xref: /dflybsd-src/sys/kern/kern_sig.c (revision f8c7a42d831dbc6ff46a5448591fd28de34b649b)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $
40  * $DragonFly: src/sys/kern/kern_sig.c,v 1.57 2006/12/20 18:14:41 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/sysproto.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <sys/vnode.h>
52 #include <sys/event.h>
53 #include <sys/proc.h>
54 #include <sys/nlookup.h>
55 #include <sys/pioctl.h>
56 #include <sys/systm.h>
57 #include <sys/acct.h>
58 #include <sys/fcntl.h>
59 #include <sys/lock.h>
60 #include <sys/wait.h>
61 #include <sys/ktrace.h>
62 #include <sys/syslog.h>
63 #include <sys/stat.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/malloc.h>
67 #include <sys/interrupt.h>
68 #include <sys/unistd.h>
69 #include <sys/kern_syscall.h>
70 #include <sys/thread2.h>
71 
72 #include <machine/cpu.h>
73 #include <machine/smp.h>
74 
75 static int	coredump(struct proc *);
76 static char	*expand_name(const char *, uid_t, pid_t);
77 static int	killpg(int sig, int pgid, int all);
78 static int	sig_ffs(sigset_t *set);
79 static int	sigprop(int sig);
80 #ifdef SMP
81 static void	signotify_remote(void *arg);
82 #endif
83 static int	kern_sigtimedwait(sigset_t set, siginfo_t *info,
84 		    struct timespec *timeout);
85 
86 static int	filt_sigattach(struct knote *kn);
87 static void	filt_sigdetach(struct knote *kn);
88 static int	filt_signal(struct knote *kn, long hint);
89 
90 struct filterops sig_filtops =
91 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
92 
93 static int	kern_logsigexit = 1;
94 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
95     &kern_logsigexit, 0,
96     "Log processes quitting on abnormal signals to syslog(3)");
97 
98 /*
99  * Can process p, with pcred pc, send the signal sig to process q?
100  */
101 #define CANSIGNAL(q, sig) \
102 	(!p_trespass(curproc->p_ucred, (q)->p_ucred) || \
103 	((sig) == SIGCONT && (q)->p_session == curproc->p_session))
104 
105 /*
106  * Policy -- Can real uid ruid with ucred uc send a signal to process q?
107  */
108 #define CANSIGIO(ruid, uc, q) \
109 	((uc)->cr_uid == 0 || \
110 	    (ruid) == (q)->p_ucred->cr_ruid || \
111 	    (uc)->cr_uid == (q)->p_ucred->cr_ruid || \
112 	    (ruid) == (q)->p_ucred->cr_uid || \
113 	    (uc)->cr_uid == (q)->p_ucred->cr_uid)
114 
115 int sugid_coredump;
116 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
117 	&sugid_coredump, 0, "Enable coredumping set user/group ID processes");
118 
119 static int	do_coredump = 1;
120 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
121 	&do_coredump, 0, "Enable/Disable coredumps");
122 
123 /*
124  * Signal properties and actions.
125  * The array below categorizes the signals and their default actions
126  * according to the following properties:
127  */
128 #define	SA_KILL		0x01		/* terminates process by default */
129 #define	SA_CORE		0x02		/* ditto and coredumps */
130 #define	SA_STOP		0x04		/* suspend process */
131 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
132 #define	SA_IGNORE	0x10		/* ignore by default */
133 #define	SA_CONT		0x20		/* continue if suspended */
134 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
135 #define SA_CKPT         0x80            /* checkpoint process */
136 
137 
138 static int sigproptbl[NSIG] = {
139         SA_KILL,                /* SIGHUP */
140         SA_KILL,                /* SIGINT */
141         SA_KILL|SA_CORE,        /* SIGQUIT */
142         SA_KILL|SA_CORE,        /* SIGILL */
143         SA_KILL|SA_CORE,        /* SIGTRAP */
144         SA_KILL|SA_CORE,        /* SIGABRT */
145         SA_KILL|SA_CORE,        /* SIGEMT */
146         SA_KILL|SA_CORE,        /* SIGFPE */
147         SA_KILL,                /* SIGKILL */
148         SA_KILL|SA_CORE,        /* SIGBUS */
149         SA_KILL|SA_CORE,        /* SIGSEGV */
150         SA_KILL|SA_CORE,        /* SIGSYS */
151         SA_KILL,                /* SIGPIPE */
152         SA_KILL,                /* SIGALRM */
153         SA_KILL,                /* SIGTERM */
154         SA_IGNORE,              /* SIGURG */
155         SA_STOP,                /* SIGSTOP */
156         SA_STOP|SA_TTYSTOP,     /* SIGTSTP */
157         SA_IGNORE|SA_CONT,      /* SIGCONT */
158         SA_IGNORE,              /* SIGCHLD */
159         SA_STOP|SA_TTYSTOP,     /* SIGTTIN */
160         SA_STOP|SA_TTYSTOP,     /* SIGTTOU */
161         SA_IGNORE,              /* SIGIO */
162         SA_KILL,                /* SIGXCPU */
163         SA_KILL,                /* SIGXFSZ */
164         SA_KILL,                /* SIGVTALRM */
165         SA_KILL,                /* SIGPROF */
166         SA_IGNORE,              /* SIGWINCH  */
167         SA_IGNORE,              /* SIGINFO */
168         SA_KILL,                /* SIGUSR1 */
169         SA_KILL,                /* SIGUSR2 */
170 	SA_IGNORE,              /* SIGTHR */
171 	SA_CKPT,                /* SIGCKPT */
172 	SA_KILL|SA_CKPT,        /* SIGCKPTEXIT */
173 	SA_IGNORE,
174 	SA_IGNORE,
175 	SA_IGNORE,
176 	SA_IGNORE,
177 	SA_IGNORE,
178 	SA_IGNORE,
179 	SA_IGNORE,
180 	SA_IGNORE,
181 	SA_IGNORE,
182 	SA_IGNORE,
183 	SA_IGNORE,
184 	SA_IGNORE,
185 	SA_IGNORE,
186 	SA_IGNORE,
187 	SA_IGNORE,
188 	SA_IGNORE,
189 	SA_IGNORE,
190 	SA_IGNORE,
191 	SA_IGNORE,
192 	SA_IGNORE,
193 	SA_IGNORE,
194 	SA_IGNORE,
195 	SA_IGNORE,
196 	SA_IGNORE,
197 	SA_IGNORE,
198 	SA_IGNORE,
199 	SA_IGNORE,
200 	SA_IGNORE,
201 	SA_IGNORE,
202 	SA_IGNORE,
203 
204 };
205 
206 static __inline int
207 sigprop(int sig)
208 {
209 
210 	if (sig > 0 && sig < NSIG)
211 		return (sigproptbl[_SIG_IDX(sig)]);
212 	return (0);
213 }
214 
215 static __inline int
216 sig_ffs(sigset_t *set)
217 {
218 	int i;
219 
220 	for (i = 0; i < _SIG_WORDS; i++)
221 		if (set->__bits[i])
222 			return (ffs(set->__bits[i]) + (i * 32));
223 	return (0);
224 }
225 
226 int
227 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact)
228 {
229 	struct thread *td = curthread;
230 	struct proc *p = td->td_proc;
231 	struct sigacts *ps = p->p_sigacts;
232 
233 	if (sig <= 0 || sig > _SIG_MAXSIG)
234 		return (EINVAL);
235 
236 	if (oact) {
237 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
238 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
239 		oact->sa_flags = 0;
240 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
241 			oact->sa_flags |= SA_ONSTACK;
242 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
243 			oact->sa_flags |= SA_RESTART;
244 		if (SIGISMEMBER(ps->ps_sigreset, sig))
245 			oact->sa_flags |= SA_RESETHAND;
246 		if (SIGISMEMBER(ps->ps_signodefer, sig))
247 			oact->sa_flags |= SA_NODEFER;
248 		if (SIGISMEMBER(ps->ps_siginfo, sig))
249 			oact->sa_flags |= SA_SIGINFO;
250 		if (sig == SIGCHLD && p->p_procsig->ps_flag & PS_NOCLDSTOP)
251 			oact->sa_flags |= SA_NOCLDSTOP;
252 		if (sig == SIGCHLD && p->p_procsig->ps_flag & PS_NOCLDWAIT)
253 			oact->sa_flags |= SA_NOCLDWAIT;
254 	}
255 	if (act) {
256 		if ((sig == SIGKILL || sig == SIGSTOP) &&
257 		    act->sa_handler != SIG_DFL)
258 			return (EINVAL);
259 
260 		/*
261 		 * Change setting atomically.
