1 /* 2 * KERN_SLABALLOC.C - Kernel SLAB memory allocator 3 * 4 * Copyright (c) 2003,2004,2010-2019 The DragonFly Project. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The DragonFly Project 8 * by Matthew Dillon <dillon@backplane.com> 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in 18 * the documentation and/or other materials provided with the 19 * distribution. 20 * 3. Neither the name of The DragonFly Project nor the names of its 21 * contributors may be used to endorse or promote products derived 22 * from this software without specific, prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * This module implements a slab allocator drop-in replacement for the 38 * kernel malloc(). 39 * 40 * A slab allocator reserves a ZONE for each chunk size, then lays the 41 * chunks out in an array within the zone. Allocation and deallocation 42 * is nearly instantanious, and fragmentation/overhead losses are limited 43 * to a fixed worst-case amount. 44 * 45 * The downside of this slab implementation is in the chunk size 46 * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. 47 * In a kernel implementation all this memory will be physical so 48 * the zone size is adjusted downward on machines with less physical 49 * memory. The upside is that overhead is bounded... this is the *worst* 50 * case overhead. 51 * 52 * Slab management is done on a per-cpu basis and no locking or mutexes 53 * are required, only a critical section. When one cpu frees memory 54 * belonging to another cpu's slab manager an asynchronous IPI message 55 * will be queued to execute the operation. In addition, both the 56 * high level slab allocator and the low level zone allocator optimize 57 * M_ZERO requests, and the slab allocator does not have to pre initialize 58 * the linked list of chunks. 59 * 60 * XXX Balancing is needed between cpus. Balance will be handled through 61 * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. 62 * 63 * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of 64 * the new zone should be restricted to M_USE_RESERVE requests only. 65 * 66 * Alloc Size Chunking Number of zones 67 * 0-127 8 16 68 * 128-255 16 8 69 * 256-511 32 8 70 * 512-1023 64 8 71 * 1024-2047 128 8 72 * 2048-4095 256 8 73 * 4096-8191 512 8 74 * 8192-16383 1024 8 75 * 16384-32767 2048 8 76 * (if PAGE_SIZE is 4K the maximum zone allocation is 16383) 77 * 78 * Allocations >= ZoneLimit go directly to kmem. 79 * (n * PAGE_SIZE, n > 2) allocations go directly to kmem. 80 * 81 * Alignment properties: 82 * - All power-of-2 sized allocations are power-of-2 aligned. 83 * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest 84 * power-of-2 round up of 'size'. 85 * - Non-power-of-2 sized allocations are zone chunk size aligned (see the 86 * above table 'Chunking' column). 87 * 88 * API REQUIREMENTS AND SIDE EFFECTS 89 * 90 * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we 91 * have remained compatible with the following API requirements: 92 * 93 * + malloc(0) is allowed and returns non-NULL (ahc driver) 94 * + ability to allocate arbitrarily large chunks of memory 95 */ 96 97 #include "opt_vm.h" 98 99 #include <sys/param.h> 100 #include <sys/systm.h> 101 #include <sys/kernel.h> 102 #include <sys/slaballoc.h> 103 #include <sys/mbuf.h> 104 #include <sys/vmmeter.h> 105 #include <sys/lock.h> 106 #include <sys/thread.h> 107 #include <sys/globaldata.h> 108 #include <sys/sysctl.h> 109 #include <sys/ktr.h> 110 #include <sys/malloc.h> 111 112 #include <vm/vm.h> 113 #include <vm/vm_param.h> 114 #include <vm/vm_kern.h> 115 #include <vm/vm_extern.h> 116 #include <vm/vm_object.h> 117 #include <vm/pmap.h> 118 #include <vm/vm_map.h> 119 #include <vm/vm_page.h> 120 #include <vm/vm_pageout.h> 121 122 #include <machine/cpu.h> 123 124 #include <sys/thread2.h> 125 #include <vm/vm_page2.h> 126 127 #if (__VM_CACHELINE_SIZE == 32) 128 #define CAN_CACHEALIGN(sz) ((sz) >= 256) 129 #elif (__VM_CACHELINE_SIZE == 64) 130 #define CAN_CACHEALIGN(sz) ((sz) >= 512) 131 #elif (__VM_CACHELINE_SIZE == 128) 132 #define CAN_CACHEALIGN(sz) ((sz) >= 1024) 133 #else 134 #error "unsupported cacheline size" 135 #endif 136 137 #define btokup(z) (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt) 138 139 #define MEMORY_STRING "ptr=%p type=%p size=%lu flags=%04x" 140 #define MEMORY_ARGS void *ptr, void *type, unsigned long size, int flags 141 142 #if !defined(KTR_MEMORY) 143 #define KTR_MEMORY KTR_ALL 144 #endif 145 KTR_INFO_MASTER(memory); 146 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin"); 147 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS); 148 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS); 149 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS); 150 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS); 151 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS); 152 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS); 153 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS); 154 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS); 155 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin"); 156 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end"); 157 158 #define logmemory(name, ptr, type, size, flags) \ 159 KTR_LOG(memory_ ## name, ptr, type, size, flags) 160 #define logmemory_quick(name) \ 161 KTR_LOG(memory_ ## name) 162 163 /* 164 * Fixed globals (not per-cpu) 165 */ 166 static int ZoneSize; 167 static int ZoneLimit; 168 static int ZonePageCount; 169 static uintptr_t ZoneMask; 170 static int ZoneBigAlloc; /* in KB */ 171 static int ZoneGenAlloc; /* in KB */ 172 struct malloc_type *kmemstatistics; /* exported to vmstat */ 173 #ifdef INVARIANTS 174 static int32_t weirdary[16]; 175 #endif 176 177 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags); 178 static void kmem_slab_free(void *ptr, vm_size_t bytes); 179 180 #if defined(INVARIANTS) 181 static void chunk_mark_allocated(SLZone *z, void *chunk); 182 static void chunk_mark_free(SLZone *z, void *chunk); 183 #else 184 #define chunk_mark_allocated(z, chunk) 185 #define chunk_mark_free(z, chunk) 186 #endif 187 188 /* 189 * Misc constants. Note that allocations that are exact multiples of 190 * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. 