ZERO;
762 	kup = btokup(chunk);
763 	*kup = size / PAGE_SIZE;
764 	crit_enter();
765 	goto done;
766     }
767 
768     /*
769      * Attempt to allocate out of an existing zone.  First try the free list,
770      * then allocate out of unallocated space.  If we find a good zone move
771      * it to the head of the list so later allocations find it quickly
772      * (we might have thousands of zones in the list).
773      *
774      * Note: zoneindex() will panic of size is too large.
775      */
776     zi = zoneindex(&size, &align);
777     KKASSERT(zi < NZONES);
778     crit_enter();
779 
780     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
781 	/*
782 	 * Locate a chunk - we have to have at least one.  If this is the
783 	 * last chunk go ahead and do the work to retrieve chunks freed
784 	 * from remote cpus, and if the zone is still empty move it off
785 	 * the ZoneAry.
786 	 */
787 	if (--z->z_NFree <= 0) {
788 	    KKASSERT(z->z_NFree == 0);
789 
790 	    /*
791 	     * WARNING! This code competes with other cpus.  It is ok
792 	     * for us to not drain RChunks here but we might as well, and
793 	     * it is ok if more accumulate after we're done.
794 	     *
795 	     * Set RSignal before pulling rchunks off, indicating that we
796 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
797 	     * read RSignal before putting rchunks on thus interlocking
798 	     * their IPI signaling.
799 	     */
800 	    if (z->z_RChunks == NULL)
801 		atomic_swap_int(&z->z_RSignal, 1);
802 
803 	    clean_zone_rchunks(z);
804 
805 	    /*
806 	     * Remove from the zone list if no free chunks remain.
807 	     * Clear RSignal
808 	     */
809 	    if (z->z_NFree == 0) {
810 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
811 	    } else {
812 		z->z_RSignal = 0;
813 	    }
814 	}
815 
816 	/*
817 	 * Fast path, we have chunks available in z_LChunks.
818 	 */
819 	chunk = z->z_LChunks;
820 	if (chunk) {
821 		chunk_mark_allocated(z, chunk);
822 		z->z_LChunks = chunk->c_Next;
823 		if (z->z_LChunks == NULL)
824 			z->z_LChunksp = &z->z_LChunks;
825 #ifdef SLAB_DEBUG
826 		slab_record_source(z, file, line);
827 #endif
828 		goto done;
829 	}
830 
831 	/*
832 	 * No chunks are available in LChunks, the free chunk MUST be
833 	 * in the never-before-used memory area, controlled by UIndex.
834 	 *
835 	 * The consequences are very serious if our zone got corrupted so
836 	 * we use an explicit panic rather than a KASSERT.
837 	 */
838 	if (z->z_UIndex + 1 != z->z_NMax)
839 	    ++z->z_UIndex;
840 	else
841 	    z->z_UIndex = 0;
842 
843 	if (z->z_UIndex == z->z_UEndIndex)
844 	    panic("slaballoc: corrupted zone");
845 
846 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
847 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
848 	    flags &= ~M_ZERO;
849 	    flags |= M_PASSIVE_ZERO;
850 	}
851 	chunk_mark_allocated(z, chunk);
852 #ifdef SLAB_DEBUG
853 	slab_record_source(z, file, line);
854 #endif
855 	goto done;
856     }
857 
858     /*
859      * If all zones are exhausted we need to allocate a new zone for this
860      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
861      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
862      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
863      * we do not pre-zero it because we do not want to mess up the L1 cache.
864      *
865      * At least one subsystem, the tty code (see CROUND) expects power-of-2
866      * allocations to be power-of-2 aligned.  We maintain compatibility by
867      * adjusting the base offset below.
868      */
869     {
870 	int off;
871 	int *kup;
872 
873 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
874 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
875 	    --slgd->NFreeZones;
876 	    bzero(z, sizeof(SLZone));
877 	    z->z_Flags |= SLZF_UNOTZEROD;
878 	} else {
879 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
880 	    if (z == NULL)
881 		goto fail;
882 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
883 	}
884 
885 	/*
886 	 * How big is the base structure?
887 	 */
888 #if defined(INVARIANTS)
889 	/*
890 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
891 	 * complicated so don't make an exact calculation.
892 	 */
893 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
894 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
895 #else
896 	off = sizeof(SLZone);
897 #endif
898 
899 	/*
900 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
901 	 * Otherwise properly align the data according to the chunk size.
