xref: /dflybsd-src/sys/kern/kern_slaballoc.c (revision 1d1731fae96c314d336747b085a6efb43942991a)
1 /*
2  * KERN_SLABALLOC.C	- Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $DragonFly: src/sys/kern/kern_slaballoc.c,v 1.8 2003/10/02 22:29:15 dillon Exp $
29  *
30  * This module implements a slab allocator drop-in replacement for the
31  * kernel malloc().
32  *
33  * A slab allocator reserves a ZONE for each chunk size, then lays the
34  * chunks out in an array within the zone.  Allocation and deallocation
35  * is nearly instantanious, and fragmentation/overhead losses are limited
36  * to a fixed worst-case amount.
37  *
38  * The downside of this slab implementation is in the chunk size
39  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
40  * In a kernel implementation all this memory will be physical so
41  * the zone size is adjusted downward on machines with less physical
42  * memory.  The upside is that overhead is bounded... this is the *worst*
43  * case overhead.
44  *
45  * Slab management is done on a per-cpu basis and no locking or mutexes
46  * are required, only a critical section.  When one cpu frees memory
47  * belonging to another cpu's slab manager an asynchronous IPI message
48  * will be queued to execute the operation.   In addition, both the
49  * high level slab allocator and the low level zone allocator optimize
50  * M_ZERO requests, and the slab allocator does not have to pre initialize
51  * the linked list of chunks.
52  *
53  * XXX Balancing is needed between cpus.  Balance will be handled through
54  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
55  *
56  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
57  * the new zone should be restricted to M_USE_RESERVE requests only.
58  *
59  *	Alloc Size	Chunking        Number of zones
60  *	0-127		8		16
61  *	128-255		16		8
62  *	256-511		32		8
63  *	512-1023	64		8
64  *	1024-2047	128		8
65  *	2048-4095	256		8
66  *	4096-8191	512		8
67  *	8192-16383	1024		8
68  *	16384-32767	2048		8
69  *	(if PAGE_SIZE is 4K the maximum zone allocation is 16383)
70  *
71  *	Allocations >= ZoneLimit go directly to kmem.
72  *
73  *			API REQUIREMENTS AND SIDE EFFECTS
74  *
75  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
76  *    have remained compatible with the following API requirements:
77  *
78  *    + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
79  *    + all power-of-2 sized allocations are power-of-2 aligned (twe)
80  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
81  *    + ability to allocate arbitrarily large chunks of memory
82  */
83 
84 #include "opt_vm.h"
85 
86 #if !defined(NO_SLAB_ALLOCATOR)
87 
88 #if defined(USE_KMEM_MAP)
89 #error "If you define USE_KMEM_MAP you must also define NO_SLAB_ALLOCATOR"
90 #endif
91 
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/kernel.h>
95 #include <sys/slaballoc.h>
96 #include <sys/mbuf.h>
97 #include <sys/vmmeter.h>
98 #include <sys/lock.h>
99 #include <sys/thread.h>
100 #include <sys/globaldata.h>
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/vm_kern.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_object.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_pageout.h>
111 
112 #include <machine/cpu.h>
113 
114 #include <sys/thread2.h>
115 
116 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
117 
118 /*
119  * Fixed globals (not per-cpu)
120  */
121 static int ZoneSize;
122 static int ZoneLimit;
123 static int ZonePageCount;
124 static int ZonePageLimit;
125 static int ZoneMask;
126 static struct malloc_type *kmemstatistics;
127 static struct kmemusage *kmemusage;
128 static int32_t weirdary[16];
129 
130 static void *kmem_slab_alloc(vm_size_t bytes, vm_offset_t align, int flags);
131 static void kmem_slab_free(void *ptr, vm_size_t bytes);
132 
133 /*
134  * Misc constants.  Note that allocations that are exact multiples of
135  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
136  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
137  */
138 #define MIN_CHUNK_SIZE		8		/* in bytes */
139 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
140 #define ZONE_RELS_THRESH	2		/* threshold number of zones */
141 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
142 
143 /*
144  * The WEIRD_ADDR is used as known text to copy into free objects to
145  * try to create deterministic failure cases if the data is accessed after
146  * free.
