xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 225cb38fefe493d6b322d9e7699d9987ec2c56e5)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * This module implements a slab allocator drop-in replacement for the
38  * kernel malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and fragmentation/overhead losses are limited
43  * to a fixed worst-case amount.
44  *
45  * The downside of this slab implementation is in the chunk size
46  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
47  * In a kernel implementation all this memory will be physical so
48  * the zone size is adjusted downward on machines with less physical
49  * memory.  The upside is that overhead is bounded... this is the *worst*
50  * case overhead.
51  *
52  * Slab management is done on a per-cpu basis and no locking or mutexes
53  * are required, only a critical section.  When one cpu frees memory
54  * belonging to another cpu's slab manager an asynchronous IPI message
55  * will be queued to execute the operation.   In addition, both the
56  * high level slab allocator and the low level zone allocator optimize
57  * M_ZERO requests, and the slab allocator does not have to pre initialize
58  * the linked list of chunks.
59  *
60  * XXX Balancing is needed between cpus.  Balance will be handled through
61  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
62  *
63  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64  * the new zone should be restricted to M_USE_RESERVE requests only.
65  *
66  *	Alloc Size	Chunking        Number of zones
67  *	0-127		8		16
68  *	128-255		16		8
69  *	256-511		32		8
70  *	512-1023	64		8
71  *	1024-2047	128		8
72  *	2048-4095	256		8
73  *	4096-8191	512		8
74  *	8192-16383	1024		8
75  *	16384-32767	2048		8
76  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
77  *
78  *	Allocations >= ZoneLimit go directly to kmem.
79  *	(n * PAGE_SIZE, n > 2) allocations go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *			API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96 
97 #include "opt_vm.h"
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 #include <sys/malloc.h>
111 
112 #include <vm/vm.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_kern.h>
115 #include <vm/vm_extern.h>
116 #include <vm/vm_object.h>
117 #include <vm/pmap.h>
118 #include <vm/vm_map.h>
119 #include <vm/vm_page.h>
120 #include <vm/vm_pageout.h>
121 
122 #include <machine/cpu.h>
123 
124 #include <sys/thread2.h>
125 #include <vm/vm_page2.h>
126 
127 #if (__VM_CACHELINE_SIZE == 32)
128 #define CAN_CACHEALIGN(sz)	((sz) >= 256)
129 #elif (__VM_CACHELINE_SIZE == 64)
130 #define CAN_CACHEALIGN(sz)	((sz) >= 512)
131 #elif (__VM_CACHELINE_SIZE == 128)
132 #define CAN_CACHEALIGN(sz)	((sz) >= 1024)
133 #else
134 #error "unsupported cacheline size"
135 #endif
136 
137 #define btokup(z)	(&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
138 
139 #define MEMORY_STRING	"ptr=%p type=%p size=%lu flags=%04x"
140 #define MEMORY_ARGS	void *ptr, void *type, unsigned long size, int flags
141 
142 #if !defined(KTR_MEMORY)
143 #define KTR_MEMORY	KTR_ALL
144 #endif
145 KTR_INFO_MASTER(memory);
146 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
147 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
148 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
149 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
150 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
151 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
152 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
153 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
154 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
155 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
156 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
157 
158 #define logmemory(name, ptr, type, size, flags)				\
159 	KTR_LOG(memory_ ## name, ptr, type, size, flags)
160 #define logmemory_quick(name)						\
161 	KTR_LOG(memory_ ## name)
162 
163 /*
164  * Fixed globals (not per-cpu)
165  */
166 static int ZoneSize;
167 static int ZoneLimit;
168 static int ZonePageCount;
169 static uintptr_t ZoneMask;
170 static int ZoneBigAlloc;		/* in KB */
171 static int ZoneGenAlloc;		/* in KB */
172 struct malloc_type *kmemstatistics;	/* exported to vmstat */
173 #ifdef INVARIANTS
174 static int32_t weirdary[16];
175 #endif
176 
177 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
178 static void kmem_slab_free(void *ptr, vm_size_t bytes);
179 
180 #if defined(INVARIANTS)
181 static void chunk_mark_allocated(SLZone *z, void *chunk);
182 static void chunk_mark_free(SLZone *z, void *chunk);
183 #else
184 #define chunk_mark_allocated(z, chunk)
185 #define chunk_mark_free(z, chunk)
186 #endif
187 
188 /*
189  * Misc constants.  Note that allocations that are exact multiples of
190  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
191  */
192 #define ZONE_RELS_THRESH	32		/* threshold number of zones */
193 
194 #ifdef INVARIANTS
195 /*
196  * The WEIRD_ADDR is used as known text to copy into free objects to
197  * try to create deterministic failure cases if the data is accessed after
198  * free.
199  */
200 #define WEIRD_ADDR      0xdeadc0de
201 #endif
202 #define ZERO_LENGTH_PTR	((void *)-8)
203 
204 /*
205  * Misc global malloc buckets
206  */
207 
208 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
209 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
210 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
211 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
212 
213 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
214 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
215 
216 /*
217  * Initialize the slab memory allocator.  We have to choose a zone size based
218  * on available physical memory.  We choose a zone side which is approximately
219  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
220  * 128K.  The zone size is limited to the bounds set in slaballoc.h
221  * (typically 32K min, 128K max).
222  */
223 static void kmeminit(void *dummy);
224 
225 char *ZeroPage;
226 
227 SYSINIT(kmem, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
228 
229 #ifdef INVARIANTS
230 /*
231  * If enabled any memory allocated without M_ZERO is initialized to -1.
232  */
233 static int  use_malloc_pattern;
234 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
235     &use_malloc_pattern, 0,
236     "Initialize memory to -1 if M_ZERO not specified");
237 #endif
238 
239 static int ZoneRelsThresh = ZONE_RELS_THRESH;
240 SYSCTL_INT(_kern, OID_AUTO, zone_big_alloc, CTLFLAG_RD, &ZoneBigAlloc, 0, "");
241 SYSCTL_INT(_kern, OID_AUTO, zone_gen_alloc, CTLFLAG_RD, &ZoneGenAlloc, 0, "");
242 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
243 static long SlabsAllocated;
244 static long SlabsFreed;
245 SYSCTL_LONG(_kern, OID_AUTO, slabs_allocated, CTLFLAG_RD,
246 	    &SlabsAllocated, 0, "");
247 SYSCTL_LONG(_kern, OID_AUTO, slabs_freed, CTLFLAG_RD,
248 	    &SlabsFreed, 0, "");
249 static int SlabFreeToTail;
250 SYSCTL_INT(_kern, OID_AUTO, slab_freetotail, CTLFLAG_RW,
251 	    &SlabFreeToTail, 0, "");
252 
253 static struct spinlock kmemstat_spin =
254 			SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
255 
256 /*
257  * Returns the kernel memory size limit for the purposes of initializing
258  * various subsystem caches.  The smaller of available memory and the KVM
259  * memory space is returned.