191 */ 192 #define ZONE_RELS_THRESH 32 /* threshold number of zones */ 193 194 #ifdef INVARIANTS 195 /* 196 * The WEIRD_ADDR is used as known text to copy into free objects to 197 * try to create deterministic failure cases if the data is accessed after 198 * free. 199 */ 200 #define WEIRD_ADDR 0xdeadc0de 201 #endif 202 #define ZERO_LENGTH_PTR ((void *)-8) 203 204 /* 205 * Misc global malloc buckets 206 */ 207 208 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); 209 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); 210 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); 211 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations"); 212 213 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 214 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 215 216 /* 217 * Initialize the slab memory allocator. We have to choose a zone size based 218 * on available physical memory. We choose a zone side which is approximately 219 * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of 220 * 128K. The zone size is limited to the bounds set in slaballoc.h 221 * (typically 32K min, 128K max). 222 */ 223 static void kmeminit(void *dummy); 224 225 char *ZeroPage; 226 227 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL); 228 229 #ifdef INVARIANTS 230 /* 231 * If enabled any memory allocated without M_ZERO is initialized to -1. 232 */ 233 static int use_malloc_pattern; 234 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW, 235 &use_malloc_pattern, 0, 236 "Initialize memory to -1 if M_ZERO not specified"); 237 #endif 238 239 static int ZoneRelsThresh = ZONE_RELS_THRESH; 240 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, ""); 241 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, ""); 242 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, ""); 243 static long SlabsAllocated; 244 static long SlabsFreed; 245 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD, 246 &SlabsAllocated, 0, ""); 247 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD, 248 &SlabsFreed, 0, ""); 249 static int SlabFreeToTail; 250 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW, 251 &SlabFreeToTail, 0, ""); 252 253 static struct spinlock kmemstat_spin = 254 SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit"); 255 256 /* 257 * Returns the kernel memory size limit for the purposes of initializing 258 * various subsystem caches. The smaller of available memory and the KVM 259 * memory space is returned. 260 * 261 * The size in megabytes is returned. 262 */ 263 size_t 264 kmem_lim_size(void) 265 { 266 size_t limsize; 267 268 limsize = (size_t)vmstats.v_page_count * PAGE_SIZE; 269 if (limsize > KvaSize) 270 limsize = KvaSize; 271 return (limsize / (1024 * 1024)); 272 } 273 274 static void 275 kmeminit(void *dummy) 276 { 277 size_t limsize; 278 int usesize; 279 #ifdef INVARIANTS 280 int i; 281 #endif 282 283 limsize = kmem_lim_size(); 284 usesize = (int)(limsize * 1024); /* convert to KB */ 285 286 /* 287 * If the machine has a large KVM space and more than 8G of ram, 288 * double the zone release threshold to reduce SMP invalidations. 289 * If more than 16G of ram, do it again. 290 * 291 * The BIOS eats a little ram so add some slop. We want 8G worth of 292 * memory sticks to trigger the first adjustment. 293 */ 294 if (ZoneRelsThresh == ZONE_RELS_THRESH) { 295 if (limsize >= 7 * 1024) 296 ZoneRelsThresh *= 2; 297 if (limsize >= 15 * 1024) 298 ZoneRelsThresh *= 2; 299 } 300 301 /* 302 * Calculate the zone size. This typically calculates to 303 * ZALLOC_MAX_ZONE_SIZE 304 */ 305 ZoneSize = ZALLOC_MIN_ZONE_SIZE; 306 while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize) 307 ZoneSize <<= 1; 308 ZoneLimit = ZoneSize / 4; 309 if (ZoneLimit > ZALLOC_ZONE_LIMIT) 310 ZoneLimit = ZALLOC_ZONE_LIMIT; 311 ZoneMask = ~(uintptr_t)(ZoneSize - 1); 312 ZonePageCount = ZoneSize / PAGE_SIZE; 313 314 #ifdef INVARIANTS 315 for (i = 0; i < NELEM(weirdary); ++i) 316 weirdary[i] = WEIRD_ADDR; 317 #endif 318 319 ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO); 320 321 if (bootverbose) 322 kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024); 323 } 324 325 /* 326 * (low level) Initialize slab-related elements in the globaldata structure. 327 * 328 * Occurs after kmeminit(). 329 */ 330 void 331 slab_gdinit(globaldata_t gd) 332 { 333 SLGlobalData *slgd; 334 int i; 335 336 slgd = &gd->gd_slab; 337 for (i = 0; i < NZONES; ++i) 338 TAILQ_INIT(&slgd->ZoneAry[i]); 339 TAILQ_INIT(&slgd->FreeZones); 340 TAILQ_INIT(&slgd->FreeOvZones); 341 } 342 343 /* 344 * Initialize a malloc type tracking structure. 345 */ 346 void 347 malloc_init(void *data) 348 { 349 struct malloc_type *type = data; 350 size_t limsize; 351 352 if (type->ks_magic != M_MAGIC) 353 panic("malloc type lacks magic"); 354 355 if (type->ks_limit != 0) 356 return; 357 358 if (vmstats.v_page_count == 0) 359 panic("malloc_init not allowed before vm init"); 360 361 limsize = kmem_lim_size() * (1024 * 1024); 362 type->ks_limit = limsize / 10; 363 364 spin_lock(&kmemstat_spin); 365 type->ks_next = kmemstatistics; 366 kmemstatistics = type; 367 spin_unlock(&kmemstat_spin); 368 } 369 370 void 371 malloc_uninit(void *data) 372 { 373 struct malloc_type *type = data; 374 struct malloc_type *t; 375 #ifdef INVARIANTS 376 int i; 377 long ttl; 378 #endif 379 380 if (type->ks_magic != M_MAGIC) 381 panic("malloc type lacks magic"); 382 383 if (vmstats.v_page_count == 0) 384 panic("malloc_uninit not allowed before vm init"); 385 386 if (type->ks_limit == 0) 387 panic("malloc_uninit on uninitialized type"); 388 389 /* Make sure that all pending kfree()s are finished. */ 390 lwkt_synchronize_ipiqs("muninit"); 391 392 #ifdef INVARIANTS 393 /* 394 * memuse is only correct in aggregation. Due to memory being allocated 395 * on one cpu and freed on another individual array entries may be 396 * negative or positive (canceling each other out). 