902 	 */
903 	if (powerof2(size))
904 	    align = size;
905 	off = roundup2(off, align);
906 
907 	z->z_Magic = ZALLOC_SLAB_MAGIC;
908 	z->z_ZoneIndex = zi;
909 	z->z_NMax = (ZoneSize - off) / size;
910 	z->z_NFree = z->z_NMax - 1;
911 	z->z_BasePtr = (char *)z + off;
912 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
913 	z->z_ChunkSize = size;
914 	z->z_CpuGd = gd;
915 	z->z_Cpu = gd->gd_cpuid;
916 	z->z_LChunksp = &z->z_LChunks;
917 #ifdef SLAB_DEBUG
918 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
919 	bzero(z->z_Sources, sizeof(z->z_Sources));
920 #endif
921 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
922 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
923 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
924 	    flags &= ~M_ZERO;	/* already zero'd */
925 	    flags |= M_PASSIVE_ZERO;
926 	}
927 	kup = btokup(z);
928 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
929 	chunk_mark_allocated(z, chunk);
930 #ifdef SLAB_DEBUG
931 	slab_record_source(z, file, line);
932 #endif
933 
934 	/*
935 	 * Slide the base index for initial allocations out of the next
936 	 * zone we create so we do not over-weight the lower part of the
937 	 * cpu memory caches.
938 	 */
939 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
940 				& (ZALLOC_MAX_ZONE_SIZE - 1);
941     }
942 
943 done:
944     ++type->ks_use[gd->gd_cpuid].inuse;
945     type->ks_use[gd->gd_cpuid].memuse += size;
946     type->ks_loosememuse += size;	/* not MP synchronized */
947     crit_exit();
948 
949     if (flags & M_ZERO)
950 	bzero(chunk, size);
951 #ifdef INVARIANTS
952     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
953 	if (use_malloc_pattern) {
954 	    for (i = 0; i < size; i += sizeof(int)) {
955 		*(int *)((char *)chunk + i) = -1;
956 	    }
957 	}
958 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
959     }
960 #endif
961     logmemory(malloc_end, chunk, type, size, flags);
962     return(chunk);
963 fail:
964     crit_exit();
965     logmemory(malloc_end, NULL, type, size, flags);
966     return(NULL);
967 }
968 
969 /*
970  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
971  *
972  * Generally speaking this routine is not called very often and we do
973  * not attempt to optimize it beyond reusing the same pointer if the
974  * new size fits within the chunking of the old pointer's zone.
975  */
976 #ifdef SLAB_DEBUG
977 void *
978 krealloc_debug(void *ptr, unsigned long size,
979 	       struct malloc_type *type, int flags,
980 	       const char *file, int line)
981 #else
982 void *
983 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
984 #endif
985 {
986     unsigned long osize;
987     unsigned long align;
988     SLZone *z;
989     void *nptr;
990     int *kup;
991 
992     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
993 
994     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
995 	return(kmalloc_debug(size, type, flags, file, line));
996     if (size == 0) {
997 	kfree(ptr, type);
998 	return(NULL);
999     }
1000 
1001     /*
1002      * Handle oversized allocations.  XXX we really should require that a
1003      * size be passed to free() instead of this nonsense.
1004      */
1005     kup = btokup(ptr);
1006     if (*kup > 0) {
1007 	osize = *kup << PAGE_SHIFT;
1008 	if (osize == round_page(size))
1009 	    return(ptr);
1010 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1011 	    return(NULL);
1012 	bcopy(ptr, nptr, min(size, osize));
1013 	kfree(ptr, type);
1014 	return(nptr);
1015     }
1016 
1017     /*
1018      * Get the original allocation's zone.  If the new request winds up
1019      * using the same chunk size we do not have to do anything.
1020      */
1021     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1022     kup = btokup(z);
1023     KKASSERT(*kup < 0);
1024     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1025 
1026     /*
1027      * Allocate memory for the new request size.  Note that zoneindex has
1028      * already adjusted the request size to the appropriate chunk size, which
1029      * should optimize our bcopy().  Then copy and return the new pointer.
1030      *
1031      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1032      * necessary align the result.
1033      *
1034      * We can only zoneindex (to align size to the chunk size) if the new
1035      * size is not too large.