260  *
261  * The size in megabytes is returned.
262  */
263 size_t
264 kmem_lim_size(void)
265 {
266     size_t limsize;
267 
268     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
269     if (limsize > KvaSize)
270 	limsize = KvaSize;
271     return (limsize / (1024 * 1024));
272 }
273 
274 static void
275 kmeminit(void *dummy)
276 {
277     size_t limsize;
278     int usesize;
279 #ifdef INVARIANTS
280     int i;
281 #endif
282 
283     limsize = kmem_lim_size();
284     usesize = (int)(limsize * 1024);	/* convert to KB */
285 
286     /*
287      * If the machine has a large KVM space and more than 8G of ram,
288      * double the zone release threshold to reduce SMP invalidations.
289      * If more than 16G of ram, do it again.
290      *
291      * The BIOS eats a little ram so add some slop.  We want 8G worth of
292      * memory sticks to trigger the first adjustment.
293      */
294     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
295 	    if (limsize >= 7 * 1024)
296 		    ZoneRelsThresh *= 2;
297 	    if (limsize >= 15 * 1024)
298 		    ZoneRelsThresh *= 2;
299     }
300 
301     /*
302      * Calculate the zone size.  This typically calculates to
303      * ZALLOC_MAX_ZONE_SIZE
304      */
305     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
306     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
307 	ZoneSize <<= 1;
308     ZoneLimit = ZoneSize / 4;
309     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
310 	ZoneLimit = ZALLOC_ZONE_LIMIT;
311     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
312     ZonePageCount = ZoneSize / PAGE_SIZE;
313 
314 #ifdef INVARIANTS
315     for (i = 0; i < NELEM(weirdary); ++i)
316 	weirdary[i] = WEIRD_ADDR;
317 #endif
318 
319     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
320 
321     if (bootverbose)
322 	kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
323 }
324 
325 /*
326  * (low level) Initialize slab-related elements in the globaldata structure.
327  *
328  * Occurs after kmeminit().
329  */
330 void
331 slab_gdinit(globaldata_t gd)
332 {
333 	SLGlobalData *slgd;
334 	int i;
335 
336 	slgd = &gd->gd_slab;
337 	for (i = 0; i < NZONES; ++i)
338 		TAILQ_INIT(&slgd->ZoneAry[i]);
339 	TAILQ_INIT(&slgd->FreeZones);
340 	TAILQ_INIT(&slgd->FreeOvZones);
341 }
342 
343 /*
344  * Initialize a malloc type tracking structure.
345  */
346 void
347 malloc_init(void *data)
348 {
349     struct malloc_type *type = data;
350     struct kmalloc_use *use;
351     size_t limsize;
352 
353     if (type->ks_magic != M_MAGIC)
354 	panic("malloc type lacks magic");
355 
356     if (type->ks_limit != 0)
357 	return;
358 
359     if (vmstats.v_page_count == 0)
360 	panic("malloc_init not allowed before vm init");
361 
362     limsize = kmem_lim_size() * (1024 * 1024);
363     type->ks_limit = limsize / 10;
364 
365     if (ncpus == 1)
366 	use = &type->ks_use0;
367     else
368 	use = kmalloc(ncpus * sizeof(*use), M_TEMP, M_WAITOK | M_ZERO);
369 
370     spin_lock(&kmemstat_spin);
371     type->ks_next = kmemstatistics;
372     type->ks_use = use;
373     kmemstatistics = type;
374     spin_unlock(&kmemstat_spin);
375 }
376 
377 void
378 malloc_uninit(void *data)
379 {
380     struct malloc_type *type = data;
381     struct malloc_type *t;
382 #ifdef INVARIANTS
383     int i;
384     long ttl;
385 #endif
386 
387     if (type->ks_magic != M_MAGIC)
388 	panic("malloc type lacks magic");
389 
390     if (vmstats.v_page_count == 0)
391 	panic("malloc_uninit not allowed before vm init");
392 
393     if (type->ks_limit == 0)
394 	panic("malloc_uninit on uninitialized type");
395 
396     /* Make sure that all pending kfree()s are finished. */
397     lwkt_synchronize_ipiqs("muninit");
398 
399 #ifdef INVARIANTS
400     /*
401      * memuse is only correct in aggregation.  Due to memory being allocated
402      * on one cpu and freed on another individual array entries may be
403      * negative or positive (canceling each other out).
404      */
405     for (i = ttl = 0; i < ncpus; ++i)
406 	ttl += type->ks_use[i].memuse;
407     if (ttl) {
408 	kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
409 	    ttl, type->ks_shortdesc, i);
410     }
411 #endif
412     spin_lock(&kmemstat_spin);
413     if (type == kmemstatistics) {
414 	kmemstatistics = type->ks_next;
415     } else {
416 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
417 	    if (t->ks_next == type) {
418 		t->ks_next = type->ks_next;
419 		break;
420 	    }
421 	}
422     }
423     type->ks_next = NULL;
424     type->ks_limit = 0;
425     spin_unlock(&kmemstat_spin);
426 
427     if (type->ks_use != &type->ks_use0) {
428 	kfree(type->ks_use, M_TEMP);
429 	type->ks_use = NULL;
430     }
431 }
432 
433 /*
434  * Reinitialize all installed malloc regions after ncpus has been
435  * determined.  type->ks_use0 is initially set to &type->ks_use0,
436  * this function will dynamically allocate it as appropriate for ncpus.
437  */
438 void
439 malloc_reinit_ncpus(void)
440 {
441     struct malloc_type *t;
442     struct kmalloc_use *use;
443 
444     /*
445      * If only one cpu we can leave ks_use set to ks_use0
446      */
447     if (ncpus <= 1)
448 	return;
449 
450     /*
451      * Expand ks_use for all kmalloc blocks
452      */
453     for (t = kmemstatistics; t; t = t->ks_next) {
454 	KKASSERT(t->ks_use == &t->ks_use0);
455 	t->ks_use = kmalloc(sizeof(*use) * ncpus, M_TEMP, M_WAITOK|M_ZERO);
456 	t->ks_use[0] = t->ks_use0;
457     }
458 }
459 
460 /*
461  * Increase the kmalloc pool limit for the specified pool.  No changes
462  * are the made if the pool would shrink.
463  */
464 void
465 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
466 {
467     KKASSERT(type->ks_limit != 0);
468     if (bytes == 0)
469 	bytes = KvaSize;
470     if (type->ks_limit < bytes)
471 	type->ks_limit = bytes;
472 }
473 
474 void
475 kmalloc_set_unlimited(struct malloc_type *type)
476 {
477     type->ks_limit = kmem_lim_size() * (1024 * 1024);
478 }
479 
480 /*
481  * Dynamically create a malloc pool.  This function is a NOP if *typep is
482  * already non-NULL.