147  */
148 #define WEIRD_ADDR      0xdeadc0de
149 #define MAX_COPY        sizeof(weirdary)
150 #define ZERO_LENGTH_PTR	((void *)-8)
151 
152 /*
153  * Misc global malloc buckets
154  */
155 
156 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
157 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
158 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
159 
160 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
161 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
162 
163 /*
164  * Initialize the slab memory allocator.  We have to choose a zone size based
165  * on available physical memory.  We choose a zone side which is approximately
166  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
167  * 128K.  The zone size is limited to the bounds set in slaballoc.h
168  * (typically 32K min, 128K max).
169  */
170 static void kmeminit(void *dummy);
171 
172 SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL)
173 
174 static void
175 kmeminit(void *dummy)
176 {
177     vm_poff_t limsize;
178     int usesize;
179     int i;
180     vm_pindex_t npg;
181 
182     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
183     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
184 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
185 
186     usesize = (int)(limsize / 1024);	/* convert to KB */
187 
188     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
189     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
190 	ZoneSize <<= 1;
191     ZoneLimit = ZoneSize / 4;
192     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
193 	ZoneLimit = ZALLOC_ZONE_LIMIT;
194     ZoneMask = ZoneSize - 1;
195     ZonePageLimit = PAGE_SIZE * 4;
196     ZonePageCount = ZoneSize / PAGE_SIZE;
197 
198     npg = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE;
199     kmemusage = kmem_slab_alloc(npg * sizeof(struct kmemusage), PAGE_SIZE, M_ZERO);
200 
201     for (i = 0; i < arysize(weirdary); ++i)
202 	weirdary[i] = WEIRD_ADDR;
203 
204     if (bootverbose)
205 	printf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
206 }
207 
208 /*
209  * Initialize a malloc type tracking structure.  NOTE! counters and such
210  * need to be made per-cpu (maybe with a MAXCPU array).
211  */
212 void
213 malloc_init(void *data)
214 {
215     struct malloc_type *type = data;
216     vm_poff_t limsize;
217 
218     if (type->ks_magic != M_MAGIC)
219 	panic("malloc type lacks magic");
220 
221     if (type->ks_limit != 0)
222 	return;
223 
224     if (vmstats.v_page_count == 0)
225 	panic("malloc_init not allowed before vm init");
226 
227     limsize = (vm_poff_t)vmstats.v_page_count * PAGE_SIZE;
228     if (limsize > VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)
229 	limsize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
230     type->ks_limit = limsize / 10;
231 
232     type->ks_next = kmemstatistics;
233     kmemstatistics = type;
234 }
235 
236 void
237 malloc_uninit(void *data)
238 {
239     struct malloc_type *type = data;
240     struct malloc_type *t;
241 
242     if (type->ks_magic != M_MAGIC)
243 	panic("malloc type lacks magic");
244 
245     if (vmstats.v_page_count == 0)
246 	panic("malloc_uninit not allowed before vm init");
247 
248     if (type->ks_limit == 0)
249 	panic("malloc_uninit on uninitialized type");
250 
251 #ifdef INVARIANTS
252     if (type->ks_memuse != 0) {
253 	printf("malloc_uninit: %ld bytes of '%s' still allocated\n",
254 		type->ks_memuse, type->ks_shortdesc);
255     }
256 #endif
257     if (type == kmemstatistics) {
258 	kmemstatistics = type->ks_next;
259     } else {
260 	for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
261 	    if (t->ks_next == type) {
262 		t->ks_next = type->ks_next;
263 		break;
264 	    }
265 	}
266     }
267     type->ks_next = NULL;
268     type->ks_limit = 0;
269 }
270 
271 /*
272  * Calculate the zone index for the allocation request size and set the
273  * allocation request size to that particular zone's chunk size.