397 */ 398 for (i = ttl = 0; i < ncpus; ++i) 399 ttl += type->ks_use[i].memuse; 400 if (ttl) { 401 kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n", 402 ttl, type->ks_shortdesc, i); 403 } 404 #endif 405 spin_lock(&kmemstat_spin); 406 if (type == kmemstatistics) { 407 kmemstatistics = type->ks_next; 408 } else { 409 for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { 410 if (t->ks_next == type) { 411 t->ks_next = type->ks_next; 412 break; 413 } 414 } 415 } 416 type->ks_next = NULL; 417 type->ks_limit = 0; 418 spin_unlock(&kmemstat_spin); 419 } 420 421 /* 422 * Increase the kmalloc pool limit for the specified pool. No changes 423 * are the made if the pool would shrink. 424 */ 425 void 426 kmalloc_raise_limit(struct malloc_type *type, size_t bytes) 427 { 428 if (type->ks_limit == 0) 429 malloc_init(type); 430 if (bytes == 0) 431 bytes = KvaSize; 432 if (type->ks_limit < bytes) 433 type->ks_limit = bytes; 434 } 435 436 void 437 kmalloc_set_unlimited(struct malloc_type *type) 438 { 439 type->ks_limit = kmem_lim_size() * (1024 * 1024); 440 } 441 442 /* 443 * Dynamically create a malloc pool. This function is a NOP if *typep is 444 * already non-NULL. 445 */ 446 void 447 kmalloc_create(struct malloc_type **typep, const char *descr) 448 { 449 struct malloc_type *type; 450 451 if (*typep == NULL) { 452 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO); 453 type->ks_magic = M_MAGIC; 454 type->ks_shortdesc = descr; 455 malloc_init(type); 456 *typep = type; 457 } 458 } 459 460 /* 461 * Destroy a dynamically created malloc pool. This function is a NOP if 462 * the pool has already been destroyed. 463 */ 464 void 465 kmalloc_destroy(struct malloc_type **typep) 466 { 467 if (*typep != NULL) { 468 malloc_uninit(*typep); 469 kfree(*typep, M_TEMP); 470 *typep = NULL; 471 } 472 } 473 474 /* 475 * Calculate the zone index for the allocation request size and set the 476 * allocation request size to that particular zone's chunk size. 477 */ 478 static __inline int 479 zoneindex(unsigned long *bytes, unsigned long *align) 480 { 481 unsigned int n = (unsigned int)*bytes; /* unsigned for shift opt */ 482 483 if (n < 128) { 484 *bytes = n = (n + 7) & ~7; 485 *align = 8; 486 return(n / 8 - 1); /* 8 byte chunks, 16 zones */ 487 } 488 if (n < 256) { 489 *bytes = n = (n + 15) & ~15; 490 *align = 16; 491 return(n / 16 + 7); 492 } 493 if (n < 8192) { 494 if (n < 512) { 495 *bytes = n = (n + 31) & ~31; 496 *align = 32; 497 return(n / 32 + 15); 498 } 499 if (n < 1024) { 500 *bytes = n = (n + 63) & ~63; 501 *align = 64; 502 return(n / 64 + 23); 503 } 504 if (n < 2048) { 505 *bytes = n = (n + 127) & ~127; 506 *align = 128; 507 return(n / 128 + 31); 508 } 509 if (n < 4096) { 510 *bytes = n = (n + 255) & ~255; 511 *align = 256; 512 return(n / 256 + 39); 513 } 514 *bytes = n = (n + 511) & ~511; 515 *align = 512; 516 return(n / 512 + 47); 517 } 518 #if ZALLOC_ZONE_LIMIT > 8192 519 if (n < 16384) { 520 *bytes = n = (n + 1023) & ~1023; 521 *align = 1024; 522 return(n / 1024 + 55); 523 } 524 #endif 525 #if ZALLOC_ZONE_LIMIT > 16384 526 if (n < 32768) { 527 *bytes = n = (n + 2047) & ~2047; 528 *align = 2048; 529 return(n / 2048 + 63); 530 } 531 #endif 532 panic("Unexpected byte count %d", n); 533 return(0); 534 } 535 536 static __inline void 537 clean_zone_rchunks(SLZone *z) 538 { 539 SLChunk *bchunk; 540 541 while ((bchunk = z->z_RChunks) != NULL) { 542 cpu_ccfence(); 543 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) { 544 *z->z_LChunksp = bchunk; 545 while (bchunk) { 546 chunk_mark_free(z, bchunk); 547 z->z_LChunksp = &bchunk->c_Next; 548 bchunk = bchunk->c_Next; 549 ++z->z_NFree; 550 } 551 break; 552 } 553 /* retry */ 554 } 555 } 556 557 /* 558 * If the zone becomes totally free and is not the only zone listed for a 559 * chunk size we move it to the FreeZones list. We always leave at least 560 * one zone per chunk size listed, even if it is freeable. 561 * 562 * Do not move the zone if there is an IPI in_flight (z_RCount != 0), 563 * otherwise MP races can result in our free_remote code accessing a 564 * destroyed zone. The remote end interlocks z_RCount with z_RChunks 565 * so one has to test both z_NFree and z_RCount. 566 * 567 * Since this code can be called from an IPI callback, do *NOT* try to mess 568 * with kernel_map here. Hysteresis will be performed at kmalloc() time. 569 */ 570 static __inline SLZone * 571 check_zone_free(SLGlobalData *slgd, SLZone *z) 572 { 573 SLZone *znext; 574 575 znext = TAILQ_NEXT(z, z_Entry); 576 if (z->z_NFree == z->z_NMax && z->z_RCount == 0 && 577 (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) { 578 int *kup; 579 580 TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 581 582 z->z_Magic = -1; 583 TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry); 584 ++slgd->NFreeZones; 585 kup = btokup(z); 586 *kup = 0; 587 } 588 return znext; 589 } 590 591 #ifdef SLAB_DEBUG 592 /* 593 * Used to debug memory corruption issues. Record up to (typically 32) 594 * allocation sources for this zone (for a particular chunk size). 595 */ 596 597 static void 598 slab_record_source(SLZone *z, const char *file, int line) 599 { 600 int i; 601 int b = line & (SLAB_DEBUG_ENTRIES - 1); 602 603 i = b; 604 do { 605 if (z->z_Sources[i].file == file && z->z_Sources[i].line == line) 606 return; 607 if (z->z_Sources[i].file == NULL) 608 break; 609 i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1); 610 } while (i != b); 611 z->z_Sources[i].file = file; 612 z->z_Sources[i].line = line; 613 } 614 615 #endif 616 617 static __inline unsigned long 618 powerof2_size(unsigned long size) 619 { 620 int i; 621 622 if (size == 0 || powerof2(size)) 623 return size; 624 625 i = flsl(size); 626 return (1UL << i); 627 } 628 629 /* 630 * kmalloc() (SLAB ALLOCATOR) 631 * 632 * Allocate memory via the slab allocator. If the request is too large, 633 * or if it page-aligned beyond a certain size, we fall back to the 634 * KMEM subsystem. A SLAB tracking descriptor must be specified, use 635 * &SlabMisc if you don't care. 636 * 637 * M_RNOWAIT - don't block. 638 * M_NULLOK - return NULL instead of blocking. 639 * M_ZERO - zero the returned memory. 