262 		 */
263 		crit_enter();
264 
265 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
266 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
267 		if (act->sa_flags & SA_SIGINFO) {
268 			ps->ps_sigact[_SIG_IDX(sig)] =
269 			    (__sighandler_t *)act->sa_sigaction;
270 			SIGADDSET(ps->ps_siginfo, sig);
271 		} else {
272 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
273 			SIGDELSET(ps->ps_siginfo, sig);
274 		}
275 		if (!(act->sa_flags & SA_RESTART))
276 			SIGADDSET(ps->ps_sigintr, sig);
277 		else
278 			SIGDELSET(ps->ps_sigintr, sig);
279 		if (act->sa_flags & SA_ONSTACK)
280 			SIGADDSET(ps->ps_sigonstack, sig);
281 		else
282 			SIGDELSET(ps->ps_sigonstack, sig);
283 		if (act->sa_flags & SA_RESETHAND)
284 			SIGADDSET(ps->ps_sigreset, sig);
285 		else
286 			SIGDELSET(ps->ps_sigreset, sig);
287 		if (act->sa_flags & SA_NODEFER)
288 			SIGADDSET(ps->ps_signodefer, sig);
289 		else
290 			SIGDELSET(ps->ps_signodefer, sig);
291 		if (sig == SIGCHLD) {
292 			if (act->sa_flags & SA_NOCLDSTOP)
293 				p->p_procsig->ps_flag |= PS_NOCLDSTOP;
294 			else
295 				p->p_procsig->ps_flag &= ~PS_NOCLDSTOP;
296 			if (act->sa_flags & SA_NOCLDWAIT) {
297 				/*
298 				 * Paranoia: since SA_NOCLDWAIT is implemented
299 				 * by reparenting the dying child to PID 1 (and
300 				 * trust it to reap the zombie), PID 1 itself
301 				 * is forbidden to set SA_NOCLDWAIT.
302 				 */
303 				if (p->p_pid == 1)
304 					p->p_procsig->ps_flag &= ~PS_NOCLDWAIT;
305 				else
306 					p->p_procsig->ps_flag |= PS_NOCLDWAIT;
307 			} else {
308 				p->p_procsig->ps_flag &= ~PS_NOCLDWAIT;
309 			}
310 		}
311 		/*
312 		 * Set bit in p_sigignore for signals that are set to SIG_IGN,
313 		 * and for signals set to SIG_DFL where the default is to
314 		 * ignore. However, don't put SIGCONT in p_sigignore, as we
315 		 * have to restart the process.
316 		 */
317 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
318 		    (sigprop(sig) & SA_IGNORE &&
319 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
320 			/* never to be seen again */
321 			SIGDELSET(p->p_siglist, sig);
322 			if (sig != SIGCONT)
323 				/* easier in ksignal */
324 				SIGADDSET(p->p_sigignore, sig);
325 			SIGDELSET(p->p_sigcatch, sig);
326 		} else {
327 			SIGDELSET(p->p_sigignore, sig);
328 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
329 				SIGDELSET(p->p_sigcatch, sig);
330 			else
331 				SIGADDSET(p->p_sigcatch, sig);
332 		}
333 
334 		crit_exit();
335 	}
336 	return (0);
337 }
338 
339 int
340 sys_sigaction(struct sigaction_args *uap)
341 {
342 	struct sigaction act, oact;
343 	struct sigaction *actp, *oactp;
344 	int error;
345 
346 	actp = (uap->act != NULL) ? &act : NULL;
347 	oactp = (uap->oact != NULL) ? &oact : NULL;
348 	if (actp) {
349 		error = copyin(uap->act, actp, sizeof(act));
350 		if (error)
351 			return (error);
352 	}
353 	error = kern_sigaction(uap->sig, actp, oactp);
354 	if (oactp && !error) {
355 		error = copyout(oactp, uap->oact, sizeof(oact));
356 	}
357 	return (error);
358 }
359 
360 /*
361  * Initialize signal state for process 0;
362  * set to ignore signals that are ignored by default.
363  */
364 void
365 siginit(struct proc *p)
366 {
367 	int i;
368 
369 	for (i = 1; i <= NSIG; i++)
370 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
371 			SIGADDSET(p->p_sigignore, i);
372 }
373 
374 /*
375  * Reset signals for an exec of the specified process.
376  */
377 void
378 execsigs(struct proc *p)
379 {
380 	struct sigacts *ps = p->p_sigacts;
381 	int sig;
382 
383 	/*
384 	 * Reset caught signals.  Held signals remain held
385 	 * through p_sigmask (unless they were caught,
386 	 * and are now ignored by default).
387 	 */
388 	while (SIGNOTEMPTY(p->p_sigcatch)) {
389 		sig = sig_ffs(&p->p_sigcatch);
390 		SIGDELSET(p->p_sigcatch, sig);
391 		if (sigprop(sig) & SA_IGNORE) {
392 			if (sig != SIGCONT)
393 				SIGADDSET(p->p_sigignore, sig);
394 			SIGDELSET(p->p_siglist, sig);
395 		}
396 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
397 	}
398 	/*
399 	 * Reset stack state to the user stack.
400 	 * Clear set of signals caught on the signal stack.
401 	 */
402 	p->p_sigstk.ss_flags = SS_DISABLE;
403 	p->p_sigstk.ss_size = 0;
404 	p->p_sigstk.ss_sp = 0;
405 	p->p_flag &= ~P_ALTSTACK;
406 	/*
407 	 * Reset no zombies if child dies flag as Solaris does.
408 	 */
409 	p->p_procsig->ps_flag &= ~PS_NOCLDWAIT;
410 }
411 
412 /*
413  * kern_sigprocmask() - MP SAFE ONLY IF p == curproc
414  *
415  *	Manipulate signal mask.  This routine is MP SAFE *ONLY* if
416  *	p == curproc.