274  */
275 static __inline int
276 zoneindex(unsigned long *bytes)
277 {
278     unsigned int n = (unsigned int)*bytes;	/* unsigned for shift opt */
279     if (n < 128) {
280 	*bytes = n = (n + 7) & ~7;
281 	return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
282     }
283     if (n < 256) {
284 	*bytes = n = (n + 15) & ~15;
285 	return(n / 16 + 7);
286     }
287     if (n < 8192) {
288 	if (n < 512) {
289 	    *bytes = n = (n + 31) & ~31;
290 	    return(n / 32 + 15);
291 	}
292 	if (n < 1024) {
293 	    *bytes = n = (n + 63) & ~63;
294 	    return(n / 64 + 23);
295 	}
296 	if (n < 2048) {
297 	    *bytes = n = (n + 127) & ~127;
298 	    return(n / 128 + 31);
299 	}
300 	if (n < 4096) {
301 	    *bytes = n = (n + 255) & ~255;
302 	    return(n / 256 + 39);
303 	}
304 	*bytes = n = (n + 511) & ~511;
305 	return(n / 512 + 47);
306     }
307 #if ZALLOC_ZONE_LIMIT > 8192
308     if (n < 16384) {
309 	*bytes = n = (n + 1023) & ~1023;
310 	return(n / 1024 + 55);
311     }
312 #endif
313 #if ZALLOC_ZONE_LIMIT > 16384
314     if (n < 32768) {
315 	*bytes = n = (n + 2047) & ~2047;
316 	return(n / 2048 + 63);
317     }
318 #endif
319     panic("Unexpected byte count %d", n);
320     return(0);
321 }
322 
323 /*
324  * malloc()	(SLAB ALLOCATOR)
325  *
326  *	Allocate memory via the slab allocator.  If the request is too large,
327  *	or if it page-aligned beyond a certain size, we fall back to the
328  *	KMEM subsystem.  A SLAB tracking descriptor must be specified, use
329  *	&SlabMisc if you don't care.
330  *
331  *	M_NOWAIT	- return NULL instead of blocking.
332  *	M_ZERO		- zero the returned memory.
333  *	M_USE_RESERVE	- allocate out of the system reserve if necessary
334  */
335 void *
336 malloc(unsigned long size, struct malloc_type *type, int flags)
337 {
338     SLZone *z;
339     SLChunk *chunk;
340     SLGlobalData *slgd;
341     int zi;
342 
343     slgd = &mycpu->gd_slab;
344 
345     /*
346      * XXX silly to have this in the critical path.
347      */
348     if (type->ks_limit == 0) {
349 	crit_enter();
350 	if (type->ks_limit == 0)
351 	    malloc_init(type);
352 	crit_exit();
353     }
354     ++type->ks_calls;
355 
356     /*
357      * Handle the case where the limit is reached.  Panic if can't return
358      * NULL.  XXX the original malloc code looped, but this tended to
359      * simply deadlock the computer.
360      */
361     while (type->ks_memuse >= type->ks_limit) {
362 	if (flags & (M_NOWAIT|M_NULLOK))
363 	    return(NULL);
364 	panic("%s: malloc limit exceeded", type->ks_shortdesc);
365     }
366 
367     /*
368      * Handle the degenerate size == 0 case.  Yes, this does happen.
369      * Return a special pointer.  This is to maintain compatibility with
370      * the original malloc implementation.  Certain devices, such as the
371      * adaptec driver, not only allocate 0 bytes, they check for NULL and
372      * also realloc() later on.  Joy.
373      */
374     if (size == 0)
375 	return(ZERO_LENGTH_PTR);
376 
377     /*
378      * Handle hysteresis from prior frees here in malloc().  We cannot
379      * safely manipulate the kernel_map in free() due to free() possibly
380      * being called via an IPI message or from sensitive interrupt code.
381      */
382     while (slgd->NFreeZones > ZONE_RELS_THRESH && (flags & M_NOWAIT) == 0) {
383 	crit_enter();
384 	if (slgd->NFreeZones > ZONE_RELS_THRESH) {	/* crit sect race */
385 	    z = slgd->FreeZones;
386 	    slgd->FreeZones = z->z_Next;
387 	    --slgd->NFreeZones;
388 	    kmem_slab_free(z, ZoneSize);	/* may block */
389 	}
390 	crit_exit();
391     }
392     /*
393      * XXX handle oversized frees that were queued from free().
394      */
395     while (slgd->FreeOvZones && (flags & M_NOWAIT) == 0) {
396 	crit_enter();
397 	if ((z = slgd->FreeOvZones) != NULL) {
398 	    KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
399 	    slgd->FreeOvZones = z->z_Next;
400 	    kmem_slab_free(z, z->z_ChunkSize);	/* may block */
401 	}
402 	crit_exit();
403     }
404 
405     /*
406      * Handle large allocations directly.  There should not be very many of
407      * these so performance is not a big issue.