483  */
484 void
485 kmalloc_create(struct malloc_type **typep, const char *descr)
486 {
487 	struct malloc_type *type;
488 
489 	if (*typep == NULL) {
490 		type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
491 		type->ks_magic = M_MAGIC;
492 		type->ks_shortdesc = descr;
493 		malloc_init(type);
494 		*typep = type;
495 	}
496 }
497 
498 /*
499  * Destroy a dynamically created malloc pool.  This function is a NOP if
500  * the pool has already been destroyed.
501  */
502 void
503 kmalloc_destroy(struct malloc_type **typep)
504 {
505 	if (*typep != NULL) {
506 		malloc_uninit(*typep);
507 		kfree(*typep, M_TEMP);
508 		*typep = NULL;
509 	}
510 }
511 
512 /*
513  * Calculate the zone index for the allocation request size and set the
514  * allocation request size to that particular zone's chunk size.
515  */
516 static __inline int
517 zoneindex(unsigned long *bytes, unsigned long *align)
518 {
519     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
520 
521     if (n < 128) {
522 	*bytes = n = (n + 7) & ~7;
523 	*align = 8;
524 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
525     }
526     if (n < 256) {
527 	*bytes = n = (n + 15) & ~15;
528 	*align = 16;
529 	return(n / 16 + 7);
530     }
531     if (n < 8192) {
532 	if (n < 512) {
533 	    *bytes = n = (n + 31) & ~31;
534 	    *align = 32;
535 	    return(n / 32 + 15);
536 	}
537 	if (n < 1024) {
538 	    *bytes = n = (n + 63) & ~63;
539 	    *align = 64;
540 	    return(n / 64 + 23);
541 	}
542 	if (n < 2048) {
543 	    *bytes = n = (n + 127) & ~127;
544 	    *align = 128;
545 	    return(n / 128 + 31);
546 	}
547 	if (n < 4096) {
548 	    *bytes = n = (n + 255) & ~255;
549 	    *align = 256;
550 	    return(n / 256 + 39);
551 	}
552 	*bytes = n = (n + 511) & ~511;
553 	*align = 512;
554 	return(n / 512 + 47);
555     }
556 #if ZALLOC_ZONE_LIMIT > 8192
557     if (n < 16384) {
558 	*bytes = n = (n + 1023) & ~1023;
559 	*align = 1024;
560 	return(n / 1024 + 55);
561     }
562 #endif
563 #if ZALLOC_ZONE_LIMIT > 16384
564     if (n < 32768) {
565 	*bytes = n = (n + 2047) & ~2047;
566 	*align = 2048;
567 	return(n / 2048 + 63);
568     }
569 #endif
570     panic("Unexpected byte count %d", n);
571     return(0);
572 }
573 
574 static __inline void
575 clean_zone_rchunks(SLZone *z)
576 {
577     SLChunk *bchunk;
578 
579     while ((bchunk = z->z_RChunks) != NULL) {
580 	cpu_ccfence();
581 	if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
582 	    *z->z_LChunksp = bchunk;
583 	    while (bchunk) {
584 		chunk_mark_free(z, bchunk);
585 		z->z_LChunksp = &bchunk->c_Next;
586 		bchunk = bchunk->c_Next;
587 		++z->z_NFree;
588 	    }
589 	    break;
590 	}
591 	/* retry */
592     }
593 }
594 
595 /*
596  * If the zone becomes totally free and is not the only zone listed for a
597  * chunk size we move it to the FreeZones list.  We always leave at least
598  * one zone per chunk size listed, even if it is freeable.
599  *
600  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
601  * otherwise MP races can result in our free_remote code accessing a
602  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
603  * so one has to test both z_NFree and z_RCount.
604  *
605  * Since this code can be called from an IPI callback, do *NOT* try to mess
606  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
607  */
608 static __inline SLZone *
609 check_zone_free(SLGlobalData *slgd, SLZone *z)
610 {
611     SLZone *znext;
612 
613     znext = TAILQ_NEXT(z, z_Entry);
614     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
615 	(TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
616 	int *kup;
617 
618 	TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
619 
620 	z->z_Magic = -1;
621 	TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
622 	++slgd->NFreeZones;
623 	kup = btokup(z);
624 	*kup = 0;
625     }
626     return znext;
627 }
628 
629 #ifdef SLAB_DEBUG
630 /*
631  * Used to debug memory corruption issues.  Record up to (typically 32)
632  * allocation sources for this zone (for a particular chunk size).
633  */
634 
635 static void
636 slab_record_source(SLZone *z, const char *file, int line)
637 {
638     int i;
639     int b = line & (SLAB_DEBUG_ENTRIES - 1);
640 
641     i = b;
642     do {
643 	if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
644 		return;
645 	if (z->z_Sources[i].file == NULL)
646 		break;
647 	i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
648     } while (i != b);
649     z->z_Sources[i].file = file;
650     z->z_Sources[i].line = line;
651 }
652 
653 #endif
654 
655 static __inline unsigned long
656 powerof2_size(unsigned long size)
657 {
658 	int i;
659 
660 	if (size == 0 || powerof2(size))
661 		return size;
662 
663 	i = flsl(size);
664 	return (1UL << i);
665 }
666 
667 /*
668  * kmalloc()	(SLAB ALLOCATOR)
669  *
670  *	Allocate memory via the slab allocator.  If the request is too large,
671  *	or if it page-aligned beyond a certain size, we fall back to the
672  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
673  *	&SlabMisc if you don't care.
674  *
675  *	M_RNOWAIT	- don't block.
676  *	M_NULLOK	- return NULL instead of blocking.
677  *	M_ZERO		- zero the returned memory.
678  *	M_USE_RESERVE	- allow greater drawdown of the free list
679  *	M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
680  *	M_POWEROF2	- roundup size to the nearest power of 2
681  *
682  * MPSAFE
683  */
684 
685 /* don't let kmalloc macro mess up function declaration */
686 #undef kmalloc
687 
688 #ifdef SLAB_DEBUG
689 void *
690 kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
691 	      const char *file, int line)
692 #else
693 void *
694 kmalloc(unsigned long size, struct malloc_type *type, int flags)
695 #endif
696 {
697     SLZone *z;
698     SLChunk *chunk;
699     SLGlobalData *slgd;
700     struct globaldata *gd;
701     unsigned long align;
702     int zi;
703 #ifdef INVARIANTS
704     int i;
705 #endif
706 
707     logmemory_quick(malloc_beg);
708     gd = mycpu;
709     slgd = &gd->gd_slab;
710 
711     /*
712      * XXX silly to have this in the critical path.