417  */
418 int
419 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset)
420 {
421 	struct thread *td = curthread;
422 	struct proc *p = td->td_proc;
423 	int error;
424 
425 	if (oset != NULL)
426 		*oset = p->p_sigmask;
427 
428 	error = 0;
429 	if (set != NULL) {
430 		switch (how) {
431 		case SIG_BLOCK:
432 			SIG_CANTMASK(*set);
433 			SIGSETOR(p->p_sigmask, *set);
434 			break;
435 		case SIG_UNBLOCK:
436 			SIGSETNAND(p->p_sigmask, *set);
437 			break;
438 		case SIG_SETMASK:
439 			SIG_CANTMASK(*set);
440 			p->p_sigmask = *set;
441 			break;
442 		default:
443 			error = EINVAL;
444 			break;
445 		}
446 	}
447 	return (error);
448 }
449 
450 /*
451  * sigprocmask() - MP SAFE
452  */
453 int
454 sys_sigprocmask(struct sigprocmask_args *uap)
455 {
456 	sigset_t set, oset;
457 	sigset_t *setp, *osetp;
458 	int error;
459 
460 	setp = (uap->set != NULL) ? &set : NULL;
461 	osetp = (uap->oset != NULL) ? &oset : NULL;
462 	if (setp) {
463 		error = copyin(uap->set, setp, sizeof(set));
464 		if (error)
465 			return (error);
466 	}
467 	error = kern_sigprocmask(uap->how, setp, osetp);
468 	if (osetp && !error) {
469 		error = copyout(osetp, uap->oset, sizeof(oset));
470 	}
471 	return (error);
472 }
473 
474 int
475 kern_sigpending(struct __sigset *set)
476 {
477 	struct thread *td = curthread;
478 	struct proc *p = td->td_proc;
479 
480 	*set = p->p_siglist;
481 
482 	return (0);
483 }
484 
485 int
486 sys_sigpending(struct sigpending_args *uap)
487 {
488 	sigset_t set;
489 	int error;
490 
491 	error = kern_sigpending(&set);
492 
493 	if (error == 0)
494 		error = copyout(&set, uap->set, sizeof(set));
495 	return (error);
496 }
497 
498 /*
499  * Suspend process until signal, providing mask to be set
500  * in the meantime.
501  */
502 int
503 kern_sigsuspend(struct __sigset *set)
504 {
505 	struct thread *td = curthread;
506 	struct proc *p = td->td_proc;
507 	struct sigacts *ps = p->p_sigacts;
508 
509 	/*
510 	 * When returning from sigsuspend, we want
511 	 * the old mask to be restored after the
512 	 * signal handler has finished.  Thus, we
513 	 * save it here and mark the sigacts structure
514 	 * to indicate this.
515 	 */
516 	p->p_oldsigmask = p->p_sigmask;
517 	p->p_flag |= P_OLDMASK;
518 
519 	SIG_CANTMASK(*set);
520 	p->p_sigmask = *set;
521 	while (tsleep(ps, PCATCH, "pause", 0) == 0)
522 		/* void */;
523 	/* always return EINTR rather than ERESTART... */
524 	return (EINTR);
525 }
526 
527 /*
528  * Note nonstandard calling convention: libc stub passes mask, not
529  * pointer, to save a copyin.
530  */
531 int
532 sys_sigsuspend(struct sigsuspend_args *uap)
533 {
534 	sigset_t mask;
535 	int error;
536 
537 	error = copyin(uap->sigmask, &mask, sizeof(mask));
538 	if (error)
539 		return (error);
540 
541 	error = kern_sigsuspend(&mask);
542 
543 	return (error);
544 }
545 
546 int
547 kern_sigaltstack(struct sigaltstack *ss, struct sigaltstack *oss)
548 {
549 	struct thread *td = curthread;
550 	struct proc *p = td->td_proc;
551 
552 	if ((p->p_flag & P_ALTSTACK) == 0)
553 		p->p_sigstk.ss_flags |= SS_DISABLE;
554 
555 	if (oss)
556 		*oss = p->p_sigstk;
557 
558 	if (ss) {
559 		if (ss->ss_flags & SS_DISABLE) {
560 			if (p->p_sigstk.ss_flags & SS_ONSTACK)
561 				return (EINVAL);
562 			p->p_flag &= ~P_ALTSTACK;
563 			p->p_sigstk.ss_flags = ss->ss_flags;
564 		} else {
565 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
566 				return (ENOMEM);
567 			p->p_flag |= P_ALTSTACK;
568 			p->p_sigstk = *ss;
569 		}
570 	}
571 
572 	return (0);
573 }
574 
575 int
576 sys_sigaltstack(struct sigaltstack_args *uap)
577 {
578 	stack_t ss, oss;
579 	int error;
580 
581 	if (uap->ss) {
582 		error = copyin(uap->ss, &ss, sizeof(ss));
583 		if (error)
584 			return (error);
585 	}
586 
587 	error = kern_sigaltstack(uap->ss ? &ss : NULL,
588 	    uap->oss ? &oss : NULL);
589 
590 	if (error == 0 && uap->oss)
591 		error = copyout(&oss, uap->oss, sizeof(*uap->oss));
592 	return (error);
593 }
594 
595 /*
596  * Common code for kill process group/broadcast kill.
597  * cp is calling process.
598  */
599 struct killpg_info {
600 	int nfound;
601 	int sig;
602 };
603 
604 static int killpg_all_callback(struct proc *p, void *data);
605 
606 static int
607 killpg(int sig, int pgid, int all)
608 {
609 	struct killpg_info info;
610 	struct proc *cp = curproc;
611 	struct proc *p;
612 	struct pgrp *pgrp;
613 
614 	info.nfound = 0;
615 	info.sig = sig;
616 
617 	if (all) {
618 		/*
619 		 * broadcast
620 		 */
621 		allproc_scan(killpg_all_callback, &info);
622 	} else {
623 		if (pgid == 0) {
624 			/*
625 			 * zero pgid means send to my process group.