408      *
409      * Guarentee page alignment for allocations in multiples of PAGE_SIZE
410      */
411     if (size >= ZoneLimit || (size & PAGE_MASK) == 0) {
412 	struct kmemusage *kup;
413 
414 	size = round_page(size);
415 	chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
416 	if (chunk == NULL)
417 	    return(NULL);
418 	flags &= ~M_ZERO;	/* result already zero'd if M_ZERO was set */
419 	kup = btokup(chunk);
420 	kup->ku_pagecnt = size / PAGE_SIZE;
421 	crit_enter();
422 	goto done;
423     }
424 
425     /*
426      * Attempt to allocate out of an existing zone.  First try the free list,
427      * then allocate out of unallocated space.  If we find a good zone move
428      * it to the head of the list so later allocations find it quickly
429      * (we might have thousands of zones in the list).
430      *
431      * Note: zoneindex() will panic of size is too large.
432      */
433     zi = zoneindex(&size);
434     KKASSERT(zi < NZONES);
435     crit_enter();
436     if ((z = slgd->ZoneAry[zi]) != NULL) {
437 	KKASSERT(z->z_NFree > 0);
438 
439 	/*
440 	 * Remove us from the ZoneAry[] when we become empty
441 	 */
442 	if (--z->z_NFree == 0) {
443 	    slgd->ZoneAry[zi] = z->z_Next;
444 	    z->z_Next = NULL;
445 	}
446 
447 	/*
448 	 * Locate a chunk in a free page.  This attempts to localize
449 	 * reallocations into earlier pages without us having to sort
450 	 * the chunk list.  A chunk may still overlap a page boundary.
451 	 */
452 	while (z->z_FirstFreePg < ZonePageCount) {
453 	    if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
454 #ifdef DIAGNOSTIC
455 		/*
456 		 * Diagnostic: c_Next is not total garbage.
457 		 */
458 		KKASSERT(chunk->c_Next == NULL ||
459 			((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
460 			((intptr_t)chunk & IN_SAME_PAGE_MASK));
461 #endif
462 #ifdef INVARIANTS
463 		if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
464 			panic("chunk %p FFPG %d/%d", chunk, z->z_FirstFreePg, ZonePageCount);
465 		if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
466 			panic("chunkNEXT %p %p FFPG %d/%d", chunk, chunk->c_Next, z->z_FirstFreePg, ZonePageCount);
467 #endif
468 		z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
469 		goto done;
470 	    }
471 	    ++z->z_FirstFreePg;
472 	}
473 
474 	/*
475 	 * No chunks are available but NFree said we had some memory, so
476 	 * it must be available in the never-before-used-memory area
477 	 * governed by UIndex.  The consequences are very serious if our zone
478 	 * got corrupted so we use an explicit panic rather then a KASSERT.
479 	 */
480 	if (z->z_UIndex + 1 != z->z_NMax)
481 	    z->z_UIndex = z->z_UIndex + 1;
482 	else
483 	    z->z_UIndex = 0;
484 	if (z->z_UIndex == z->z_UEndIndex)
485 	    panic("slaballoc: corrupted zone");
486 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
487 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0)
488 	    flags &= ~M_ZERO;
489 	goto done;
490     }
491 
492     /*
493      * If all zones are exhausted we need to allocate a new zone for this
494      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
495      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
496      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
497      * we do not pre-zero it because we do not want to mess up the L1 cache.
498      *
499      * At least one subsystem, the tty code (see CROUND) expects power-of-2
500      * allocations to be power-of-2 aligned.  We maintain compatibility by
501      * adjusting the base offset below.
502      */
503     {
504 	int off;
505 
506 	if ((z = slgd->FreeZones) != NULL) {
507 	    slgd->FreeZones = z->z_Next;
508 	    --slgd->NFreeZones;
509 	    bzero(z, sizeof(SLZone));
510 	    z->z_Flags |= SLZF_UNOTZEROD;
511 	} else {
512 	    z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
513 	    if (z == NULL)
514 		goto fail;
515 	}
516 
517 	/*
518 	 * Guarentee power-of-2 alignment for power-of-2-sized chunks.
519 	 * Otherwise just 8-byte align the data.