713      */
714     KKASSERT(type->ks_limit != 0);
715     ++type->ks_use[gd->gd_cpuid].calls;
716 
717     /*
718      * Flagged for cache-alignment
719      */
720     if (flags & M_CACHEALIGN) {
721 	if (size < __VM_CACHELINE_SIZE)
722 		size = __VM_CACHELINE_SIZE;
723 	else if (!CAN_CACHEALIGN(size))
724 		flags |= M_POWEROF2;
725     }
726 
727     /*
728      * Flagged to force nearest power-of-2 (higher or same)
729      */
730     if (flags & M_POWEROF2)
731 	size = powerof2_size(size);
732 
733     /*
734      * Handle the case where the limit is reached.  Panic if we can't return
735      * NULL.  The original malloc code looped, but this tended to
736      * simply deadlock the computer.
737      *
738      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
739      * to determine if a more complete limit check should be done.  The
740      * actual memory use is tracked via ks_use[cpu].memuse.
741      */
742     while (type->ks_loosememuse >= type->ks_limit) {
743 	int i;
744 	long ttl;
745 
746 	for (i = ttl = 0; i < ncpus; ++i)
747 	    ttl += type->ks_use[i].memuse;
748 	type->ks_loosememuse = ttl;	/* not MP synchronized */
749 	if ((ssize_t)ttl < 0)		/* deal with occassional race */
750 		ttl = 0;
751 	if (ttl >= type->ks_limit) {
752 	    if (flags & M_NULLOK) {
753 		logmemory(malloc_end, NULL, type, size, flags);
754 		return(NULL);
755 	    }
756 	    panic("%s: malloc limit exceeded", type->ks_shortdesc);
757 	}
758     }
759 
760     /*
761      * Handle the degenerate size == 0 case.  Yes, this does happen.
762      * Return a special pointer.  This is to maintain compatibility with
763      * the original malloc implementation.  Certain devices, such as the
764      * adaptec driver, not only allocate 0 bytes, they check for NULL and
765      * also realloc() later on.  Joy.
766      */
767     if (size == 0) {
768 	logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
769 	return(ZERO_LENGTH_PTR);
770     }
771 
772     /*
773      * Handle hysteresis from prior frees here in malloc().  We cannot
774      * safely manipulate the kernel_map in free() due to free() possibly
775      * being called via an IPI message or from sensitive interrupt code.
776      *
777      * NOTE: ku_pagecnt must be cleared before we free the slab or we
778      *	     might race another cpu allocating the kva and setting
779      *	     ku_pagecnt.
780      */
781     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
782 	crit_enter();
783 	if (slgd->NFreeZones > ZoneRelsThresh) {	/* crit sect race */
784 	    int *kup;
785 
786 	    z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
787 	    KKASSERT(z != NULL);
788 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
789 	    --slgd->NFreeZones;
790 	    kup = btokup(z);
791 	    *kup = 0;
792 	    kmem_slab_free(z, ZoneSize);	/* may block */
793 	    atomic_add_int(&ZoneGenAlloc, -ZoneSize / 1024);
794 	}
795 	crit_exit();
796     }
797 
798     /*
799      * XXX handle oversized frees that were queued from kfree().
800      */
801     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
802 	crit_enter();
803 	if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
804 	    vm_size_t tsize;
805 
806 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
807 	    TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
808 	    tsize = z->z_ChunkSize;
809 	    kmem_slab_free(z, tsize);	/* may block */
810 	    atomic_add_int(&ZoneBigAlloc, -(int)tsize / 1024);
811 	}
812 	crit_exit();
813     }
814 
815     /*
816      * Handle large allocations directly.  There should not be very many of
817      * these so performance is not a big issue.
818      *
819      * The backend allocator is pretty nasty on a SMP system.   Use the
820      * slab allocator for one and two page-sized chunks even though we lose
821      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
822      */
823     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
824 	int *kup;
825 
826 	size = round_page(size);
827 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
828 	if (chunk == NULL) {
829 	    logmemory(malloc_end, NULL, type, size, flags);
830 	    return(NULL);
831 	}
832 	atomic_add_int(&ZoneBigAlloc, (int)size / 1024);
833 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
834 	flags |= M_PASSIVE_ZERO;
835 	kup = btokup(chunk);
836 	*kup = size / PAGE_SIZE;
837 	crit_enter();
838 	goto done;
839     }
840 
841     /*
842      * Attempt to allocate out of an existing zone.  First try the free list,
843      * then allocate out of unallocated space.  If we find a good zone move
844      * it to the head of the list so later allocations find it quickly
845      * (we might have thousands of zones in the list).
846      *
847      * Note: zoneindex() will panic of size is too large.
848      */
849     zi = zoneindex(&size, &align);
850     KKASSERT(zi < NZONES);
851     crit_enter();
852 
853     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
854 	/*
855 	 * Locate a chunk - we have to have at least one.  If this is the
856 	 * last chunk go ahead and do the work to retrieve chunks freed
857 	 * from remote cpus, and if the zone is still empty move it off
858 	 * the ZoneAry.
859 	 */
860 	if (--z->z_NFree <= 0) {
861 	    KKASSERT(z->z_NFree == 0);
862 
863 	    /*
864 	     * WARNING! This code competes with other cpus.  It is ok
865 	     * for us to not drain RChunks here but we might as well, and
866 	     * it is ok if more accumulate after we're done.
867 	     *
868 	     * Set RSignal before pulling rchunks off, indicating that we
869 	     * will be moving ourselves off of the ZoneAry.  Remote ends will
870 	     * read RSignal before putting rchunks on thus interlocking
871 	     * their IPI signaling.
872 	     */
873 	    if (z->z_RChunks == NULL)
874 		atomic_swap_int(&z->z_RSignal, 1);
875 
876 	    clean_zone_rchunks(z);
877 
878 	    /*
879 	     * Remove from the zone list if no free chunks remain.
880 	     * Clear RSignal
881 	     */
882 	    if (z->z_NFree == 0) {
883 		TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
884 	    } else {
885 		z->z_RSignal = 0;
886 	    }
887 	}
888 
889 	/*
890 	 * Fast path, we have chunks available in z_LChunks.
891 	 */
892 	chunk = z->z_LChunks;
893 	if (chunk) {
894 		chunk_mark_allocated(z, chunk);
895 		z->z_LChunks = chunk->c_Next;
896 		if (z->z_LChunks == NULL)
897 			z->z_LChunksp = &z->z_LChunks;
898 #ifdef SLAB_DEBUG
899 		slab_record_source(z, file, line);
900 #endif
901 		goto done;
902 	}
903 
904 	/*
905 	 * No chunks are available in LChunks, the free chunk MUST be
906 	 * in the never-before-used memory area, controlled by UIndex.
907 	 *
908 	 * The consequences are very serious if our zone got corrupted so
909 	 * we use an explicit panic rather than a KASSERT.