626 			 */
627 			pgrp = cp->p_pgrp;
628 		} else {
629 			pgrp = pgfind(pgid);
630 			if (pgrp == NULL)
631 				return (ESRCH);
632 		}
633 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
634 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
635 			if (p->p_pid <= 1 ||
636 			    (p->p_flag & (P_SYSTEM | P_ZOMBIE)) ||
637 			    !CANSIGNAL(p, sig)) {
638 				continue;
639 			}
640 			++info.nfound;
641 			if (sig)
642 				ksignal(p, sig);
643 		}
644 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
645 	}
646 	return (info.nfound ? 0 : ESRCH);
647 }
648 
649 static int
650 killpg_all_callback(struct proc *p, void *data)
651 {
652 	struct killpg_info *info = data;
653 
654 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) ||
655 	    p == curproc || !CANSIGNAL(p, info->sig)) {
656 		return (0);
657 	}
658 	++info->nfound;
659 	if (info->sig)
660 		ksignal(p, info->sig);
661 	return(0);
662 }
663 
664 int
665 kern_kill(int sig, int pid)
666 {
667 	struct thread *td = curthread;
668 	struct proc *p = td->td_proc;
669 
670 	if ((u_int)sig > _SIG_MAXSIG)
671 		return (EINVAL);
672 	if (pid > 0) {
673 		/* kill single process */
674 		if ((p = pfind(pid)) == NULL)
675 			return (ESRCH);
676 		if (!CANSIGNAL(p, sig))
677 			return (EPERM);
678 		if (sig)
679 			ksignal(p, sig);
680 		return (0);
681 	}
682 	switch (pid) {
683 	case -1:		/* broadcast signal */
684 		return (killpg(sig, 0, 1));
685 	case 0:			/* signal own process group */
686 		return (killpg(sig, 0, 0));
687 	default:		/* negative explicit process group */
688 		return (killpg(sig, -pid, 0));
689 	}
690 	/* NOTREACHED */
691 }
692 
693 int
694 sys_kill(struct kill_args *uap)
695 {
696 	int error;
697 
698 	error = kern_kill(uap->signum, uap->pid);
699 
700 	return (error);
701 }
702 
703 /*
704  * Send a signal to a process group.
705  */
706 void
707 gsignal(int pgid, int sig)
708 {
709 	struct pgrp *pgrp;
710 
711 	if (pgid && (pgrp = pgfind(pgid)))
712 		pgsignal(pgrp, sig, 0);
713 }
714 
715 /*
716  * Send a signal to a process group.  If checktty is 1,
717  * limit to members which have a controlling terminal.
718  *
719  * pg_lock interlocks against a fork that might be in progress, to
720  * ensure that the new child process picks up the signal.
721  */
722 void
723 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
724 {
725 	struct proc *p;
726 
727 	if (pgrp) {
728 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
729 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
730 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
731 				ksignal(p, sig);
732 		}
733 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
734 	}
735 }
736 
737 /*
738  * Send a signal caused by a trap to the current process.
739  * If it will be caught immediately, deliver it with correct code.
740  * Otherwise, post it normally.
741  */
742 void
743 trapsignal(struct proc *p, int sig, u_long code)
744 {
745 	struct sigacts *ps = p->p_sigacts;
746 
747 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) &&
748 	    !SIGISMEMBER(p->p_sigmask, sig)) {
749 		p->p_stats->p_ru.ru_nsignals++;
750 #ifdef KTRACE
751 		if (KTRPOINT(p->p_thread, KTR_PSIG))
752 			ktrpsig(p, sig, ps->ps_sigact[_SIG_IDX(sig)],
753 				&p->p_sigmask, code);
754 #endif
755 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig,
756 						&p->p_sigmask, code);
757 		SIGSETOR(p->p_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
758 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
759 			SIGADDSET(p->p_sigmask, sig);
760 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
761 			/*
762 			 * See kern_sigaction() for origin of this code.
763 			 */
764 			SIGDELSET(p->p_sigcatch, sig);
765 			if (sig != SIGCONT &&
766 			    sigprop(sig) & SA_IGNORE)
767 				SIGADDSET(p->p_sigignore, sig);
768 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
769 		}
770 	} else {
771 		p->p_code = code;	/* XXX for core dump/debugger */
772 		p->p_sig = sig;		/* XXX to verify code */
773 		ksignal(p, sig);
774 	}
775 }
776 
777 /*
778  * Send the signal to the process.  If the signal has an action, the action
779  * is usually performed by the target process rather than the caller; we add
780  * the signal to the set of pending signals for the process.
781  *
782  * Exceptions:
783  *   o When a stop signal is sent to a sleeping process that takes the
784  *     default action, the process is stopped without awakening it.
785  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
786  *     regardless of the signal action (eg, blocked or ignored).
787  *
788  * Other ignored signals are discarded immediately.
789  */
790 void
791 ksignal(struct proc *p, int sig)
792 {
793 	struct lwp *lp = &p->p_lwp;
794 	int prop;
795 	sig_t action;
796 
797 	if (sig > _SIG_MAXSIG || sig <= 0) {
798 		printf("ksignal: signal %d\n", sig);
799 		panic("ksignal signal number");
800 	}
801 
802 	crit_enter();
803 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
804 	crit_exit();
805 
806 	prop = sigprop(sig);
807 
808 	/*
809 	 * If proc is traced, always give parent a chance;
810 	 * if signal event is tracked by procfs, give *that*
811 	 * a chance, as well.
812 	 */
813 	if ((p->p_flag & P_TRACED) || (p->p_stops & S_SIG)) {
814 		action = SIG_DFL;
815 	} else {
816 		/*
817 		 * If the signal is being ignored,
818 		 * then we forget about it immediately.
819 		 * (Note: we don't set SIGCONT in p_sigignore,
820 		 * and if it is set to SIG_IGN,
821 		 * action will be SIG_DFL here.)
822 		 */
823 		if (SIGISMEMBER(p->p_sigignore, sig) || (p->p_flag & P_WEXIT))
824 			return;
825 		if (SIGISMEMBER(p->p_sigmask, sig))
826 			action = SIG_HOLD;
827 		else if (SIGISMEMBER(p->p_sigcatch, sig))
828 			action = SIG_CATCH;
829 		else
830 			action = SIG_DFL;
831 	}
832 
833 	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
834 	    (p->p_flag & P_TRACED) == 0) {
835 		p->p_nice = NZERO;
836 	}
837 
838 	/*
839 	 * If continuing, clear any pending STOP signals.
840 	 */
841 	if (prop & SA_CONT)
842 		SIG_STOPSIGMASK(p->p_siglist);
843 
844 	if (prop & SA_STOP) {
845 		/*
846 		 * If sending a tty stop signal to a member of an orphaned
847 		 * process group, discard the signal here if the action
848 		 * is default; don't stop the process below if sleeping,
849 		 * and don't clear any pending SIGCONT.
850 		 */
851 		if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 &&
852 		    action == SIG_DFL) {
853 		        return;
854 		}
855 		SIG_CONTSIGMASK(p->p_siglist);
856 	}
857 	SIGADDSET(p->p_siglist, sig);
858 
859 	/*
860 	 * Defer further processing for signals which are held,
861 	 * except that stopped processes must be continued by SIGCONT.
862 	 */
863 	if (action == SIG_HOLD) {
864 		if ((prop & SA_CONT) == 0 || (p->p_flag & P_STOPPED) == 0)
865 			return;
866 	}
867 
868 	crit_enter();
869 
870 	/*
871 	 * Process is in tsleep and not stopped
872 	 */
873 	if (p->p_stat == SSLEEP && (p->p_flag & P_STOPPED) == 0) {
874 		/*
875 		 * If the process is sleeping uninterruptibly
876 		 * we can't interrupt the sleep... the signal will
877 		 * be noticed when the process returns through
878 		 * trap() or syscall().
879 		 */
880 		if ((p->p_flag & P_SINTR) == 0)
881 			goto out;
882 
883 		/*
884 		 * If the process is sleeping and traced, make it runnable
885 		 * so it can discover the signal in issignal() and stop
886 		 * for the parent.
887 		 *
888 		 * If the process is stopped and traced, no further action
889 		 * is necessary.