1036      */
1037     if (size < ZoneLimit) {
1038 	zoneindex(&size, &align);
1039 	if (z->z_ChunkSize == size)
1040 	    return(ptr);
1041     }
1042     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1043 	return(NULL);
1044     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1045     kfree(ptr, type);
1046     return(nptr);
1047 }
1048 
1049 /*
1050  * Return the kmalloc limit for this type, in bytes.
1051  */
1052 long
1053 kmalloc_limit(struct malloc_type *type)
1054 {
1055     if (type->ks_limit == 0) {
1056 	crit_enter();
1057 	if (type->ks_limit == 0)
1058 	    malloc_init(type);
1059 	crit_exit();
1060     }
1061     return(type->ks_limit);
1062 }
1063 
1064 /*
1065  * Allocate a copy of the specified string.
1066  *
1067  * (MP SAFE) (MAY BLOCK)
1068  */
1069 #ifdef SLAB_DEBUG
1070 char *
1071 kstrdup_debug(const char *str, struct malloc_type *type,
1072 	      const char *file, int line)
1073 #else
1074 char *
1075 kstrdup(const char *str, struct malloc_type *type)
1076 #endif
1077 {
1078     int zlen;	/* length inclusive of terminating NUL */
1079     char *nstr;
1080 
1081     if (str == NULL)
1082 	return(NULL);
1083     zlen = strlen(str) + 1;
1084     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1085     bcopy(str, nstr, zlen);
1086     return(nstr);
1087 }
1088 
1089 #ifdef SLAB_DEBUG
1090 char *
1091 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1092 	      const char *file, int line)
1093 #else
1094 char *
1095 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1096 #endif
1097 {
1098     int zlen;	/* length inclusive of terminating NUL */
1099     char *nstr;
1100 
1101     if (str == NULL)
1102 	return(NULL);
1103     zlen = strnlen(str, maxlen) + 1;
1104     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1105     bcopy(str, nstr, zlen);
1106     nstr[zlen - 1] = '\0';
1107     return(nstr);
1108 }
1109 
1110 /*
1111  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1112  * we own.  RCount will be bumped so the memory should be good, but validate
1113  * that it really is.
1114  */
1115 static
1116 void
1117 kfree_remote(void *ptr)
1118 {
1119     SLGlobalData *slgd;
1120     SLZone *z;
1121     int nfree;
1122     int *kup;
1123 
1124     slgd = &mycpu->gd_slab;
1125     z = ptr;
1126     kup = btokup(z);
1127     KKASSERT(*kup == -((int)mycpuid + 1));
1128     KKASSERT(z->z_RCount > 0);
1129     atomic_subtract_int(&z->z_RCount, 1);
1130 
1131     logmemory(free_rem_beg, z, NULL, 0L, 0);
1132     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1133     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1134     nfree = z->z_NFree;
1135 
1136     /*
1137      * Indicate that we will no longer be off of the ZoneAry by
1138      * clearing RSignal.
1139      */
1140     if (z->z_RChunks)
1141 	z->z_RSignal = 0;
1142 
1143     /*
1144      * Atomically extract the bchunks list and then process it back
1145      * into the lchunks list.  We want to append our bchunks to the
1146      * lchunks list and not prepend since we likely do not have
1147      * cache mastership of the related data (not that it helps since
1148      * we are using c_Next).
1149      */
1150     clean_zone_rchunks(z);
1151     if (z->z_NFree && nfree == 0) {
1152 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1153     }
1154 
1155     /*
1156      * If the zone becomes totally free and is not the only zone listed for a
1157      * chunk size we move it to the FreeZones list.  We always leave at least
1158      * one zone per chunk size listed, even if it is freeable.
1159      *
1160      * Since this code can be called from an IPI callback, do *NOT* try to
1161      * mess with kernel_map here.  Hysteresis will be performed at malloc()
1162      * time.
1163      *
1164      * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
1165      * otherwise MP races can result in our free_remote code accessing a
1166      * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
1167      * so one has to test both z_NFree and z_RCount.
1168      */
1169     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
1170 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z ||
1171 	 TAILQ_NEXT(z, z_Entry))
1172     ) {
1173 	int *kup;
1174 
1175 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1176 	z->z_Magic = -1;
1177 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
1178 	++slgd->NFreeZones;
1179 	kup = btokup(z);
1180 	*kup = 0;
1181     }
1182     logmemory(free_rem_end, z, NULL, 0L, 0);
1183 }
1184 
1185 /*
1186  * free (SLAB ALLOCATOR)
1187  *
1188  * Free a memory block previously allocated by malloc.  Note that we do not
1189  * attempt to update ks_loosememuse as MP races could prevent us from
1190  * checking memory limits in malloc.