910 	 */
911 	if (z->z_UIndex + 1 != z->z_NMax)
912 	    ++z->z_UIndex;
913 	else
914 	    z->z_UIndex = 0;
915 
916 	if (z->z_UIndex == z->z_UEndIndex)
917 	    panic("slaballoc: corrupted zone");
918 
919 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
920 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
921 	    flags &= ~M_ZERO;
922 	    flags |= M_PASSIVE_ZERO;
923 	}
924 	chunk_mark_allocated(z, chunk);
925 #ifdef SLAB_DEBUG
926 	slab_record_source(z, file, line);
927 #endif
928 	goto done;
929     }
930 
931     /*
932      * If all zones are exhausted we need to allocate a new zone for this
933      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
934      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
935      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
936      * we do not pre-zero it because we do not want to mess up the L1 cache.
937      *
938      * At least one subsystem, the tty code (see CROUND) expects power-of-2
939      * allocations to be power-of-2 aligned.  We maintain compatibility by
940      * adjusting the base offset below.
941      */
942     {
943 	int off;
944 	int *kup;
945 
946 	if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
947 	    TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
948 	    --slgd->NFreeZones;
949 	    bzero(z, sizeof(SLZone));
950 	    z->z_Flags |= SLZF_UNOTZEROD;
951 	} else {
952 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
953 	    if (z == NULL)
954 		goto fail;
955 	    atomic_add_int(&ZoneGenAlloc, ZoneSize / 1024);
956 	}
957 
958 	/*
959 	 * How big is the base structure?
960 	 */
961 #if defined(INVARIANTS)
962 	/*
963 	 * Make room for z_Bitmap.  An exact calculation is somewhat more
964 	 * complicated so don't make an exact calculation.
965 	 */
966 	off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
967 	bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
968 #else
969 	off = sizeof(SLZone);
970 #endif
971 
972 	/*
973 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
974 	 * Otherwise properly align the data according to the chunk size.
975 	 */
976 	if (powerof2(size))
977 	    align = size;
978 	off = roundup2(off, align);
979 
980 	z->z_Magic = ZALLOC_SLAB_MAGIC;
981 	z->z_ZoneIndex = zi;
982 	z->z_NMax = (ZoneSize - off) / size;
983 	z->z_NFree = z->z_NMax - 1;
984 	z->z_BasePtr = (char *)z + off;
985 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
986 	z->z_ChunkSize = size;
987 	z->z_CpuGd = gd;
988 	z->z_Cpu = gd->gd_cpuid;
989 	z->z_LChunksp = &z->z_LChunks;
990 #ifdef SLAB_DEBUG
991 	bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
992 	bzero(z->z_Sources, sizeof(z->z_Sources));
993 #endif
994 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
995 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
996 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
997 	    flags &= ~M_ZERO;	/* already zero'd */
998 	    flags |= M_PASSIVE_ZERO;
999 	}
1000 	kup = btokup(z);
1001 	*kup = -(z->z_Cpu + 1);	/* -1 to -(N+1) */
1002 	chunk_mark_allocated(z, chunk);
1003 #ifdef SLAB_DEBUG
1004 	slab_record_source(z, file, line);
1005 #endif
1006 
1007 	/*
1008 	 * Slide the base index for initial allocations out of the next
1009 	 * zone we create so we do not over-weight the lower part of the
1010 	 * cpu memory caches.
1011 	 */
1012 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1013 				& (ZALLOC_MAX_ZONE_SIZE - 1);
1014     }
1015 
1016 done:
1017     ++type->ks_use[gd->gd_cpuid].inuse;
1018     type->ks_use[gd->gd_cpuid].memuse += size;
1019     type->ks_use[gd->gd_cpuid].loosememuse += size;
1020     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
1021 	/* not MP synchronized */
1022 	type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
1023 	type->ks_use[gd->gd_cpuid].loosememuse = 0;
1024     }
1025     crit_exit();
1026 
1027     if (flags & M_ZERO)
1028 	bzero(chunk, size);
1029 #ifdef INVARIANTS
1030     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
1031 	if (use_malloc_pattern) {
1032 	    for (i = 0; i < size; i += sizeof(int)) {
1033 		*(int *)((char *)chunk + i) = -1;
1034 	    }
1035 	}
1036 	chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
1037     }
1038 #endif
1039     logmemory(malloc_end, chunk, type, size, flags);
1040     return(chunk);
1041 fail:
1042     crit_exit();
1043     logmemory(malloc_end, NULL, type, size, flags);
1044     return(NULL);
1045 }
1046 
1047 /*
1048  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
1049  *
1050  * Generally speaking this routine is not called very often and we do
1051  * not attempt to optimize it beyond reusing the same pointer if the
1052  * new size fits within the chunking of the old pointer's zone.
1053  */
1054 #ifdef SLAB_DEBUG
1055 void *
1056 krealloc_debug(void *ptr, unsigned long size,
1057 	       struct malloc_type *type, int flags,
1058 	       const char *file, int line)
1059 #else
1060 void *
1061 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1062 #endif
1063 {
1064     unsigned long osize;
1065     unsigned long align;
1066     SLZone *z;
1067     void *nptr;
1068     int *kup;
1069 
1070     KKASSERT((flags & M_ZERO) == 0);	/* not supported */
1071 
1072     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1073 	return(kmalloc_debug(size, type, flags, file, line));
1074     if (size == 0) {
1075 	kfree(ptr, type);
1076 	return(NULL);
1077     }
1078 
1079     /*
1080      * Handle oversized allocations.  XXX we really should require that a
1081      * size be passed to free() instead of this nonsense.
1082      */
1083     kup = btokup(ptr);
1084     if (*kup > 0) {
1085 	osize = *kup << PAGE_SHIFT;
1086 	if (osize == round_page(size))
1087 	    return(ptr);
1088 	if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1089 	    return(NULL);
1090 	bcopy(ptr, nptr, min(size, osize));
1091 	kfree(ptr, type);
1092 	return(nptr);
1093     }
1094 
1095     /*
1096      * Get the original allocation's zone.  If the new request winds up
1097      * using the same chunk size we do not have to do anything.
1098      */
1099     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1100     kup = btokup(z);
1101     KKASSERT(*kup < 0);
1102     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1103 
1104     /*
1105      * Allocate memory for the new request size.  Note that zoneindex has
1106      * already adjusted the request size to the appropriate chunk size, which
1107      * should optimize our bcopy().  Then copy and return the new pointer.
1108      *
1109      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1110      * necessary align the result.
1111      *
1112      * We can only zoneindex (to align size to the chunk size) if the new
1113      * size is not too large.