890 		 */
891 		if (p->p_flag & P_TRACED)
892 			goto run;
893 
894 		/*
895 		 * If the process is sleeping and SA_CONT, and the signal
896 		 * mode is SIG_DFL, then make the process runnable.
897 		 *
898 		 * However, do *NOT* set P_BREAKTSLEEP.  We do not want
899 		 * a SIGCONT to terminate an interruptable tsleep early
900 		 * and generate a spurious EINTR.
901 		 */
902 		if ((prop & SA_CONT) && action == SIG_DFL) {
903 			SIGDELSET(p->p_siglist, sig);
904 			goto run_no_break;
905 		}
906 
907 		/*
908 		 * If the process is sleeping and receives a STOP signal,
909 		 * process immediately if possible.  All other (caught or
910 		 * default) signals cause the process to run.
911 		 */
912 		if (prop & SA_STOP) {
913 			if (action != SIG_DFL)
914 				goto run;
915 
916 			/*
917 			 * If a child holding parent blocked, stopping
918 			 * could cause deadlock.  Take no action at this
919 			 * time.
920 			 */
921 			if (p->p_flag & P_PPWAIT)
922 				goto out;
923 
924 			/*
925 			 * Do not actually try to manipulate the process
926 			 * while it is sleeping, simply set P_STOPPED to
927 			 * indicate that it should stop as soon as it safely
928 			 * can.
929 			 */
930 			SIGDELSET(p->p_siglist, sig);
931 			p->p_flag |= P_STOPPED;
932 			p->p_flag &= ~P_WAITED;
933 			p->p_xstat = sig;
934 			wakeup(p->p_pptr);
935 			if ((p->p_pptr->p_procsig->ps_flag & PS_NOCLDSTOP) == 0)
936 				ksignal(p->p_pptr, SIGCHLD);
937 			goto out;
938 		}
939 
940 		/*
941 		 * Otherwise the signal can interrupt the sleep.
942 		 */
943 		goto run;
944 	}
945 
946 	/*
947 	 * Process is in tsleep and is stopped
948 	 */
949 	if (p->p_stat == SSLEEP && (p->p_flag & P_STOPPED)) {
950 		/*
951 		 * If the process is stopped and is being traced, then no
952 		 * further action is necessary.
953 		 */
954 		if (p->p_flag & P_TRACED)
955 			goto out;
956 
957 		/*
958 		 * If the process is stopped and receives a KILL signal,
959 		 * make the process runnable.
960 		 */
961 		if (sig == SIGKILL)
962 			goto run;
963 
964 		/*
965 		 * If the process is stopped and receives a CONT signal,
966 		 * then try to make the process runnable again.
967 		 */
968 		if (prop & SA_CONT) {
969 			/*
970 			 * If SIGCONT is default (or ignored), we continue the
971 			 * process but don't leave the signal in p_siglist, as
972 			 * it has no further action.  If SIGCONT is held, we
973 			 * continue the process and leave the signal in
974 			 * p_siglist.  If the process catches SIGCONT, let it
975 			 * handle the signal itself.
976 			 */
977 			if (action == SIG_DFL)
978 				SIGDELSET(p->p_siglist, sig);
979 			if (action == SIG_CATCH)
980 				goto run;
981 
982 			/*
983 			 * Make runnable but do not break a tsleep unless
984 			 * some other signal was pending.
985 			 */
986 			goto run_no_break;
987 		}
988 
989 		/*
990 		 * If the process is stopped and receives another STOP
991 		 * signal, we do not need to stop it again.  If we did
992 		 * the shell could get confused.
993 		 */
994 		if (prop & SA_STOP) {
995 			SIGDELSET(p->p_siglist, sig);
996 			goto out;
997 		}
998 
999 		/*
1000 		 * Otherwise the process is sleeping interruptably but
1001 		 * is stopped, just set the P_BREAKTSLEEP flag and take
1002 		 * no further action.  The next runnable action will wake
1003 		 * the process up.
1004 		 */
1005 		p->p_flag |= P_BREAKTSLEEP;
1006 		goto out;
1007 	}
1008 
1009 	/*
1010 	 * Otherwise the process is running
1011 	 *
1012 	 * SRUN, SIDL, SZOMB do nothing with the signal,
1013 	 * other than kicking ourselves if we are running.
1014 	 * It will either never be noticed, or noticed very soon.
1015 	 *
1016 	 * Note that p_thread may be NULL or may not be completely
1017 	 * initialized if the process is in the SIDL or SZOMB state.
1018 	 *
1019 	 * For SMP we may have to forward the request to another cpu.
1020 	 * YYY the MP lock prevents the target process from moving
1021 	 * to another cpu, see kern/kern_switch.c
1022 	 *
1023 	 * If the target thread is waiting on its message port,
1024 	 * wakeup the target thread so it can check (or ignore)
1025 	 * the new signal.  YYY needs cleanup.
1026 	 */
1027 	if (lp == lwkt_preempted_proc()) {
1028 		signotify();
1029 	} else if (p->p_stat == SRUN) {
1030 		struct thread *td = p->p_thread;
1031 
1032 		KASSERT(td != NULL,
1033 		    ("pid %d NULL p_thread stat %d flags %08x",
1034 		    p->p_pid, p->p_stat, p->p_flag));
1035 
1036 #ifdef SMP
1037 		if (td->td_gd != mycpu)
1038 			lwkt_send_ipiq(td->td_gd, signotify_remote, lp);
1039 		else
1040 #endif
1041 		if (td->td_msgport.mp_flags & MSGPORTF_WAITING)
1042 			lwkt_schedule(td);
1043 	}
1044 	goto out;
1045 	/*NOTREACHED*/
1046 run:
1047 	/*
1048 	 * Make runnable and break out of any tsleep as well.
1049 	 */
1050 	p->p_flag |= P_BREAKTSLEEP;
1051 run_no_break:
1052 	setrunnable(p);
1053 out:
1054 	crit_exit();
1055 }
1056 
1057 #ifdef SMP
1058 
1059 /*
1060  * This function is called via an IPI.  We will be in a critical section but
1061  * the MP lock will NOT be held.  Also note that by the time the ipi message
1062  * gets to us the process 'p' (arg) may no longer be scheduled or even valid.
1063  */
1064 static void
1065 signotify_remote(void *arg)
1066 {
1067 	struct lwp *lp = arg;
1068 
1069 	if (lp == lwkt_preempted_proc()) {
1070 		signotify();
1071 	} else {
1072 		struct thread *td = lp->lwp_thread;
1073 		if (td->td_msgport.mp_flags & MSGPORTF_WAITING)
1074 			lwkt_schedule(td);
1075 	}
1076 }
1077 
1078 #endif
1079 
1080 static int
1081 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout)
1082 {
1083 	sigset_t savedmask, set;
1084 	struct proc *p = curproc;
1085 	int error, sig, hz, timevalid = 0;
1086 	struct timespec rts, ets, ts;
1087 	struct timeval tv;
1088 
1089 	error = 0;
1090 	sig = 0;
1091 	SIG_CANTMASK(waitset);
1092 	savedmask = p->p_sigmask;
1093 
1094 	if (timeout) {
1095 		if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 &&
1096 		    timeout->tv_nsec < 1000000000) {
1097 			timevalid = 1;
1098 			getnanouptime(&rts);
1099 		 	ets = rts;
1100 			timespecadd(&ets, timeout);
1101 		}
1102 	}
1103 
1104 	for (;;) {
1105 		set = p->p_siglist;
1106 		SIGSETAND(set, waitset);
1107 		if ((sig = sig_ffs(&set)) != 0) {
1108 			SIGFILLSET(p->p_sigmask);
1109 			SIGDELSET(p->p_sigmask, sig);
1110 			SIG_CANTMASK(p->p_sigmask);
1111 			sig = issignal(p);
1112 			/*
1113 			 * It may be a STOP signal, in the case, issignal
1114 			 * returns 0, because we may stop there, and new
1115 			 * signal can come in, we should restart if we got
1116 			 * nothing.