640 * M_USE_RESERVE - allow greater drawdown of the free list 641 * M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted 642 * M_POWEROF2 - roundup size to the nearest power of 2 643 * 644 * MPSAFE 645 */ 646 647 /* don't let kmalloc macro mess up function declaration */ 648 #undef kmalloc 649 650 #ifdef SLAB_DEBUG 651 void * 652 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags, 653 const char *file, int line) 654 #else 655 void * 656 kmalloc(unsigned long size, struct malloc_type *type, int flags) 657 #endif 658 { 659 SLZone *z; 660 SLChunk *chunk; 661 SLGlobalData *slgd; 662 struct globaldata *gd; 663 unsigned long align; 664 int zi; 665 #ifdef INVARIANTS 666 int i; 667 #endif 668 669 logmemory_quick(malloc_beg); 670 gd = mycpu; 671 slgd = &gd->gd_slab; 672 673 /* 674 * XXX silly to have this in the critical path. 675 */ 676 if (type->ks_limit == 0) { 677 crit_enter(); 678 malloc_init(type); 679 crit_exit(); 680 } 681 ++type->ks_use[gd->gd_cpuid].calls; 682 683 /* 684 * Flagged for cache-alignment 685 */ 686 if (flags & M_CACHEALIGN) { 687 if (size < __VM_CACHELINE_SIZE) 688 size = __VM_CACHELINE_SIZE; 689 else if (!CAN_CACHEALIGN(size)) 690 flags |= M_POWEROF2; 691 } 692 693 /* 694 * Flagged to force nearest power-of-2 (higher or same) 695 */ 696 if (flags & M_POWEROF2) 697 size = powerof2_size(size); 698 699 /* 700 * Handle the case where the limit is reached. Panic if we can't return 701 * NULL. The original malloc code looped, but this tended to 702 * simply deadlock the computer. 703 * 704 * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used 705 * to determine if a more complete limit check should be done. The 706 * actual memory use is tracked via ks_use[cpu].memuse. 707 */ 708 while (type->ks_loosememuse >= type->ks_limit) { 709 int i; 710 long ttl; 711 712 for (i = ttl = 0; i < ncpus; ++i) 713 ttl += type->ks_use[i].memuse; 714 type->ks_loosememuse = ttl; /* not MP synchronized */ 715 if ((ssize_t)ttl < 0) /* deal with occassional race */ 716 ttl = 0; 717 if (ttl >= type->ks_limit) { 718 if (flags & M_NULLOK) { 719 logmemory(malloc_end, NULL, type, size, flags); 720 return(NULL); 721 } 722 panic("%s: malloc limit exceeded", type->ks_shortdesc); 723 } 724 } 725 726 /* 727 * Handle the degenerate size == 0 case. Yes, this does happen. 728 * Return a special pointer. This is to maintain compatibility with 729 * the original malloc implementation. Certain devices, such as the 730 * adaptec driver, not only allocate 0 bytes, they check for NULL and 731 * also realloc() later on. Joy. 732 */ 733 if (size == 0) { 734 logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags); 735 return(ZERO_LENGTH_PTR); 736 } 737 738 /* 739 * Handle hysteresis from prior frees here in malloc(). We cannot 740 * safely manipulate the kernel_map in free() due to free() possibly 741 * being called via an IPI message or from sensitive interrupt code. 742 * 743 * NOTE: ku_pagecnt must be cleared before we free the slab or we 744 * might race another cpu allocating the kva and setting 745 * ku_pagecnt. 746 */ 747 while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) { 748 crit_enter(); 749 if (slgd->NFreeZones > ZoneRelsThresh) { /* crit sect race */ 750 int *kup; 751 752 z = TAILQ_LAST(&slgd->FreeZones, SLZoneList); 753 KKASSERT(z != NULL); 754 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry); 755 --slgd->NFreeZones; 756 kup = btokup(z); 757 *kup = 0; 758 kmem_slab_free(z, ZoneSize); /* may block */ 759 atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024); 760 } 761 crit_exit(); 762 } 763 764 /* 765 * XXX handle oversized frees that were queued from kfree(). 766 */ 767 while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) { 768 crit_enter(); 769 if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) { 770 vm_size_t tsize; 771 772 KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC); 773 TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry); 774 tsize = z->z_ChunkSize; 775 kmem_slab_free(z, tsize); /* may block */ 776 atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024); 777 } 778 crit_exit(); 779 } 780 781 /* 782 * Handle large allocations directly. There should not be very many of 783 * these so performance is not a big issue. 784 * 785 * The backend allocator is pretty nasty on a SMP system. Use the 786 * slab allocator for one and two page-sized chunks even though we lose 787 * some efficiency. XXX maybe fix mmio and the elf loader instead. 788 */ 789 if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) { 790 int *kup; 791 792 size = round_page(size); 793 chunk = kmem_slab_alloc(size, PAGE_SIZE, flags); 794 if (chunk == NULL) { 795 logmemory(malloc_end, NULL, type, size, flags); 796 return(NULL); 797 } 798 atomic_add_int(&ZoneBigAlloc, (int)size / 1024); 799 flags &= ~M_ZERO; /* result already zero'd if M_ZERO was set */ 800 flags |= M_PASSIVE_ZERO; 801 kup = btokup(chunk); 802 *kup = size / PAGE_SIZE; 803 crit_enter(); 804 goto done; 805 } 806 807 /* 808 * Attempt to allocate out of an existing zone. First try the free list, 809 * then allocate out of unallocated space. If we find a good zone move 810 * it to the head of the list so later allocations find it quickly 811 * (we might have thousands of zones in the list). 812 * 813 * Note: zoneindex() will panic of size is too large. 814 */ 815 zi = zoneindex(&size, &align); 816 KKASSERT(zi < NZONES); 817 crit_enter(); 818 819 if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) { 820 /* 821 * Locate a chunk - we have to have at least one. If this is the 822 * last chunk go ahead and do the work to retrieve chunks freed 823 * from remote cpus, and if the zone is still empty move it off 824 * the ZoneAry. 825 */ 826 if (--z->z_NFree <= 0) { 827 KKASSERT(z->z_NFree == 0); 828 829 /* 830 * WARNING! This code competes with other cpus. It is ok 831 * for us to not drain RChunks here but we might as well, and 832 * it is ok if more accumulate after we're done. 833 * 834 * Set RSignal before pulling rchunks off, indicating that we 835 * will be moving ourselves off of the ZoneAry. Remote ends will 836 * read RSignal before putting rchunks on thus interlocking 837 * their IPI signaling. 838 */ 839 if (z->z_RChunks == NULL) 840 atomic_swap_int(&z->z_RSignal, 1); 841 842 clean_zone_rchunks(z); 843 844 /* 845 * Remove from the zone list if no free chunks remain. 846 * Clear RSignal 847 */ 848 if (z->z_NFree == 0) { 849 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry); 850 } else { 851 z->z_RSignal = 0; 852 } 853 } 854 855 /* 856 * Fast path, we have chunks available in z_LChunks. 