1114      */
1115     if (size < ZoneLimit) {
1116 	zoneindex(&size, &align);
1117 	if (z->z_ChunkSize == size)
1118 	    return(ptr);
1119     }
1120     if ((nptr = kmalloc_debug(size, type, flags, file, line)) == NULL)
1121 	return(NULL);
1122     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1123     kfree(ptr, type);
1124     return(nptr);
1125 }
1126 
1127 /*
1128  * Return the kmalloc limit for this type, in bytes.
1129  */
1130 long
1131 kmalloc_limit(struct malloc_type *type)
1132 {
1133     KKASSERT(type->ks_limit != 0);
1134     return(type->ks_limit);
1135 }
1136 
1137 /*
1138  * Allocate a copy of the specified string.
1139  *
1140  * (MP SAFE) (MAY BLOCK)
1141  */
1142 #ifdef SLAB_DEBUG
1143 char *
1144 kstrdup_debug(const char *str, struct malloc_type *type,
1145 	      const char *file, int line)
1146 #else
1147 char *
1148 kstrdup(const char *str, struct malloc_type *type)
1149 #endif
1150 {
1151     int zlen;	/* length inclusive of terminating NUL */
1152     char *nstr;
1153 
1154     if (str == NULL)
1155 	return(NULL);
1156     zlen = strlen(str) + 1;
1157     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1158     bcopy(str, nstr, zlen);
1159     return(nstr);
1160 }
1161 
1162 #ifdef SLAB_DEBUG
1163 char *
1164 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1165 	      const char *file, int line)
1166 #else
1167 char *
1168 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1169 #endif
1170 {
1171     int zlen;	/* length inclusive of terminating NUL */
1172     char *nstr;
1173 
1174     if (str == NULL)
1175 	return(NULL);
1176     zlen = strnlen(str, maxlen) + 1;
1177     nstr = kmalloc_debug(zlen, type, M_WAITOK, file, line);
1178     bcopy(str, nstr, zlen);
1179     nstr[zlen - 1] = '\0';
1180     return(nstr);
1181 }
1182 
1183 /*
1184  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1185  * we own.  RCount will be bumped so the memory should be good, but validate
1186  * that it really is.
1187  */
1188 static void
1189 kfree_remote(void *ptr)
1190 {
1191     SLGlobalData *slgd;
1192     SLZone *z;
1193     int nfree;
1194     int *kup;
1195 
1196     slgd = &mycpu->gd_slab;
1197     z = ptr;
1198     kup = btokup(z);
1199     KKASSERT(*kup == -((int)mycpuid + 1));
1200     KKASSERT(z->z_RCount > 0);
1201     atomic_subtract_int(&z->z_RCount, 1);
1202 
1203     logmemory(free_rem_beg, z, NULL, 0L, 0);
1204     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1205     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1206     nfree = z->z_NFree;
1207 
1208     /*
1209      * Indicate that we will no longer be off of the ZoneAry by
1210      * clearing RSignal.
1211      */
1212     if (z->z_RChunks)
1213 	z->z_RSignal = 0;
1214 
1215     /*
1216      * Atomically extract the bchunks list and then process it back
1217      * into the lchunks list.  We want to append our bchunks to the
1218      * lchunks list and not prepend since we likely do not have
1219      * cache mastership of the related data (not that it helps since
1220      * we are using c_Next).
1221      */
1222     clean_zone_rchunks(z);
1223     if (z->z_NFree && nfree == 0) {
1224 	TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1225     }
1226 
1227     check_zone_free(slgd, z);
1228     logmemory(free_rem_end, z, NULL, 0L, 0);
1229 }
1230 
1231 /*
1232  * free (SLAB ALLOCATOR)
1233  *
1234  * Free a memory block previously allocated by malloc.
1235  *
1236  * Note: We do not attempt to update ks_loosememuse as MP races could
1237  * prevent us from checking memory limits in malloc.   YYY we may
1238  * consider updating ks_cpu.loosememuse.
1239  *
1240  * MPSAFE
1241  */
1242 void
1243 kfree(void *ptr, struct malloc_type *type)
1244 {
1245     SLZone *z;
1246     SLChunk *chunk;
1247     SLGlobalData *slgd;
1248     struct globaldata *gd;
1249     int *kup;
1250     unsigned long size;
1251     SLChunk *bchunk;
1252     int rsignal;
1253 
1254     logmemory_quick(free_beg);
1255     gd = mycpu;
1256     slgd = &gd->gd_slab;
1257 
1258     if (ptr == NULL)
1259 	panic("trying to free NULL pointer");
1260 
1261     /*
1262      * Handle special 0-byte allocations
1263      */
1264     if (ptr == ZERO_LENGTH_PTR) {
1265 	logmemory(free_zero, ptr, type, -1UL, 0);
1266 	logmemory_quick(free_end);
1267 	return;
1268     }
1269 
1270     /*
1271      * Panic on bad malloc type
1272      */
1273     if (type->ks_magic != M_MAGIC)
1274 	panic("free: malloc type lacks magic");
1275 
1276     /*
1277      * Handle oversized allocations.  XXX we really should require that a
1278      * size be passed to free() instead of this nonsense.
1279      *
1280      * This code is never called via an ipi.
1281      */
1282     kup = btokup(ptr);
1283     if (*kup > 0) {
1284 	size = *kup << PAGE_SHIFT;
1285 	*kup = 0;
1286 #ifdef INVARIANTS
1287 	KKASSERT(sizeof(weirdary) <= size);
1288 	bcopy(weirdary, ptr, sizeof(weirdary));
1289 #endif
1290 	/*
1291 	 * NOTE: For oversized allocations we do not record the
1292 	 *	     originating cpu.  It gets freed on the cpu calling
1293 	 *	     kfree().  The statistics are in aggregate.
1294 	 *
1295 	 * note: XXX we have still inherited the interrupts-can't-block
1296 	 * assumption.  An interrupt thread does not bump
1297 	 * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1298 	 * primarily until we can fix softupdate's assumptions about free().
1299 	 */
1300 	crit_enter();
1301 	--type->ks_use[gd->gd_cpuid].inuse;
1302 	type->ks_use[gd->gd_cpuid].memuse -= size;
1303 	if (mycpu->gd_intr_nesting_level ||
1304 	    (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1305 	    logmemory(free_ovsz_delayed, ptr, type, size, 0);
1306 	    z = (SLZone *)ptr;
1307 	    z->z_Magic = ZALLOC_OVSZ_MAGIC;
1308 	    z->z_ChunkSize = size;
1309 
1310 	    TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1311 	    crit_exit();
1312 	} else {
1313 	    crit_exit();
1314 	    logmemory(free_ovsz, ptr, type, size, 0);
1315 	    kmem_slab_free(ptr, size);	/* may block */
1316 	    atomic_add_int(&ZoneBigAlloc, -(int)size / 1024);
1317 	}
1318 	logmemory_quick(free_end);
1319 	return;
1320     }
1321 
1322     /*
1323      * Zone case.  Figure out the zone based on the fact that it is
1324      * ZoneSize aligned.