1117 			 */
1118 			if (sig == 0)
1119 				continue;
1120 			else
1121 				break;
1122 		}
1123 
1124 		/*
1125 		 * Previous checking got nothing, and we retried but still
1126 		 * got nothing, we should return the error status.
1127 		 */
1128 		if (error)
1129 			break;
1130 
1131 		/*
1132 		 * POSIX says this must be checked after looking for pending
1133 		 * signals.
1134 		 */
1135 		if (timeout) {
1136 			if (!timevalid) {
1137 				error = EINVAL;
1138 				break;
1139 			}
1140 			getnanouptime(&rts);
1141 			if (timespeccmp(&rts, &ets, >=)) {
1142 				error = EAGAIN;
1143 				break;
1144 			}
1145 			ts = ets;
1146 			timespecsub(&ts, &rts);
1147 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1148 			hz = tvtohz_high(&tv);
1149 		} else
1150 			hz = 0;
1151 
1152 		p->p_sigmask = savedmask;
1153 		SIGSETNAND(p->p_sigmask, waitset);
1154 		error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz);
1155 		if (timeout) {
1156 			if (error == ERESTART) {
1157 				/* can not restart a timeout wait. */
1158 				error = EINTR;
1159 			} else if (error == EAGAIN) {
1160 				/* will calculate timeout by ourself. */
1161 				error = 0;
1162 			}
1163 		}
1164 		/* Retry ... */
1165 	}
1166 
1167 	p->p_sigmask = savedmask;
1168 	if (sig) {
1169 		error = 0;
1170 		bzero(info, sizeof(*info));
1171 		info->si_signo = sig;
1172 		SIGDELSET(p->p_siglist, sig);	/* take the signal! */
1173 
1174 		if (sig == SIGKILL)
1175 			sigexit(p, sig);
1176 	}
1177 	return (error);
1178 }
1179 
1180 int
1181 sys_sigtimedwait(struct sigtimedwait_args *uap)
1182 {
1183 	struct timespec ts;
1184 	struct timespec *timeout;
1185 	sigset_t set;
1186 	siginfo_t info;
1187 	int error;
1188 
1189 	if (uap->timeout) {
1190 		error = copyin(uap->timeout, &ts, sizeof(ts));
1191 		if (error)
1192 			return (error);
1193 		timeout = &ts;
1194 	} else {
1195 		timeout = NULL;
1196 	}
1197 	error = copyin(uap->set, &set, sizeof(set));
1198 	if (error)
1199 		return (error);
1200 	error = kern_sigtimedwait(set, &info, timeout);
1201 	if (error)
1202 		return (error);
1203  	if (uap->info)
1204 		error = copyout(&info, uap->info, sizeof(info));
1205 	/* Repost if we got an error. */
1206 	if (error)
1207 		ksignal(curproc, info.si_signo);
1208 	else
1209 		uap->sysmsg_result = info.si_signo;
1210 	return (error);
1211 }
1212 
1213 int
1214 sys_sigwaitinfo(struct sigwaitinfo_args *uap)
1215 {
1216 	siginfo_t info;
1217 	sigset_t set;
1218 	int error;
1219 
1220 	error = copyin(uap->set, &set, sizeof(set));
1221 	if (error)
1222 		return (error);
1223 	error = kern_sigtimedwait(set, &info, NULL);
1224 	if (error)
1225 		return (error);
1226 	if (uap->info)
1227 		error = copyout(&info, uap->info, sizeof(info));
1228 	/* Repost if we got an error. */
1229 	if (error)
1230 		ksignal(curproc, info.si_signo);
1231 	else
1232 		uap->sysmsg_result = info.si_signo;
1233 	return (error);
1234 }
1235 
1236 /*
1237  * If the current process has received a signal that would interrupt a
1238  * system call, return EINTR or ERESTART as appropriate.
1239  */
1240 int
1241 iscaught(struct proc *p)
1242 {
1243 	int sig;
1244 
1245 	if (p) {
1246 		if ((sig = CURSIG(p)) != 0) {
1247 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
1248 				return (EINTR);
1249 			return (ERESTART);
1250 		}
1251 	}
1252 	return(EWOULDBLOCK);
1253 }
1254 
1255 /*
1256  * If the current process has received a signal (should be caught or cause
1257  * termination, should interrupt current syscall), return the signal number.
1258  * Stop signals with default action are processed immediately, then cleared;
1259  * they aren't returned.  This is checked after each entry to the system for
1260  * a syscall or trap (though this can usually be done without calling issignal
1261  * by checking the pending signal masks in the CURSIG macro.) The normal call
1262  * sequence is
1263  *
1264  * This routine is called via CURSIG/__cursig and the MP lock might not be
1265  * held.  Obtain the MP lock for the duration of the operation.
1266  *
1267  *	while (sig = CURSIG(curproc))
1268  *		postsig(sig);
1269  */
1270 int
1271 issignal(struct proc *p)
1272 {
1273 	sigset_t mask;
1274 	int sig, prop;
1275 
1276 	get_mplock();
1277 	for (;;) {
1278 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
1279 
1280 		mask = p->p_siglist;
1281 		SIGSETNAND(mask, p->p_sigmask);
1282 		if (p->p_flag & P_PPWAIT)
1283 			SIG_STOPSIGMASK(mask);
1284 		if (!SIGNOTEMPTY(mask)) { 	/* no signal to send */
1285 			rel_mplock();
1286 			return (0);
1287 		}
1288 		sig = sig_ffs(&mask);
1289 
1290 		STOPEVENT(p, S_SIG, sig);
1291 
1292 		/*
1293 		 * We should see pending but ignored signals
1294 		 * only if P_TRACED was on when they were posted.
1295 		 */
1296 		if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) {
1297 			SIGDELSET(p->p_siglist, sig);
1298 			continue;
1299 		}
1300 		if ((p->p_flag & P_TRACED) && (p->p_flag & P_PPWAIT) == 0) {
1301 			/*
1302 			 * If traced, always stop, and stay stopped until
1303 			 * released by the parent.
1304 			 *
1305 			 * NOTE: P_STOPPED may get cleared during the loop,
1306 			 * but we do not re-notify the parent if we have
1307 			 * to loop several times waiting for the parent
1308 			 * to let us continue.