1191  *
1192  * MPSAFE
1193  */
1194 void
1195 kfree(void *ptr, struct malloc_type *type)
1196 {
1197     SLZone *z;
1198     SLChunk *chunk;
1199     SLGlobalData *slgd;
1200     struct globaldata *gd;
1201     int *kup;
1202     unsigned long size;
1203     SLChunk *bchunk;
1204     int rsignal;
1205 
1206     logmemory_quick(free_beg);
1207     gd = mycpu;
1208     slgd = &gd->gd_slab;
1209 
1210     if (ptr == NULL)
1211 	panic("trying to free NULL pointer");
1212 
1213     /*
1214      * Handle special 0-byte allocations
1215      */
1216     if (ptr == ZERO_LENGTH_PTR) {
1217 	logmemory(free_zero, ptr, type, -1UL, 0);
1218 	logmemory_quick(free_end);
1219 	return;
1220     }
1221 
1222     /*
1223      * Panic on bad malloc type
1224      */
1225     if (type->ks_magic != M_MAGIC)
1226 	panic("free: malloc type lacks magic");
1227 
1228     /*
1229      * Handle oversized allocations.  XXX we really should require that a
1230      * size be passed to free() instead of this nonsense.
1231      *
1232      * This code is never called via an ipi.
1233      */
1234     kup = btokup(ptr);
1235     if (*kup > 0) {
1236 	size = *kup << PAGE_SHIFT;
1237 	*kup = 0;
1238 #ifdef INVARIANTS
1239 	KKASSERT(sizeof(weirdary) <= size);
1240 	bcopy(weirdary, ptr, sizeof(weirdary));
1241 #endif
1242 	/*
1243 	 * NOTE: For oversized allocations we do not record the
1244 	 *	     originating cpu.  It gets freed on the cpu calling
1245 	 *	     kfree().  The statistics are in aggregate.
1246 	 *
1247 	 * note: XXX we have still inherited the interrupts-can't-block
1248 	 * assumption.  An interrupt thread does not bump
1249 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1250 	 * primarily until we can fix softupdate's assumptions about free().
1251 	 */
1252 	crit_enter();
1253 	--type->ks_use[gd->gd_cpuid].inuse;
1254 	type->ks_use[gd->gd_cpuid].memuse -= size;
1255 	if (mycpu->gd_intr_nesting_level ||
1256 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD))
1257 	{
1258 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1259 	    z = (SLZone *)ptr;
1260 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1261 	    z->z_ChunkSize = size;
1262 
1263 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1264 	    crit_exit();
1265 	} else {
1266 	    crit_exit();
1267 	    logmemory(free_ovsz, ptr, type, size, 0);
1268 	    kmem_slab_free(ptr, size);	/* may block */
1269 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1270 	}
1271 	logmemory_quick(free_end);
1272 	return;
1273     }
1274 
1275     /*
1276      * Zone case.  Figure out the zone based on the fact that it is
1277      * ZoneSize aligned.
1278      */
1279     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1280     kup = btokup(z);
1281     KKASSERT(*kup < 0);
1282     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1283 
1284     /*
1285      * If we do not own the zone then use atomic ops to free to the
1286      * remote cpu linked list and notify the target zone using a
1287      * passive message.
1288      *
1289      * The target zone cannot be deallocated while we own a chunk of it,
1290      * so the zone header's storage is stable until the very moment
1291      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1292      *
1293      * (no critical section needed)
1294      */
1295     if (z->z_CpuGd != gd) {
1296 	/*
1297 	 * Making these adjustments now allow us to avoid passing (type)
1298 	 * to the remote cpu.  Note that inuse/memuse is being
1299 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1300 	 * sum up properly and cancel out.
1301 	 */
1302 	crit_enter();
1303 	--type->ks_use[gd->gd_cpuid].inuse;
1304 	type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1305 	crit_exit();
1306 
1307 	/*
1308 	 * WARNING! This code competes with other cpus.  Once we
1309 	 *	    successfully link the chunk to RChunks the remote
1310 	 *	    cpu can rip z's storage out from under us.
1311 	 *
1312 	 *	    Bumping RCount prevents z's storage from getting
1313 	 *	    ripped out.