520 	 */
521 	if ((size | (size - 1)) + 1 == (size << 1))
522 	    off = (sizeof(SLZone) + size - 1) & ~(size - 1);
523 	else
524 	    off = (sizeof(SLZone) + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
525 	z->z_Magic = ZALLOC_SLAB_MAGIC;
526 	z->z_ZoneIndex = zi;
527 	z->z_NMax = (ZoneSize - off) / size;
528 	z->z_NFree = z->z_NMax - 1;
529 	z->z_BasePtr = (char *)z + off;
530 	z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
531 	z->z_ChunkSize = size;
532 	z->z_FirstFreePg = ZonePageCount;
533 	z->z_Cpu = mycpu->gd_cpuid;
534 	chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
535 	z->z_Next = slgd->ZoneAry[zi];
536 	slgd->ZoneAry[zi] = z;
537 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0)
538 	    flags &= ~M_ZERO;	/* already zero'd */
539 
540 	/*
541 	 * Slide the base index for initial allocations out of the next
542 	 * zone we create so we do not over-weight the lower part of the
543 	 * cpu memory caches.
544 	 */
545 	slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
546 				& (ZALLOC_MAX_ZONE_SIZE - 1);
547     }
548 done:
549     crit_exit();
550     if (flags & M_ZERO)
551 	bzero(chunk, size);
552     ++type->ks_inuse;
553     type->ks_memuse += size;
554     return(chunk);
555 fail:
556     crit_exit();
557     return(NULL);
558 }
559 
560 void *
561 realloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
562 {
563     SLZone *z;
564     void *nptr;
565     unsigned long osize;
566 
567     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
568 	return(malloc(size, type, flags));
569     if (size == 0) {
570 	free(ptr, type);
571 	return(NULL);
572     }
573 
574     /*
575      * Handle oversized allocations.  XXX we really should require that a
576      * size be passed to free() instead of this nonsense.
577      */
578     {
579 	struct kmemusage *kup;
580 
581 	kup = btokup(ptr);
582 	if (kup->ku_pagecnt) {
583 	    osize = kup->ku_pagecnt << PAGE_SHIFT;
584 	    if (osize == round_page(size))
585 		return(ptr);
586 	    if ((nptr = malloc(size, type, flags)) == NULL)
587 		return(NULL);
588 	    bcopy(ptr, nptr, min(size, osize));
589 	    free(ptr, type);
590 	    return(nptr);
591 	}
592     }
593 
594     /*
595      * Get the original allocation's zone.  If the new request winds up
596      * using the same chunk size we do not have to do anything.
597      */
598     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
599     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
600 
601     zoneindex(&size);
602     if (z->z_ChunkSize == size)
603 	return(ptr);
604 
605     /*
606      * Allocate memory for the new request size.  Note that zoneindex has
607      * already adjusted the request size to the appropriate chunk size, which
608      * should optimize our bcopy().  Then copy and return the new pointer.
609      */
610     if ((nptr = malloc(size, type, flags)) == NULL)
611 	return(NULL);
612     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
613     free(ptr, type);
614     return(nptr);
615 }
616 
617 /*
618  * free()	(SLAB ALLOCATOR)
619  *
620  *	Free the specified chunk of memory.  The byte count is not strictly
621  *	required but if DIAGNOSTIC is set we use it as a sanity check.
622  */
623 static
624 void
625 free_remote(void *ptr)
626 {
627     free(ptr, *(struct malloc_type **)ptr);
628 }
629 
630 void
631 free(void *ptr, struct malloc_type *type)
632 {
633     SLZone *z;
634     SLChunk *chunk;
635     SLGlobalData *slgd;
636     int pgno;
637 
638     slgd = &mycpu->gd_slab;
639 
640     /*
641      * Handle special 0-byte allocations
642      */
643     if (ptr == ZERO_LENGTH_PTR)
644 	return;
645 
646     /*
647      * Handle oversized allocations.  XXX we really should require that a
648      * size be passed to free() instead of this nonsense.