1309 			 */
1310 			p->p_xstat = sig;
1311 			p->p_flag |= P_STOPPED;
1312 			p->p_flag &= ~P_WAITED;
1313 			ksignal(p->p_pptr, SIGCHLD);
1314 			do {
1315 				tstop(p);
1316 			} while (!trace_req(p) && (p->p_flag & P_TRACED));
1317 			p->p_flag &= ~P_STOPPED;
1318 
1319 			/*
1320 			 * If parent wants us to take the signal,
1321 			 * then it will leave it in p->p_xstat;
1322 			 * otherwise we just look for signals again.
1323 			 */
1324 			SIGDELSET(p->p_siglist, sig);	/* clear old signal */
1325 			sig = p->p_xstat;
1326 			if (sig == 0)
1327 				continue;
1328 
1329 			/*
1330 			 * Put the new signal into p_siglist.  If the
1331 			 * signal is being masked, look for other signals.
1332 			 */
1333 			SIGADDSET(p->p_siglist, sig);
1334 			if (SIGISMEMBER(p->p_sigmask, sig))
1335 				continue;
1336 
1337 			/*
1338 			 * If the traced bit got turned off, go back up
1339 			 * to the top to rescan signals.  This ensures
1340 			 * that p_sig* and ps_sigact are consistent.
1341 			 */
1342 			if ((p->p_flag & P_TRACED) == 0)
1343 				continue;
1344 		}
1345 
1346 		prop = sigprop(sig);
1347 
1348 		/*
1349 		 * Decide whether the signal should be returned.
1350 		 * Return the signal's number, or fall through
1351 		 * to clear it from the pending mask.
1352 		 */
1353 		switch ((int)(intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
1354 		case (int)SIG_DFL:
1355 			/*
1356 			 * Don't take default actions on system processes.
1357 			 */
1358 			if (p->p_pid <= 1) {
1359 #ifdef DIAGNOSTIC
1360 				/*
1361 				 * Are you sure you want to ignore SIGSEGV
1362 				 * in init? XXX
1363 				 */
1364 				printf("Process (pid %lu) got signal %d\n",
1365 					(u_long)p->p_pid, sig);
1366 #endif
1367 				break;		/* == ignore */
1368 			}
1369 
1370 			/*
1371 			 * Handle the in-kernel checkpoint action
1372 			 */
1373 			if (prop & SA_CKPT) {
1374 				checkpoint_signal_handler(p);
1375 				break;
1376 			}
1377 
1378 			/*
1379 			 * If there is a pending stop signal to process
1380 			 * with default action, stop here,
1381 			 * then clear the signal.  However,
1382 			 * if process is member of an orphaned
1383 			 * process group, ignore tty stop signals.
1384 			 */
1385 			if (prop & SA_STOP) {
1386 				if (p->p_flag & P_TRACED ||
1387 		    		    (p->p_pgrp->pg_jobc == 0 &&
1388 				    prop & SA_TTYSTOP))
1389 					break;	/* == ignore */
1390 				p->p_xstat = sig;
1391 				p->p_flag |= P_STOPPED;
1392 				p->p_flag &= ~P_WAITED;
1393 
1394 				if ((p->p_pptr->p_procsig->ps_flag & PS_NOCLDSTOP) == 0)
1395 					ksignal(p->p_pptr, SIGCHLD);
1396 				while (p->p_flag & P_STOPPED) {
1397 					tstop(p);
1398 				}
1399 				break;
1400 			} else if (prop & SA_IGNORE) {
1401 				/*
1402 				 * Except for SIGCONT, shouldn't get here.
1403 				 * Default action is to ignore; drop it.
1404 				 */
1405 				break;		/* == ignore */
1406 			} else {
1407 				rel_mplock();
1408 				return (sig);
1409 			}
1410 
1411 			/*NOTREACHED*/
1412 
1413 		case (int)SIG_IGN:
1414 			/*
1415 			 * Masking above should prevent us ever trying
1416 			 * to take action on an ignored signal other
1417 			 * than SIGCONT, unless process is traced.
1418 			 */
1419 			if ((prop & SA_CONT) == 0 &&
1420 			    (p->p_flag & P_TRACED) == 0)
1421 				printf("issignal\n");
1422 			break;		/* == ignore */
1423 
1424 		default:
1425 			/*
1426 			 * This signal has an action, let
1427 			 * postsig() process it.
1428 			 */
1429 			rel_mplock();
1430 			return (sig);
1431 		}
1432 		SIGDELSET(p->p_siglist, sig);		/* take the signal! */
1433 	}
1434 	/* NOTREACHED */
1435 }
1436 
1437 /*
1438  * Take the action for the specified signal
1439  * from the current set of pending signals.
1440  */
1441 void
1442 postsig(int sig)
1443 {
1444 	struct thread *td = curthread;
1445 	struct proc *p = td->td_proc;
1446 	struct sigacts *ps = p->p_sigacts;
1447 	sig_t action;
1448 	sigset_t returnmask;
1449 	int code;
1450 
1451 	KASSERT(sig != 0, ("postsig"));
1452 
1453 	SIGDELSET(p->p_siglist, sig);
1454 	action = ps->ps_sigact[_SIG_IDX(sig)];
1455 #ifdef KTRACE
1456 	if (KTRPOINT(td, KTR_PSIG))
1457 		ktrpsig(p, sig, action, p->p_flag & P_OLDMASK ?
1458 			&p->p_oldsigmask : &p->p_sigmask, 0);
1459 #endif
1460 	STOPEVENT(p, S_SIG, sig);
1461 
1462 	if (action == SIG_DFL) {
1463 		/*
1464 		 * Default action, where the default is to kill
1465 		 * the process.  (Other cases were ignored above.)
1466 		 */
1467 		sigexit(p, sig);
1468 		/* NOTREACHED */
1469 	} else {
1470 		/*
1471 		 * If we get here, the signal must be caught.
1472 		 */
1473 		KASSERT(action != SIG_IGN && !SIGISMEMBER(p->p_sigmask, sig),
1474 		    ("postsig action"));
1475 		/*
1476 		 * Set the new mask value and also defer further
1477 		 * occurrences of this signal.
1478 		 *
1479 		 * Special case: user has done a sigsuspend.  Here the
1480 		 * current mask is not of interest, but rather the
1481 		 * mask from before the sigsuspend is what we want
1482 		 * restored after the signal processing is completed.
1483 		 */
1484 		crit_enter();
1485 		if (p->p_flag & P_OLDMASK) {
1486 			returnmask = p->p_oldsigmask;
1487 			p->p_flag &= ~P_OLDMASK;
1488 		} else {
1489 			returnmask = p->p_sigmask;
1490 		}
1491 
1492 		SIGSETOR(p->p_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1493 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1494 			SIGADDSET(p->p_sigmask, sig);
1495 
1496 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1497 			/*
1498 			 * See kern_sigaction() for origin of this code.