857 */ 858 chunk = z->z_LChunks; 859 if (chunk) { 860 chunk_mark_allocated(z, chunk); 861 z->z_LChunks = chunk->c_Next; 862 if (z->z_LChunks == NULL) 863 z->z_LChunksp = &z->z_LChunks; 864 #ifdef SLAB_DEBUG 865 slab_record_source(z, file, line); 866 #endif 867 goto done; 868 } 869 870 /* 871 * No chunks are available in LChunks, the free chunk MUST be 872 * in the never-before-used memory area, controlled by UIndex. 873 * 874 * The consequences are very serious if our zone got corrupted so 875 * we use an explicit panic rather than a KASSERT. 876 */ 877 if (z->z_UIndex + 1 != z->z_NMax) 878 ++z->z_UIndex; 879 else 880 z->z_UIndex = 0; 881 882 if (z->z_UIndex == z->z_UEndIndex) 883 panic("slaballoc: corrupted zone"); 884 885 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 886 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 887 flags &= ~M_ZERO; 888 flags |= M_PASSIVE_ZERO; 889 } 890 chunk_mark_allocated(z, chunk); 891 #ifdef SLAB_DEBUG 892 slab_record_source(z, file, line); 893 #endif 894 goto done; 895 } 896 897 /* 898 * If all zones are exhausted we need to allocate a new zone for this 899 * index. Use M_ZERO to take advantage of pre-zerod pages. Also see 900 * UAlloc use above in regards to M_ZERO. Note that when we are reusing 901 * a zone from the FreeZones list UAlloc'd data will not be zero'd, and 902 * we do not pre-zero it because we do not want to mess up the L1 cache. 903 * 904 * At least one subsystem, the tty code (see CROUND) expects power-of-2 905 * allocations to be power-of-2 aligned. We maintain compatibility by 906 * adjusting the base offset below. 907 */ 908 { 909 int off; 910 int *kup; 911 912 if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) { 913 TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry); 914 --slgd->NFreeZones; 915 bzero(z, sizeof(SLZone)); 916 z->z_Flags |= SLZF_UNOTZEROD; 917 } else { 918 z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO); 919 if (z == NULL) 920 goto fail; 921 atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024); 922 } 923 924 /* 925 * How big is the base structure? 926 */ 927 #if defined(INVARIANTS) 928 /* 929 * Make room for z_Bitmap. An exact calculation is somewhat more 930 * complicated so don't make an exact calculation. 931 */ 932 off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]); 933 bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8); 934 #else 935 off = sizeof(SLZone); 936 #endif 937 938 /* 939 * Guarentee power-of-2 alignment for power-of-2-sized chunks. 940 * Otherwise properly align the data according to the chunk size. 941 */ 942 if (powerof2(size)) 943 align = size; 944 off = roundup2(off, align); 945 946 z->z_Magic = ZALLOC_SLAB_MAGIC; 947 z->z_ZoneIndex = zi; 948 z->z_NMax = (ZoneSize - off) / size; 949 z->z_NFree = z->z_NMax - 1; 950 z->z_BasePtr = (char *)z + off; 951 z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax; 952 z->z_ChunkSize = size; 953 z->z_CpuGd = gd; 954 z->z_Cpu = gd->gd_cpuid; 955 z->z_LChunksp = &z->z_LChunks; 956 #ifdef SLAB_DEBUG 957 bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources)); 958 bzero(z->z_Sources, sizeof(z->z_Sources)); 959 #endif 960 chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size); 961 TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry); 962 if ((z->z_Flags & SLZF_UNOTZEROD) == 0) { 963 flags &= ~M_ZERO; /* already zero'd */ 964 flags |= M_PASSIVE_ZERO; 965 } 966 kup = btokup(z); 967 *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */ 968 chunk_mark_allocated(z, chunk); 969 #ifdef SLAB_DEBUG 970 slab_record_source(z, file, line); 971 #endif 972 973 /* 974 * Slide the base index for initial allocations out of the next 975 * zone we create so we do not over-weight the lower part of the 976 * cpu memory caches. 977 */ 978 slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE) 979 & (ZALLOC_MAX_ZONE_SIZE - 1); 980 } 981 982 done: 983 ++type->ks_use[gd->gd_cpuid].inuse; 984 type->ks_use[gd->gd_cpuid].memuse += size; 985 type->ks_use[gd->gd_cpuid].loosememuse += size; 986 if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) { 987 /* not MP synchronized */ 988 type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse; 989 type->ks_use[gd->gd_cpuid].loosememuse = 0; 990 } 991 crit_exit(); 992 993 if (flags & M_ZERO) 994 bzero(chunk, size); 995 #ifdef INVARIANTS 996 else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) { 997 if (use_malloc_pattern) { 998 for (i = 0; i < size; i += sizeof(int)) { 999 *(int *)((char *)chunk + i) = -1; 1000 } 1001 } 1002 chunk->c_Next = (void *)-1; /* avoid accidental double-free check */ 1003 } 1004 #endif 1005 logmemory(malloc_end, chunk, type, size, flags); 1006 return(chunk); 1007 fail: 1008 crit_exit(); 1009 logmemory(malloc_end, NULL, type, size, flags); 1010 return(NULL); 1011 } 1012 1013 /* 1014 * kernel realloc. (SLAB ALLOCATOR) (MP SAFE) 1015 * 1016 * Generally speaking this routine is not called very often and we do 1017 * not attempt to optimize it beyond reusing the same pointer if the 1018 * new size fits within the chunking of the old pointer's zone. 1019 */ 1020 #ifdef SLAB_DEBUG 1021 void * 1022 krealloc_debug(void *ptr, unsigned long size, 1023 struct malloc_type *type, int flags, 1024 const char *file, int line) 1025 #else 1026 void * 1027 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags) 1028 #endif 1029 { 1030 unsigned long osize; 1031 unsigned long align; 1032 SLZone *z; 1033 void *nptr; 1034 int *kup; 1035 1036 KKASSERT((flags & M_ZERO) == 0); /* not supported */ 1037 1038 if (ptr == NULL || ptr == ZERO_LENGTH_PTR) 1039 return(kmalloc_debug(size, type, flags, file, line)); 1040 if (size == 0) { 1041 kfree(ptr, type); 1042 return(NULL); 1043 } 1044 1045 /* 1046 * Handle oversized allocations. XXX we really should require that a 1047 * size be passed to free() instead of this nonsense. 1048 */ 1049 kup = btokup(ptr); 1050 if (*kup > 0) { 1051 osize = *kup << PAGE_SHIFT; 1052 if (osize == round_page(size)) 1053 return(ptr); 1054 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 1055 return(NULL); 1056 bcopy(ptr, nptr, min(size, osize)); 1057 kfree(ptr, type); 1058 return(nptr); 1059 } 1060 1061 /* 1062 * Get the original allocation's zone. If the new request winds up 1063 * using the same chunk size we do not have to do anything. 