649      */
650     {
651 	struct kmemusage *kup;
652 	unsigned long size;
653 
654 	kup = btokup(ptr);
655 	if (kup->ku_pagecnt) {
656 	    size = kup->ku_pagecnt << PAGE_SHIFT;
657 	    kup->ku_pagecnt = 0;
658 	    --type->ks_inuse;
659 	    type->ks_memuse -= size;
660 #ifdef INVARIANTS
661 	    KKASSERT(sizeof(weirdary) <= size);
662 	    bcopy(weirdary, ptr, sizeof(weirdary));
663 #endif
664 	    if (mycpu->gd_intr_nesting_level) {
665 		crit_enter();
666 		z = (SLZone *)ptr;
667 		z->z_Magic = ZALLOC_OVSZ_MAGIC;
668 		z->z_Next = slgd->FreeOvZones;
669 		z->z_ChunkSize = size;
670 		slgd->FreeOvZones = z;
671 		crit_exit();
672 	    } else {
673 		kmem_slab_free(ptr, size);	/* may block */
674 	    }
675 	    return;
676 	}
677     }
678 
679     /*
680      * Zone case.  Figure out the zone based on the fact that it is
681      * ZoneSize aligned.
682      */
683     z = (SLZone *)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
684     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
685 
686     /*
687      * If we do not own the zone then forward the request to the
688      * cpu that does.  The freeing code does not need the byte count
689      * unless DIAGNOSTIC is set.
690      */
691     if (z->z_Cpu != mycpu->gd_cpuid) {
692 	*(struct malloc_type **)ptr = type;
693 	lwkt_send_ipiq(z->z_Cpu, free_remote, ptr);
694 	return;
695     }
696 
697     if (type->ks_magic != M_MAGIC)
698 	panic("free: malloc type lacks magic");
699 
700     crit_enter();
701     pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
702     chunk = ptr;
703 
704 #ifdef DIAGNOSTIC
705     /*
706      * Diagnostic: attempt to detect a double-free (not perfect).
707      */
708     if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
709 	SLChunk *scan;
710 	for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
711 	    if (scan == chunk)
712 		panic("Double free at %p", chunk);
713 	}
714     }
715 #endif
716 
717     /*
718      * Put weird data into the memory to detect modifications after freeing,
719      * illegal pointer use after freeing (we should fault on the odd address),
720      * and so forth.  XXX needs more work, see the old malloc code.
721      */
722 #ifdef INVARIANTS
723     if (z->z_ChunkSize < sizeof(weirdary))
724 	bcopy(weirdary, chunk, z->z_ChunkSize);
725     else
726 	bcopy(weirdary, chunk, sizeof(weirdary));
727 #endif
728 
729     /*
730      * Add this free non-zero'd chunk to a linked list for reuse, adjust
731      * z_FirstFreePg.
732      */
733 #ifdef INVARIANTS
734     if ((uintptr_t)chunk < VM_MIN_KERNEL_ADDRESS)
735 	panic("BADFREE %p\n", chunk);
736 #endif
737     chunk->c_Next = z->z_PageAry[pgno];
738     z->z_PageAry[pgno] = chunk;
739 #ifdef INVARIANTS
740     if (chunk->c_Next && (uintptr_t)chunk->c_Next < VM_MIN_KERNEL_ADDRESS)
741 	panic("BADFREE2");
742 #endif
743     if (z->z_FirstFreePg > pgno)
744 	z->z_FirstFreePg = pgno;
745 
746     /*
747      * Bump the number of free chunks.  If it becomes non-zero the zone
748      * must be added back onto the appropriate list.
749      */
750     if (z->z_NFree++ == 0) {
751 	z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
752 	slgd->ZoneAry[z->z_ZoneIndex] = z;
753     }
754 
755     --type->ks_inuse;
756     type->ks_memuse -= z->z_ChunkSize;
757 
758     /*
759      * If the zone becomes totally free, and there are other zones we
760      * can allocate from, move this zone to the FreeZones list.  Since
761      * this code can be called from an IPI callback, do *NOT* try to mess
762      * with kernel_map here.  Hysteresis will be performed at malloc() time.
763      */
764     if (z->z_NFree == z->z_NMax &&
765 	(z->z_Next || slgd->ZoneAry[z->z_ZoneIndex] != z)
766     ) {
767 	SLZone **pz;
768 
769 	for (pz = &slgd->ZoneAry[z->z_ZoneIndex]; z != *pz; pz = &(*pz)->z_Next)
770 	    ;
771 	*pz = z->z_Next;
772 	z->z_Magic = -1;
773 	z->z_Next = slgd->FreeZones;
774 	slgd->FreeZones = z;
775 	++slgd->NFreeZones;
776     }
777     crit_exit();
778 }
779 
780 /*
781  * kmem_slab_alloc()
782  *
783  *	Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
784  *	specified alignment.  M_* flags are expected in the flags field.