1314 	 */
1315 	rsignal = z->z_RSignal;
1316 	cpu_lfence();
1317 	if (rsignal)
1318 		atomic_add_int(&z->z_RCount, 1);
1319 
1320 	chunk = ptr;
1321 	for (;;) {
1322 	    bchunk = z->z_RChunks;
1323 	    cpu_ccfence();
1324 	    chunk->c_Next = bchunk;
1325 	    cpu_sfence();
1326 
1327 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1328 		break;
1329 	}
1330 
1331 	/*
1332 	 * We have to signal the remote cpu if our actions will cause
1333 	 * the remote zone to be placed back on ZoneAry so it can
1334 	 * move the zone back on.
1335 	 *
1336 	 * We only need to deal with NULL->non-NULL RChunk transitions
1337 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1338 	 * before adding our chunk to RChunks.  This should result in
1339 	 * virtually no IPI traffic.
1340 	 *
1341 	 * We can use a passive IPI to reduce overhead even further.
1342 	 */
1343 	if (bchunk == NULL && rsignal) {
1344 		logmemory(free_request, ptr, type,
1345 			  (unsigned long)z->z_ChunkSize, 0);
1346 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1347 	    /* z can get ripped out from under us from this point on */
1348 	} else if (rsignal) {
1349 	    atomic_subtract_int(&z->z_RCount, 1);
1350 	    /* z can get ripped out from under us from this point on */
1351 	}
1352 	logmemory_quick(free_end);
1353 	return;
1354     }
1355 
1356     /*
1357      * kfree locally
1358      */
1359     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1360 
1361     crit_enter();
1362     chunk = ptr;
1363     chunk_mark_free(z, chunk);
1364 
1365     /*
1366      * Put weird data into the memory to detect modifications after freeing,
1367      * illegal pointer use after freeing (we should fault on the odd address),
1368      * and so forth.  XXX needs more work, see the old malloc code.
1369      */
1370 #ifdef INVARIANTS
1371     if (z->z_ChunkSize < sizeof(weirdary))
1372 	bcopy(weirdary, chunk, z->z_ChunkSize);
1373     else
1374 	bcopy(weirdary, chunk, sizeof(weirdary));
1375 #endif
1376 
1377     /*
1378      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1379      * to the front of the linked list so it is more likely to be
1380      * reallocated, since it is already in our L1 cache.
1381      */
1382 #ifdef INVARIANTS
1383     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1384 	panic("BADFREE %p", chunk);
1385 #endif
1386     chunk->c_Next = z->z_LChunks;
1387     z->z_LChunks = chunk;
1388     if (chunk->c_Next == NULL)
1389 	    z->z_LChunksp = &chunk->c_Next;
1390 
1391 #ifdef INVARIANTS
1392     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1393 	panic("BADFREE2");
1394 #endif
1395 
1396     /*
1397      * Bump the number of free chunks.  If it becomes non-zero the zone
1398      * must be added back onto the appropriate list.  A fully allocated
1399      * zone that sees its first free is considered 'mature' and is placed
1400      * at the head, giving the system time to potentially free the remaining
1401      * entries even while other allocations are going on and making the zone
1402      * freeable.
1403      */
1404     if (z->z_NFree++ == 0) {
1405 	if (SlabFreeToTail)
1406 		TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1407 	else
1408 		TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1409     }
1410 
1411     --type->ks_use[z->z_Cpu].inuse;
1412     type->ks_use[z->z_Cpu].memuse -= z->z_ChunkSize;
1413 
1414     check_zone_free(slgd, z);
1415     logmemory_quick(free_end);
1416     crit_exit();
1417 }
1418 
1419 /*
1420  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1421  * free and can be moved to the free list if not moved by other means.
1422  *
1423  * Called once every 10 seconds on all cpus.
1424  */
1425 void
1426 slab_cleanup(void)
1427 {
1428     SLGlobalData *slgd = &mycpu->gd_slab;
1429     SLZone *z;
1430     int i;
1431 
1432     crit_enter();
1433     for (i = 0; i < NZONES; ++i) {
1434 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1435 		continue;
1436 
1437 	/*
1438 	 * Scan zones.
1439 	 */
1440 	while (z) {
1441 	    /*
1442 	     * Shift all RChunks to the end of the LChunks list.  This is
1443 	     * an O(1) operation.
1444 	     *
1445 	     * Then free the zone if possible.