1064 */ 1065 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1066 kup = btokup(z); 1067 KKASSERT(*kup < 0); 1068 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1069 1070 /* 1071 * Allocate memory for the new request size. Note that zoneindex has 1072 * already adjusted the request size to the appropriate chunk size, which 1073 * should optimize our bcopy(). Then copy and return the new pointer. 1074 * 1075 * Resizing a non-power-of-2 allocation to a power-of-2 size does not 1076 * necessary align the result. 1077 * 1078 * We can only zoneindex (to align size to the chunk size) if the new 1079 * size is not too large. 1080 */ 1081 if (size < ZoneLimit) { 1082 zoneindex(&size, &align); 1083 if (z->z_ChunkSize == size) 1084 return(ptr); 1085 } 1086 if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL) 1087 return(NULL); 1088 bcopy(ptr, nptr, min(size, z->z_ChunkSize)); 1089 kfree(ptr, type); 1090 return(nptr); 1091 } 1092 1093 /* 1094 * Return the kmalloc limit for this type, in bytes. 1095 */ 1096 long 1097 kmalloc_limit(struct malloc_type *type) 1098 { 1099 if (type->ks_limit == 0) { 1100 crit_enter(); 1101 if (type->ks_limit == 0) 1102 malloc_init(type); 1103 crit_exit(); 1104 } 1105 return(type->ks_limit); 1106 } 1107 1108 /* 1109 * Allocate a copy of the specified string. 1110 * 1111 * (MP SAFE) (MAY BLOCK) 1112 */ 1113 #ifdef SLAB_DEBUG 1114 char * 1115 kstrdup_debug(const char *str, struct malloc_type *type, 1116 const char *file, int line) 1117 #else 1118 char * 1119 kstrdup(const char *str, struct malloc_type *type) 1120 #endif 1121 { 1122 int zlen; /* length inclusive of terminating NUL */ 1123 char *nstr; 1124 1125 if (str == NULL) 1126 return(NULL); 1127 zlen = strlen(str) + 1; 1128 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1129 bcopy(str, nstr, zlen); 1130 return(nstr); 1131 } 1132 1133 #ifdef SLAB_DEBUG 1134 char * 1135 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type, 1136 const char *file, int line) 1137 #else 1138 char * 1139 kstrndup(const char *str, size_t maxlen, struct malloc_type *type) 1140 #endif 1141 { 1142 int zlen; /* length inclusive of terminating NUL */ 1143 char *nstr; 1144 1145 if (str == NULL) 1146 return(NULL); 1147 zlen = strnlen(str, maxlen) + 1; 1148 nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line); 1149 bcopy(str, nstr, zlen); 1150 nstr[zlen - 1] = '\0'; 1151 return(nstr); 1152 } 1153 1154 /* 1155 * Notify our cpu that a remote cpu has freed some chunks in a zone that 1156 * we own. RCount will be bumped so the memory should be good, but validate 1157 * that it really is. 1158 */ 1159 static void 1160 kfree_remote(void *ptr) 1161 { 1162 SLGlobalData *slgd; 1163 SLZone *z; 1164 int nfree; 1165 int *kup; 1166 1167 slgd = &mycpu->gd_slab; 1168 z = ptr; 1169 kup = btokup(z); 1170 KKASSERT(*kup == -((int)mycpuid + 1)); 1171 KKASSERT(z->z_RCount > 0); 1172 atomic_subtract_int(&z->z_RCount, 1); 1173 1174 logmemory(free_rem_beg, z, NULL, 0L, 0); 1175 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1176 KKASSERT(z->z_Cpu == mycpu->gd_cpuid); 1177 nfree = z->z_NFree; 1178 1179 /* 1180 * Indicate that we will no longer be off of the ZoneAry by 1181 * clearing RSignal. 1182 */ 1183 if (z->z_RChunks) 1184 z->z_RSignal = 0; 1185 1186 /* 1187 * Atomically extract the bchunks list and then process it back 1188 * into the lchunks list. We want to append our bchunks to the 1189 * lchunks list and not prepend since we likely do not have 1190 * cache mastership of the related data (not that it helps since 1191 * we are using c_Next). 1192 */ 1193 clean_zone_rchunks(z); 1194 if (z->z_NFree && nfree == 0) { 1195 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1196 } 1197 1198 check_zone_free(slgd, z); 1199 logmemory(free_rem_end, z, NULL, 0L, 0); 1200 } 1201 1202 /* 1203 * free (SLAB ALLOCATOR) 1204 * 1205 * Free a memory block previously allocated by malloc. 1206 * 1207 * Note: We do not attempt to update ks_loosememuse as MP races could 1208 * prevent us from checking memory limits in malloc. YYY we may 1209 * consider updating ks_cpu.loosememuse. 1210 * 1211 * MPSAFE 1212 */ 1213 void 1214 kfree(void *ptr, struct malloc_type *type) 1215 { 1216 SLZone *z; 1217 SLChunk *chunk; 1218 SLGlobalData *slgd; 1219 struct globaldata *gd; 1220 int *kup; 1221 unsigned long size; 1222 SLChunk *bchunk; 1223 int rsignal; 1224 1225 logmemory_quick(free_beg); 1226 gd = mycpu; 1227 slgd = &gd->gd_slab; 1228 1229 if (ptr == NULL) 1230 panic("trying to free NULL pointer"); 1231 1232 /* 1233 * Handle special 0-byte allocations 1234 */ 1235 if (ptr == ZERO_LENGTH_PTR) { 1236 logmemory(free_zero, ptr, type, -1UL, 0); 1237 logmemory_quick(free_end); 1238 return; 1239 } 1240 1241 /* 1242 * Panic on bad malloc type 1243 */ 1244 if (type->ks_magic != M_MAGIC) 1245 panic("free: malloc type lacks magic"); 1246 1247 /* 1248 * Handle oversized allocations. XXX we really should require that a 1249 * size be passed to free() instead of this nonsense. 1250 * 1251 * This code is never called via an ipi. 1252 */ 1253 kup = btokup(ptr); 1254 if (*kup > 0) { 1255 size = *kup << PAGE_SHIFT; 1256 *kup = 0; 1257 #ifdef INVARIANTS 1258 KKASSERT(sizeof(weirdary) <= size); 1259 bcopy(weirdary, ptr, sizeof(weirdary)); 1260 #endif 1261 /* 1262 * NOTE: For oversized allocations we do not record the 1263 * originating cpu. It gets freed on the cpu calling 1264 * kfree(). The statistics are in aggregate. 1265 * 1266 * note: XXX we have still inherited the interrupts-can't-block 1267 * assumption. An interrupt thread does not bump 1268 * gd_intr_nesting_level so check TDF_INTTHREAD. This is 1269 * primarily until we can fix softupdate's assumptions about free(). 1270 */ 1271 crit_enter(); 1272 --type->ks_use[gd->gd_cpuid].inuse; 1273 type->ks_use[gd->gd_cpuid].memuse -= size; 1274 if (mycpu->gd_intr_nesting_level || 1275 (gd->gd_curthread->td_flags & TDF_INTTHREAD)) { 1276 logmemory(free_ovsz_delayed, ptr, type, size, 0); 1277 z = (SLZone *)ptr; 1278 z->z_Magic = ZALLOC_OVSZ_MAGIC; 1279 z->z_ChunkSize = size; 1280 1281 TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry); 1282 crit_exit(); 1283 } else { 1284 crit_exit(); 1285 logmemory(free_ovsz, ptr, type, size, 0); 1286 kmem_slab_free(ptr, size); /* may block */ 1287 atomic_add_int(&ZoneBigAlloc, -(int)size / 1024); 1288 } 1289 logmemory_quick(free_end); 1290 return; 1291 } 1292 1293 /* 1294 * Zone case. Figure out the zone based on the fact that it is 1295 * ZoneSize aligned. 