1325      */
1326     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1327     kup = btokup(z);
1328     KKASSERT(*kup < 0);
1329     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1330 
1331     /*
1332      * If we do not own the zone then use atomic ops to free to the
1333      * remote cpu linked list and notify the target zone using a
1334      * passive message.
1335      *
1336      * The target zone cannot be deallocated while we own a chunk of it,
1337      * so the zone header's storage is stable until the very moment
1338      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1339      *
1340      * (no critical section needed)
1341      */
1342     if (z->z_CpuGd != gd) {
1343 	/*
1344 	 * Making these adjustments now allow us to avoid passing (type)
1345 	 * to the remote cpu.  Note that inuse/memuse is being
1346 	 * adjusted on OUR cpu, not the zone cpu, but it should all still
1347 	 * sum up properly and cancel out.
1348 	 */
1349 	crit_enter();
1350 	--type->ks_use[gd->gd_cpuid].inuse;
1351 	type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1352 	crit_exit();
1353 
1354 	/*
1355 	 * WARNING! This code competes with other cpus.  Once we
1356 	 *	    successfully link the chunk to RChunks the remote
1357 	 *	    cpu can rip z's storage out from under us.
1358 	 *
1359 	 *	    Bumping RCount prevents z's storage from getting
1360 	 *	    ripped out.
1361 	 */
1362 	rsignal = z->z_RSignal;
1363 	cpu_lfence();
1364 	if (rsignal)
1365 		atomic_add_int(&z->z_RCount, 1);
1366 
1367 	chunk = ptr;
1368 	for (;;) {
1369 	    bchunk = z->z_RChunks;
1370 	    cpu_ccfence();
1371 	    chunk->c_Next = bchunk;
1372 	    cpu_sfence();
1373 
1374 	    if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1375 		break;
1376 	}
1377 
1378 	/*
1379 	 * We have to signal the remote cpu if our actions will cause
1380 	 * the remote zone to be placed back on ZoneAry so it can
1381 	 * move the zone back on.
1382 	 *
1383 	 * We only need to deal with NULL->non-NULL RChunk transitions
1384 	 * and only if z_RSignal is set.  We interlock by reading rsignal
1385 	 * before adding our chunk to RChunks.  This should result in
1386 	 * virtually no IPI traffic.
1387 	 *
1388 	 * We can use a passive IPI to reduce overhead even further.
1389 	 */
1390 	if (bchunk == NULL && rsignal) {
1391 	    logmemory(free_request, ptr, type,
1392 		      (unsigned long)z->z_ChunkSize, 0);
1393 	    lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1394 	    /* z can get ripped out from under us from this point on */
1395 	} else if (rsignal) {
1396 	    atomic_subtract_int(&z->z_RCount, 1);
1397 	    /* z can get ripped out from under us from this point on */
1398 	}
1399 	logmemory_quick(free_end);
1400 	return;
1401     }
1402 
1403     /*
1404      * kfree locally
1405      */
1406     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1407 
1408     crit_enter();
1409     chunk = ptr;
1410     chunk_mark_free(z, chunk);
1411 
1412     /*
1413      * Put weird data into the memory to detect modifications after freeing,
1414      * illegal pointer use after freeing (we should fault on the odd address),
1415      * and so forth.  XXX needs more work, see the old malloc code.
1416      */
1417 #ifdef INVARIANTS
1418     if (z->z_ChunkSize < sizeof(weirdary))
1419 	bcopy(weirdary, chunk, z->z_ChunkSize);
1420     else
1421 	bcopy(weirdary, chunk, sizeof(weirdary));
1422 #endif
1423 
1424     /*
1425      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1426      * to the front of the linked list so it is more likely to be
1427      * reallocated, since it is already in our L1 cache.
1428      */
1429 #ifdef INVARIANTS
1430     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1431 	panic("BADFREE %p", chunk);
1432 #endif
1433     chunk->c_Next = z->z_LChunks;
1434     z->z_LChunks = chunk;
1435     if (chunk->c_Next == NULL)
1436 	z->z_LChunksp = &chunk->c_Next;
1437 
1438 #ifdef INVARIANTS
1439     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1440 	panic("BADFREE2");
1441 #endif
1442 
1443     /*
1444      * Bump the number of free chunks.  If it becomes non-zero the zone
1445      * must be added back onto the appropriate list.  A fully allocated
1446      * zone that sees its first free is considered 'mature' and is placed
1447      * at the head, giving the system time to potentially free the remaining
1448      * entries even while other allocations are going on and making the zone
1449      * freeable.
1450      */
1451     if (z->z_NFree++ == 0) {
1452 	if (SlabFreeToTail)
1453 	    TAILQ_INSERT_TAIL(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1454 	else
1455 	    TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1456     }
1457 
1458     --type->ks_use[gd->gd_cpuid].inuse;
1459     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1460 
1461     check_zone_free(slgd, z);
1462     logmemory_quick(free_end);
1463     crit_exit();
1464 }
1465 
1466 /*
1467  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1468  * free and can be moved to the free list if not moved by other means.
1469  *
1470  * Called once every 10 seconds on all cpus.
1471  */
1472 void
1473 slab_cleanup(void)
1474 {
1475     SLGlobalData *slgd = &mycpu->gd_slab;
1476     SLZone *z;
1477     int i;
1478 
1479     crit_enter();
1480     for (i = 0; i < NZONES; ++i) {
1481 	if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1482 		continue;
1483 
1484 	/*
1485 	 * Scan zones.
1486 	 */
1487 	while (z) {
1488 	    /*
1489 	     * Shift all RChunks to the end of the LChunks list.  This is
1490 	     * an O(1) operation.
1491 	     *
1492 	     * Then free the zone if possible.
1493 	     */
1494 	    clean_zone_rchunks(z);
1495 	    z = check_zone_free(slgd, z);
1496 	}
1497     }
1498     crit_exit();
1499 }
1500 
1501 #if defined(INVARIANTS)
1502 
1503 /*
1504  * Helper routines for sanity checks
1505  */
1506 static void
1507 chunk_mark_allocated(SLZone *z, void *chunk)
1508 {
1509     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1510     uint32_t *bitptr;
1511 
1512     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1513     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1514 	    ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1515     bitptr = &z->z_Bitmap[bitdex >> 5];
1516     bitdex &= 31;
1517     KASSERT((*bitptr & (1 << bitdex)) == 0,
1518 	    ("memory chunk %p is already allocated!", chunk));
1519     *bitptr |= 1 << bitdex;
1520 }
1521 
1522 static void
1523 chunk_mark_free(SLZone *z, void *chunk)
1524 {
1525     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1526     uint32_t *bitptr;
1527 
1528     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1529     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1530 	    ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1531     bitptr = &z->z_Bitmap[bitdex >> 5];
1532     bitdex &= 31;
1533     KASSERT((*bitptr & (1 << bitdex)) != 0,
1534 	    ("memory chunk %p is already free!", chunk));
1535     *bitptr &= ~(1 << bitdex);
1536 }
1537 
1538 #endif
1539 
1540 /*
1541  * kmem_slab_alloc()
1542  *
1543  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1544  *	specified alignment.  M_* flags are expected in the flags field.