1446 	     */
1447 	    clean_zone_rchunks(z);
1448 	    z = check_zone_free(slgd, z);
1449 	}
1450     }
1451     crit_exit();
1452 }
1453 
1454 #if defined(INVARIANTS)
1455 
1456 /*
1457  * Helper routines for sanity checks
1458  */
1459 static
1460 void
1461 chunk_mark_allocated(SLZone *z, void *chunk)
1462 {
1463     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1464     uint32_t *bitptr;
1465 
1466     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1467     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1468 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1469     bitptr = &z->z_Bitmap[bitdex >> 5];
1470     bitdex &= 31;
1471     KASSERT((*bitptr & (1 << bitdex)) == 0,
1472 	    ("memory chunk %p is already allocated!", chunk));
1473     *bitptr |= 1 << bitdex;
1474 }
1475 
1476 static
1477 void
1478 chunk_mark_free(SLZone *z, void *chunk)
1479 {
1480     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1481     uint32_t *bitptr;
1482 
1483     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1484     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1485 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1486     bitptr = &z->z_Bitmap[bitdex >> 5];
1487     bitdex &= 31;
1488     KASSERT((*bitptr & (1 << bitdex)) != 0,
1489 	    ("memory chunk %p is already free!", chunk));
1490     *bitptr &= ~(1 << bitdex);
1491 }
1492 
1493 #endif
1494 
1495 /*
1496  * kmem_slab_alloc()
1497  *
1498  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1499  *	specified alignment.  M_* flags are expected in the flags field.
1500  *
1501  *	Alignment must be a multiple of PAGE_SIZE.
1502  *
1503  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1504  *	but when we move zalloc() over to use this function as its backend
1505  *	we will have to switch to kreserve/krelease and call reserve(0)
1506  *	after the new space is made available.
1507  *
1508  *	Interrupt code which has preempted other code is not allowed to
1509  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1510  *	non-preemptively or blocks and then runs non-preemptively, then
1511  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1512  */
1513 static void *
1514 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1515 {
1516     vm_size_t i;
1517     vm_offset_t addr;
1518     int count, vmflags, base_vmflags;
1519     vm_page_t mbase = NULL;
1520     vm_page_t m;
1521     thread_t td;
1522 
1523     size = round_page(size);
1524     addr = vm_map_min(&kernel_map);
1525 
1526     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1527     crit_enter();
1528     vm_map_lock(&kernel_map);
1529     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1530 	vm_map_unlock(&kernel_map);
1531 	if ((flags & M_NULLOK) == 0)
1532 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1533 	vm_map_entry_release(count);
1534 	crit_exit();
1535 	return(NULL);
1536     }
1537 
1538     /*
1539      * kernel_object maps 1:1 to kernel_map.
1540      */
1541     vm_object_hold(&kernel_object);
1542     vm_object_reference_locked(&kernel_object);
1543     vm_map_insert(&kernel_map, &count,
1544 		  &kernel_object, NULL,
1545 		  addr, addr, addr + size,
1546 		  VM_MAPTYPE_NORMAL,
1547 		  VM_SUBSYS_KMALLOC,
1548 		  VM_PROT_ALL, VM_PROT_ALL, 0);
1549     vm_object_drop(&kernel_object);
1550     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1551     vm_map_unlock(&kernel_map);
1552 
1553     td = curthread;
1554 
1555     base_vmflags = 0;
1556     if (flags & M_ZERO)
1557         base_vmflags |= VM_ALLOC_ZERO;
1558     if (flags & M_USE_RESERVE)
1559 	base_vmflags |= VM_ALLOC_SYSTEM;
1560     if (flags & M_USE_INTERRUPT_RESERVE)
1561         base_vmflags |= VM_ALLOC_INTERRUPT;
1562     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1563 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1564 	      flags, ((int **)&size)[-1]);
1565     }
1566 
1567     /*
1568      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1569      * be set if we are not preempting.
1570      *
1571      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1572      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1573      * implied in this case), though I'm not sure if we really need to
1574      * do that.
1575      */
1576     vmflags = base_vmflags;
1577     if (flags & M_WAITOK) {
1578 	if (td->td_preempted)
1579 	    vmflags |= VM_ALLOC_SYSTEM;
1580 	else
1581 	    vmflags |= VM_ALLOC_NORMAL;
1582     }
1583 
1584     vm_object_hold(&kernel_object);
1585     for (i = 0; i < size; i += PAGE_SIZE) {
1586 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1587 	if (i == 0)
1588 		mbase = m;
1589 
1590 	/*
1591 	 * If the allocation failed we either return NULL or we retry.