1296 */ 1297 z = (SLZone *)((uintptr_t)ptr & ZoneMask); 1298 kup = btokup(z); 1299 KKASSERT(*kup < 0); 1300 KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC); 1301 1302 /* 1303 * If we do not own the zone then use atomic ops to free to the 1304 * remote cpu linked list and notify the target zone using a 1305 * passive message. 1306 * 1307 * The target zone cannot be deallocated while we own a chunk of it, 1308 * so the zone header's storage is stable until the very moment 1309 * we adjust z_RChunks. After that we cannot safely dereference (z). 1310 * 1311 * (no critical section needed) 1312 */ 1313 if (z->z_CpuGd != gd) { 1314 /* 1315 * Making these adjustments now allow us to avoid passing (type) 1316 * to the remote cpu. Note that inuse/memuse is being 1317 * adjusted on OUR cpu, not the zone cpu, but it should all still 1318 * sum up properly and cancel out. 1319 */ 1320 crit_enter(); 1321 --type->ks_use[gd->gd_cpuid].inuse; 1322 type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize; 1323 crit_exit(); 1324 1325 /* 1326 * WARNING! This code competes with other cpus. Once we 1327 * successfully link the chunk to RChunks the remote 1328 * cpu can rip z's storage out from under us. 1329 * 1330 * Bumping RCount prevents z's storage from getting 1331 * ripped out. 1332 */ 1333 rsignal = z->z_RSignal; 1334 cpu_lfence(); 1335 if (rsignal) 1336 atomic_add_int(&z->z_RCount, 1); 1337 1338 chunk = ptr; 1339 for (;;) { 1340 bchunk = z->z_RChunks; 1341 cpu_ccfence(); 1342 chunk->c_Next = bchunk; 1343 cpu_sfence(); 1344 1345 if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk)) 1346 break; 1347 } 1348 1349 /* 1350 * We have to signal the remote cpu if our actions will cause 1351 * the remote zone to be placed back on ZoneAry so it can 1352 * move the zone back on. 1353 * 1354 * We only need to deal with NULL->non-NULL RChunk transitions 1355 * and only if z_RSignal is set. We interlock by reading rsignal 1356 * before adding our chunk to RChunks. This should result in 1357 * virtually no IPI traffic. 1358 * 1359 * We can use a passive IPI to reduce overhead even further. 1360 */ 1361 if (bchunk == NULL && rsignal) { 1362 logmemory(free_request, ptr, type, 1363 (unsigned long)z->z_ChunkSize, 0); 1364 lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z); 1365 /* z can get ripped out from under us from this point on */ 1366 } else if (rsignal) { 1367 atomic_subtract_int(&z->z_RCount, 1); 1368 /* z can get ripped out from under us from this point on */ 1369 } 1370 logmemory_quick(free_end); 1371 return; 1372 } 1373 1374 /* 1375 * kfree locally 1376 */ 1377 logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0); 1378 1379 crit_enter(); 1380 chunk = ptr; 1381 chunk_mark_free(z, chunk); 1382 1383 /* 1384 * Put weird data into the memory to detect modifications after freeing, 1385 * illegal pointer use after freeing (we should fault on the odd address), 1386 * and so forth. XXX needs more work, see the old malloc code. 1387 */ 1388 #ifdef INVARIANTS 1389 if (z->z_ChunkSize < sizeof(weirdary)) 1390 bcopy(weirdary, chunk, z->z_ChunkSize); 1391 else 1392 bcopy(weirdary, chunk, sizeof(weirdary)); 1393 #endif 1394 1395 /* 1396 * Add this free non-zero'd chunk to a linked list for reuse. Add 1397 * to the front of the linked list so it is more likely to be 1398 * reallocated, since it is already in our L1 cache. 1399 */ 1400 #ifdef INVARIANTS 1401 if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd) 1402 panic("BADFREE %p", chunk); 1403 #endif 1404 chunk->c_Next = z->z_LChunks; 1405 z->z_LChunks = chunk; 1406 if (chunk->c_Next == NULL) 1407 z->z_LChunksp = &chunk->c_Next; 1408 1409 #ifdef INVARIANTS 1410 if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart) 1411 panic("BADFREE2"); 1412 #endif 1413 1414 /* 1415 * Bump the number of free chunks. If it becomes non-zero the zone 1416 * must be added back onto the appropriate list. A fully allocated 1417 * zone that sees its first free is considered 'mature' and is placed 1418 * at the head, giving the system time to potentially free the remaining 1419 * entries even while other allocations are going on and making the zone 1420 * freeable. 1421 */ 1422 if (z->z_NFree++ == 0) { 1423 if (SlabFreeToTail) 1424 TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1425 else 1426 TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry); 1427 } 1428 1429 --type->ks_use[gd->gd_cpuid].inuse; 1430 type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize; 1431 1432 check_zone_free(slgd, z); 1433 logmemory_quick(free_end); 1434 crit_exit(); 1435 } 1436 1437 /* 1438 * Cleanup slabs which are hanging around due to RChunks or which are wholely 1439 * free and can be moved to the free list if not moved by other means. 1440 * 1441 * Called once every 10 seconds on all cpus. 1442 */ 1443 void 1444 slab_cleanup(void) 1445 { 1446 SLGlobalData *slgd = &mycpu->gd_slab; 1447 SLZone *z; 1448 int i; 1449 1450 crit_enter(); 1451 for (i = 0; i < NZONES; ++i) { 1452 if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL) 1453 continue; 1454 1455 /* 1456 * Scan zones. 1457 */ 1458 while (z) { 1459 /* 1460 * Shift all RChunks to the end of the LChunks list. This is 1461 * an O(1) operation. 1462 * 1463 * Then free the zone if possible. 