1545  *
1546  *	Alignment must be a multiple of PAGE_SIZE.
1547  *
1548  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1549  *	but when we move zalloc() over to use this function as its backend
1550  *	we will have to switch to kreserve/krelease and call reserve(0)
1551  *	after the new space is made available.
1552  *
1553  *	Interrupt code which has preempted other code is not allowed to
1554  *	use PQ_CACHE pages.  However, if an interrupt thread is run
1555  *	non-preemptively or blocks and then runs non-preemptively, then
1556  *	it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1557  */
1558 static void *
1559 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1560 {
1561     vm_size_t i;
1562     vm_offset_t addr;
1563     int count, vmflags, base_vmflags;
1564     vm_page_t mbase = NULL;
1565     vm_page_t m;
1566     thread_t td;
1567 
1568     size = round_page(size);
1569     addr = vm_map_min(&kernel_map);
1570 
1571     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1572     crit_enter();
1573     vm_map_lock(&kernel_map);
1574     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1575 	vm_map_unlock(&kernel_map);
1576 	if ((flags & M_NULLOK) == 0)
1577 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
1578 	vm_map_entry_release(count);
1579 	crit_exit();
1580 	return(NULL);
1581     }
1582 
1583     /*
1584      * kernel_object maps 1:1 to kernel_map.
1585      */
1586     vm_object_hold(&kernel_object);
1587     vm_object_reference_locked(&kernel_object);
1588     vm_map_insert(&kernel_map, &count,
1589 		  &kernel_object, NULL,
1590 		  addr, NULL,
1591 		  addr, addr + size,
1592 		  VM_MAPTYPE_NORMAL,
1593 		  VM_SUBSYS_KMALLOC,
1594 		  VM_PROT_ALL, VM_PROT_ALL, 0);
1595     vm_object_drop(&kernel_object);
1596     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1597     vm_map_unlock(&kernel_map);
1598 
1599     td = curthread;
1600 
1601     base_vmflags = 0;
1602     if (flags & M_ZERO)
1603         base_vmflags |= VM_ALLOC_ZERO;
1604     if (flags & M_USE_RESERVE)
1605 	base_vmflags |= VM_ALLOC_SYSTEM;
1606     if (flags & M_USE_INTERRUPT_RESERVE)
1607         base_vmflags |= VM_ALLOC_INTERRUPT;
1608     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1609 	panic("kmem_slab_alloc: bad flags %08x (%p)",
1610 	      flags, ((int **)&size)[-1]);
1611     }
1612 
1613     /*
1614      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1615      * be set if we are not preempting.
1616      *
1617      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1618      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1619      * implied in this case), though I'm not sure if we really need to
1620      * do that.
1621      */
1622     vmflags = base_vmflags;
1623     if (flags & M_WAITOK) {
1624 	if (td->td_preempted)
1625 	    vmflags |= VM_ALLOC_SYSTEM;
1626 	else
1627 	    vmflags |= VM_ALLOC_NORMAL;
1628     }
1629 
1630     vm_object_hold(&kernel_object);
1631     for (i = 0; i < size; i += PAGE_SIZE) {
1632 	m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1633 	if (i == 0)
1634 		mbase = m;
1635 
1636 	/*
1637 	 * If the allocation failed we either return NULL or we retry.
1638 	 *
1639 	 * If M_WAITOK is specified we wait for more memory and retry.
1640 	 * If M_WAITOK is specified from a preemption we yield instead of
1641 	 * wait.  Livelock will not occur because the interrupt thread
1642 	 * will not be preempting anyone the second time around after the
1643 	 * yield.
1644 	 */
1645 	if (m == NULL) {
1646 	    if (flags & M_WAITOK) {
1647 		if (td->td_preempted) {
1648 		    lwkt_switch();
1649 		} else {
1650 		    vm_wait(0);
1651 		}
1652 		i -= PAGE_SIZE;	/* retry */
1653 		continue;
1654 	    }
1655 	    break;
1656 	}
1657     }
1658 
1659     /*
1660      * Check and deal with an allocation failure
1661      */
1662     if (i != size) {
1663 	while (i != 0) {
1664 	    i -= PAGE_SIZE;
1665 	    m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1666 	    /* page should already be busy */
1667 	    vm_page_free(m);
1668 	}
1669 	vm_map_lock(&kernel_map);
1670 	vm_map_delete(&kernel_map, addr, addr + size, &count);
1671 	vm_map_unlock(&kernel_map);
1672 	vm_object_drop(&kernel_object);
1673 
1674 	vm_map_entry_release(count);
1675 	crit_exit();
1676 	return(NULL);
1677     }
1678 
1679     /*
1680      * Success!
1681      *
1682      * NOTE: The VM pages are still busied.  mbase points to the first one
1683      *	     but we have to iterate via vm_page_next()
1684      */
1685     vm_object_drop(&kernel_object);
1686     crit_exit();
1687 
1688     /*
1689      * Enter the pages into the pmap and deal with M_ZERO.
1690      */
1691     m = mbase;
1692     i = 0;
1693 
1694     while (i < size) {
1695 	/*
1696 	 * page should already be busy
1697 	 */
1698 	m->valid = VM_PAGE_BITS_ALL;
1699 	vm_page_wire(m);
1700 	pmap_enter(&kernel_pmap, addr + i, m,
1701 		   VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1702 	if (flags & M_ZERO)
1703 		pagezero((char *)addr + i);
1704 	KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1705 	vm_page_flag_set(m, PG_REFERENCED);
1706 	vm_page_wakeup(m);
1707 
1708 	i += PAGE_SIZE;
1709 	vm_object_hold(&kernel_object);
1710 	m = vm_page_next(m);
1711 	vm_object_drop(&kernel_object);
1712     }
1713     smp_invltlb();
1714     vm_map_entry_release(count);
1715     atomic_add_long(&SlabsAllocated, 1);
1716     return((void *)addr);
1717 }
1718 
1719 /*
1720  * kmem_slab_free()
1721  */
1722 static void
1723 kmem_slab_free(void *ptr, vm_size_t size)
1724 {
1725     crit_enter();
1726     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1727     atomic_add_long(&SlabsFreed, 1);
1728     crit_exit();
1729 }
1730