785  *
786  *	Alignment must be a multiple of PAGE_SIZE.
787  *
788  *	NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
789  *	but when we move zalloc() over to use this function as its backend
790  *	we will have to switch to kreserve/krelease and call reserve(0)
791  *	after the new space is made available.
792  */
793 static void *
794 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
795 {
796     vm_size_t i;
797     vm_offset_t addr;
798     vm_offset_t offset;
799     int count;
800     vm_map_t map = kernel_map;
801 
802     size = round_page(size);
803     addr = vm_map_min(map);
804 
805     /*
806      * Reserve properly aligned space from kernel_map
807      */
808     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
809     crit_enter();
810     vm_map_lock(map);
811     if (vm_map_findspace(map, vm_map_min(map), size, align, &addr)) {
812 	vm_map_unlock(map);
813 	if ((flags & (M_NOWAIT|M_NULLOK)) == 0)
814 	    panic("kmem_slab_alloc(): kernel_map ran out of space!");
815 	crit_exit();
816 	vm_map_entry_release(count);
817 	return(NULL);
818     }
819     offset = addr - VM_MIN_KERNEL_ADDRESS;
820     vm_object_reference(kernel_object);
821     vm_map_insert(map, &count,
822 		    kernel_object, offset, addr, addr + size,
823 		    VM_PROT_ALL, VM_PROT_ALL, 0);
824 
825     /*
826      * Allocate the pages.  Do not mess with the PG_ZERO flag yet.
827      */
828     for (i = 0; i < size; i += PAGE_SIZE) {
829 	vm_page_t m;
830 	vm_pindex_t idx = OFF_TO_IDX(offset + i);
831 	int zero = (flags & M_ZERO) ? VM_ALLOC_ZERO : 0;
832 
833 	if ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
834 	    m = vm_page_alloc(kernel_object, idx, VM_ALLOC_INTERRUPT|zero);
835 	else
836 	    m = vm_page_alloc(kernel_object, idx, VM_ALLOC_SYSTEM|zero);
837 	if (m == NULL) {
838 	    if ((flags & M_NOWAIT) == 0) {
839 		vm_map_unlock(map);
840 		vm_wait();
841 		vm_map_lock(map);
842 		i -= PAGE_SIZE;	/* retry */
843 		continue;
844 	    }
845 	    while (i != 0) {
846 		i -= PAGE_SIZE;
847 		m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
848 		vm_page_free(m);
849 	    }
850 	    vm_map_delete(map, addr, addr + size, &count);
851 	    vm_map_unlock(map);
852 	    crit_exit();
853 	    vm_map_entry_release(count);
854 	    return(NULL);
855 	}
856     }
857 
858     /*
859      * Mark the map entry as non-pageable using a routine that allows us to
860      * populate the underlying pages.
861      */
862     vm_map_set_wired_quick(map, addr, size, &count);
863     crit_exit();
864 
865     /*
866      * Enter the pages into the pmap and deal with PG_ZERO and M_ZERO.
867      */
868     for (i = 0; i < size; i += PAGE_SIZE) {
869 	vm_page_t m;
870 
871 	m = vm_page_lookup(kernel_object, OFF_TO_IDX(offset + i));
872 	m->valid = VM_PAGE_BITS_ALL;
873 	vm_page_wire(m);
874 	vm_page_wakeup(m);
875 	pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
876 	if ((m->flags & PG_ZERO) == 0 && (flags & M_ZERO))
877 	    bzero((char *)addr + i, PAGE_SIZE);
878 	vm_page_flag_clear(m, PG_ZERO);
879 	vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
880     }
881     vm_map_unlock(map);
882     vm_map_entry_release(count);
883     return((void *)addr);
884 }
885 
886 static void
887 kmem_slab_free(void *ptr, vm_size_t size)
888 {
889     crit_enter();
890     vm_map_remove(kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
891     crit_exit();
892 }
893 
894 #endif
895