1464 */ 1465 clean_zone_rchunks(z); 1466 z = check_zone_free(slgd, z); 1467 } 1468 } 1469 crit_exit(); 1470 } 1471 1472 #if defined(INVARIANTS) 1473 1474 /* 1475 * Helper routines for sanity checks 1476 */ 1477 static void 1478 chunk_mark_allocated(SLZone *z, void *chunk) 1479 { 1480 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1481 uint32_t *bitptr; 1482 1483 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1484 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1485 ("memory chunk %p bit index %d is illegal", chunk, bitdex)); 1486 bitptr = &z->z_Bitmap[bitdex >> 5]; 1487 bitdex &= 31; 1488 KASSERT((*bitptr & (1 << bitdex)) == 0, 1489 ("memory chunk %p is already allocated!", chunk)); 1490 *bitptr |= 1 << bitdex; 1491 } 1492 1493 static void 1494 chunk_mark_free(SLZone *z, void *chunk) 1495 { 1496 int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize; 1497 uint32_t *bitptr; 1498 1499 KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0); 1500 KASSERT(bitdex >= 0 && bitdex < z->z_NMax, 1501 ("memory chunk %p bit index %d is illegal!", chunk, bitdex)); 1502 bitptr = &z->z_Bitmap[bitdex >> 5]; 1503 bitdex &= 31; 1504 KASSERT((*bitptr & (1 << bitdex)) != 0, 1505 ("memory chunk %p is already free!", chunk)); 1506 *bitptr &= ~(1 << bitdex); 1507 } 1508 1509 #endif 1510 1511 /* 1512 * kmem_slab_alloc() 1513 * 1514 * Directly allocate and wire kernel memory in PAGE_SIZE chunks with the 1515 * specified alignment. M_* flags are expected in the flags field. 1516 * 1517 * Alignment must be a multiple of PAGE_SIZE. 1518 * 1519 * NOTE! XXX For the moment we use vm_map_entry_reserve/release(), 1520 * but when we move zalloc() over to use this function as its backend 1521 * we will have to switch to kreserve/krelease and call reserve(0) 1522 * after the new space is made available. 1523 * 1524 * Interrupt code which has preempted other code is not allowed to 1525 * use PQ_CACHE pages. However, if an interrupt thread is run 1526 * non-preemptively or blocks and then runs non-preemptively, then 1527 * it is free to use PQ_CACHE pages. <--- may not apply any longer XXX 1528 */ 1529 static void * 1530 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags) 1531 { 1532 vm_size_t i; 1533 vm_offset_t addr; 1534 int count, vmflags, base_vmflags; 1535 vm_page_t mbase = NULL; 1536 vm_page_t m; 1537 thread_t td; 1538 1539 size = round_page(size); 1540 addr = vm_map_min(&kernel_map); 1541 1542 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1543 crit_enter(); 1544 vm_map_lock(&kernel_map); 1545 if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) { 1546 vm_map_unlock(&kernel_map); 1547 if ((flags & M_NULLOK) == 0) 1548 panic("kmem_slab_alloc(): kernel_map ran out of space!"); 1549 vm_map_entry_release(count); 1550 crit_exit(); 1551 return(NULL); 1552 } 1553 1554 /* 1555 * kernel_object maps 1:1 to kernel_map. 1556 */ 1557 vm_object_hold(&kernel_object); 1558 vm_object_reference_locked(&kernel_object); 1559 vm_map_insert(&kernel_map, &count, 1560 &kernel_object, NULL, 1561 addr, NULL, 1562 addr, addr + size, 1563 VM_MAPTYPE_NORMAL, 1564 VM_SUBSYS_KMALLOC, 1565 VM_PROT_ALL, VM_PROT_ALL, 0); 1566 vm_object_drop(&kernel_object); 1567 vm_map_set_wired_quick(&kernel_map, addr, size, &count); 1568 vm_map_unlock(&kernel_map); 1569 1570 td = curthread; 1571 1572 base_vmflags = 0; 1573 if (flags & M_ZERO) 1574 base_vmflags |= VM_ALLOC_ZERO; 1575 if (flags & M_USE_RESERVE) 1576 base_vmflags |= VM_ALLOC_SYSTEM; 1577 if (flags & M_USE_INTERRUPT_RESERVE) 1578 base_vmflags |= VM_ALLOC_INTERRUPT; 1579 if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) { 1580 panic("kmem_slab_alloc: bad flags %08x (%p)", 1581 flags, ((int **)&size)[-1]); 1582 } 1583 1584 /* 1585 * Allocate the pages. Do not map them yet. VM_ALLOC_NORMAL can only 1586 * be set if we are not preempting. 1587 * 1588 * VM_ALLOC_SYSTEM is automatically set if we are preempting and 1589 * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is 1590 * implied in this case), though I'm not sure if we really need to 1591 * do that. 1592 */ 1593 vmflags = base_vmflags; 1594 if (flags & M_WAITOK) { 1595 if (td->td_preempted) 1596 vmflags |= VM_ALLOC_SYSTEM; 1597 else 1598 vmflags |= VM_ALLOC_NORMAL; 1599 } 1600 1601 vm_object_hold(&kernel_object); 1602 for (i = 0; i < size; i += PAGE_SIZE) { 1603 m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags); 1604 if (i == 0) 1605 mbase = m; 1606 1607 /* 1608 * If the allocation failed we either return NULL or we retry. 1609 * 1610 * If M_WAITOK is specified we wait for more memory and retry. 1611 * If M_WAITOK is specified from a preemption we yield instead of 1612 * wait. Livelock will not occur because the interrupt thread 1613 * will not be preempting anyone the second time around after the 1614 * yield. 1615 */ 1616 if (m == NULL) { 1617 if (flags & M_WAITOK) { 1618 if (td->td_preempted) { 1619 lwkt_switch(); 1620 } else { 1621 vm_wait(0); 1622 } 1623 i -= PAGE_SIZE; /* retry */ 1624 continue; 1625 } 1626 break; 1627 } 1628 } 1629 1630 /* 1631 * Check and deal with an allocation failure 1632 */ 1633 if (i != size) { 1634 while (i != 0) { 1635 i -= PAGE_SIZE; 1636 m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i)); 1637 /* page should already be busy */ 1638 vm_page_free(m); 1639 } 1640 vm_map_lock(&kernel_map); 1641 vm_map_delete(&kernel_map, addr, addr + size, &count); 1642 vm_map_unlock(&kernel_map); 1643 vm_object_drop(&kernel_object); 1644 1645 vm_map_entry_release(count); 1646 crit_exit(); 1647 return(NULL); 1648 } 1649 1650 /* 1651 * Success! 1652 * 1653 * NOTE: The VM pages are still busied. mbase points to the first one 1654 * but we have to iterate via vm_page_next() 1655 */ 1656 vm_object_drop(&kernel_object); 1657 crit_exit(); 1658 1659 /* 1660 * Enter the pages into the pmap and deal with M_ZERO. 1661 */ 1662 m = mbase; 1663 i = 0; 1664 1665 while (i < size) { 1666 /* 1667 * page should already be busy 1668 */ 1669 m->valid = VM_PAGE_BITS_ALL; 1670 vm_page_wire(m); 1671 pmap_enter(&kernel_pmap, addr + i, m, 1672 VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL); 1673 if (flags & M_ZERO) 1674 pagezero((char *)addr + i); 1675 KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED)); 1676 vm_page_flag_set(m, PG_REFERENCED); 1677 vm_page_wakeup(m); 1678 1679 i += PAGE_SIZE; 1680 vm_object_hold(&kernel_object); 1681 m = vm_page_next(m); 1682 vm_object_drop(&kernel_object); 1683 } 1684 smp_invltlb(); 1685 vm_map_entry_release(count); 1686 atomic_add_long(&SlabsAllocated, 1); 1687 return((void *)addr); 1688 } 1689 1690 /* 1691 * kmem_slab_free() 1692 */ 1693 static void 1694 kmem_slab_free(void *ptr, vm_size_t size) 1695 { 1696 crit_enter(); 1697 vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size); 1698 atomic_add_long(&SlabsFreed, 1); 1699 crit_exit(); 1700 } 1701