1592 	 *
1593 	 * If M_WAITOK is specified we wait for more memory and retry.
1594 	 * If M_WAITOK is specified from a preemption we yield instead of
1595 	 * wait.  Livelock will not occur because the interrupt thread
1596 	 * will not be preempting anyone the second time around after the
1597 	 * yield.
1598 	 */
1599 	if (m == NULL) {
1600 	    if (flags & M_WAITOK) {
1601 		if (td->td_preempted) {
1602 		    lwkt_switch();
1603 		} else {
1604 		    vm_wait(0);
1605 		}
1606 		i -= PAGE_SIZE;	/* retry */
1607 		continue;
1608 	    }
1609 	    break;
1610 	}
1611     }
1612 
1613     /*
1614      * Check and deal with an allocation failure
1615      */
1616     if (i != size) {
1617 	while (i != 0) {
1618 	    i -= PAGE_SIZE;
1619 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1620 	    /* page should already be busy */
1621 	    vm_page_free(m);
1622 	}
1623 	vm_map_lock(&kernel_map);
1624 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1625 	vm_map_unlock(&kernel_map);
1626 	vm_object_drop(&kernel_object);
1627 
1628 	vm_map_entry_release(count);
1629 	crit_exit();
1630 	return(NULL);
1631     }
1632 
1633     /*
1634      * Success!
1635      *
1636      * NOTE: The VM pages are still busied.  mbase points to the first one
1637      *	     but we have to iterate via vm_page_next()
1638      */
1639     vm_object_drop(&kernel_object);
1640     crit_exit();
1641 
1642     /*
1643      * Enter the pages into the pmap and deal with M_ZERO.
1644      */
1645     m = mbase;
1646     i = 0;
1647 
1648     while (i < size) {
1649 	/*
1650 	 * page should already be busy
1651 	 */
1652 	m->valid = VM_PAGE_BITS_ALL;
1653 	vm_page_wire(m);
1654 	pmap_enter(&kernel_pmap, addr + i, m, VM_PROT_ALL | VM_PROT_NOSYNC,
1655 		   1, NULL);
1656 	if (flags & M_ZERO)
1657 		pagezero((char *)addr + i);
1658 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1659 	vm_page_flag_set(m, PG_REFERENCED);
1660 	vm_page_wakeup(m);
1661 
1662 	i += PAGE_SIZE;
1663 	vm_object_hold(&kernel_object);
1664 	m = vm_page_next(m);
1665 	vm_object_drop(&kernel_object);
1666     }
1667     smp_invltlb();
1668     vm_map_entry_release(count);
1669     atomic_add_long(&SlabsAllocated, 1);
1670     return((void *)addr);
1671 }
1672 
1673 /*
1674  * kmem_slab_free()
1675  */
1676 static void
1677 kmem_slab_free(void *ptr, vm_size_t size)
1678 {
1679     crit_enter();
1680     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1681     atomic_add_long(&SlabsFreed, 1);
1682     crit_exit();
1683 }
1684 
1685 void *
1686 kmalloc_cachealign(unsigned long size_alloc, struct malloc_type *type,
1687     int flags)
1688 {
1689 #if (__VM_CACHELINE_SIZE == 32)
1690 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
1691 #elif (__VM_CACHELINE_SIZE == 64)
1692 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
1693 #elif (__VM_CACHELINE_SIZE == 128)
1694 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
1695 #else
1696 #error "unsupported cacheline size"
1697 #endif
1698 
1699 	void *ret;
1700 
1701 	if (size_alloc < __VM_CACHELINE_SIZE)
1702 		size_alloc = __VM_CACHELINE_SIZE;
1703 	else if (!CAN_CACHEALIGN(size_alloc))
1704 		flags |= M_POWEROF2;
1705 
1706 	ret = kmalloc(size_alloc, type, flags);
1707 	KASSERT(((uintptr_t)ret & (__VM_CACHELINE_SIZE - 1)) == 0,
1708 	    ("%p(%lu) not cacheline %d aligned",
1709 	     ret, size_alloc, __VM_CACHELINE_SIZE));
1710 	return ret;
1711 
1712 #undef CAN_CACHEALIGN
1713 }
1714