1499 			 */
1500 			SIGDELSET(p->p_sigcatch, sig);
1501 			if (sig != SIGCONT &&
1502 			    sigprop(sig) & SA_IGNORE)
1503 				SIGADDSET(p->p_sigignore, sig);
1504 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1505 		}
1506 		crit_exit();
1507 		p->p_stats->p_ru.ru_nsignals++;
1508 		if (p->p_sig != sig) {
1509 			code = 0;
1510 		} else {
1511 			code = p->p_code;
1512 			p->p_code = 0;
1513 			p->p_sig = 0;
1514 		}
1515 		(*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code);
1516 	}
1517 }
1518 
1519 /*
1520  * Kill the current process for stated reason.
1521  */
1522 void
1523 killproc(struct proc *p, char *why)
1524 {
1525 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
1526 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
1527 	ksignal(p, SIGKILL);
1528 }
1529 
1530 /*
1531  * Force the current process to exit with the specified signal, dumping core
1532  * if appropriate.  We bypass the normal tests for masked and caught signals,
1533  * allowing unrecoverable failures to terminate the process without changing
1534  * signal state.  Mark the accounting record with the signal termination.
1535  * If dumping core, save the signal number for the debugger.  Calls exit and
1536  * does not return.
1537  */
1538 void
1539 sigexit(struct proc *p, int sig)
1540 {
1541 	p->p_acflag |= AXSIG;
1542 	if (sigprop(sig) & SA_CORE) {
1543 		p->p_sig = sig;
1544 		/*
1545 		 * Log signals which would cause core dumps
1546 		 * (Log as LOG_INFO to appease those who don't want
1547 		 * these messages.)
1548 		 * XXX : Todo, as well as euid, write out ruid too
1549 		 */
1550 		if (coredump(p) == 0)
1551 			sig |= WCOREFLAG;
1552 		if (kern_logsigexit)
1553 			log(LOG_INFO,
1554 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
1555 			    p->p_pid, p->p_comm,
1556 			    p->p_ucred ? p->p_ucred->cr_uid : -1,
1557 			    sig &~ WCOREFLAG,
1558 			    sig & WCOREFLAG ? " (core dumped)" : "");
1559 	}
1560 	exit1(W_EXITCODE(0, sig));
1561 	/* NOTREACHED */
1562 }
1563 
1564 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
1565 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
1566 	      sizeof(corefilename), "process corefile name format string");
1567 
1568 /*
1569  * expand_name(name, uid, pid)
1570  * Expand the name described in corefilename, using name, uid, and pid.
1571  * corefilename is a printf-like string, with three format specifiers:
1572  *	%N	name of process ("name")
1573  *	%P	process id (pid)
1574  *	%U	user id (uid)
1575  * For example, "%N.core" is the default; they can be disabled completely
1576  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
1577  * This is controlled by the sysctl variable kern.corefile (see above).
1578  */
1579 
1580 static char *
1581 expand_name(const char *name, uid_t uid, pid_t pid)
1582 {
1583 	char *temp;
1584 	char buf[11];		/* Buffer for pid/uid -- max 4B */
1585 	int i, n;
1586 	char *format = corefilename;
1587 	size_t namelen;
1588 
1589 	temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT);
1590 	if (temp == NULL)
1591 		return NULL;
1592 	namelen = strlen(name);
1593 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
1594 		int l;
1595 		switch (format[i]) {
1596 		case '%':	/* Format character */
1597 			i++;
1598 			switch (format[i]) {
1599 			case '%':
1600 				temp[n++] = '%';
1601 				break;
1602 			case 'N':	/* process name */
1603 				if ((n + namelen) > MAXPATHLEN) {
1604 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
1605 					    pid, name, uid, temp, name);
1606 					kfree(temp, M_TEMP);
1607 					return NULL;
1608 				}
1609 				memcpy(temp+n, name, namelen);
1610 				n += namelen;
1611 				break;
1612 			case 'P':	/* process id */
1613 				l = ksprintf(buf, "%u", pid);
1614 				if ((n + l) > MAXPATHLEN) {
1615 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
1616 					    pid, name, uid, temp, name);
1617 					kfree(temp, M_TEMP);
1618 					return NULL;
1619 				}
1620 				memcpy(temp+n, buf, l);
1621 				n += l;
1622 				break;
1623 			case 'U':	/* user id */
1624 				l = ksprintf(buf, "%u", uid);
1625 				if ((n + l) > MAXPATHLEN) {
1626 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
1627 					    pid, name, uid, temp, name);
1628 					kfree(temp, M_TEMP);
1629 					return NULL;
1630 				}
1631 				memcpy(temp+n, buf, l);
1632 				n += l;
1633 				break;
1634 			default:
1635 			  	log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format);
1636 			}
1637 			break;
1638 		default:
1639 			temp[n++] = format[i];
1640 		}
1641 	}
1642 	temp[n] = '\0';
1643 	return temp;
1644 }
1645 
1646 /*
1647  * Dump a process' core.  The main routine does some
1648  * policy checking, and creates the name of the coredump;
1649  * then it passes on a vnode and a size limit to the process-specific
1650  * coredump routine if there is one; if there _is not_ one, it returns
1651  * ENOSYS; otherwise it returns the error from the process-specific routine.
1652  */
1653 
1654 static int
1655 coredump(struct proc *p)
1656 {
1657 	struct vnode *vp;
1658 	struct ucred *cred = p->p_ucred;
1659 	struct flock lf;
1660 	struct nlookupdata nd;
1661 	struct vattr vattr;
1662 	int error, error1;
1663 	char *name;			/* name of corefile */
1664 	off_t limit;
1665 
1666 	STOPEVENT(p, S_CORE, 0);
1667 
1668 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0)
1669 		return (EFAULT);
1670 
1671 	/*
1672 	 * Note that the bulk of limit checking is done after
1673 	 * the corefile is created.  The exception is if the limit
1674 	 * for corefiles is 0, in which case we don't bother
1675 	 * creating the corefile at all.  This layout means that
1676 	 * a corefile is truncated instead of not being created,
1677 	 * if it is larger than the limit.
1678 	 */
1679 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
1680 	if (limit == 0)
1681 		return EFBIG;
1682 
1683 	name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid);
1684 	if (name == NULL)
1685 		return (EINVAL);
1686 	error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP);
1687 	if (error == 0)
1688 		error = vn_open(&nd, NULL, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
1689 	kfree(name, M_TEMP);
1690 	if (error) {
1691 		nlookup_done(&nd);
1692 		return (error);
1693 	}
1694 	vp = nd.nl_open_vp;
1695 	nd.nl_open_vp = NULL;
1696 	nlookup_done(&nd);
1697 
1698 	vn_unlock(vp);
1699 	lf.l_whence = SEEK_SET;
1700 	lf.l_start = 0;
1701 	lf.l_len = 0;
1702 	lf.l_type = F_WRLCK;
1703 	error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0);
1704 	if (error)
1705 		goto out2;
1706 
1707 	/* Don't dump to non-regular files or files with links. */
1708 	if (vp->v_type != VREG ||
1709 	    VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) {
1710 		error = EFAULT;
1711 		goto out1;
1712 	}
1713 
1714 	VATTR_NULL(&vattr);
1715 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1716 	vattr.va_size = 0;
1717 	VOP_SETATTR(vp, &vattr, cred);
1718 	p->p_acflag |= ACORE;
1719 	vn_unlock(vp);
1720 
1721 	error = p->p_sysent->sv_coredump ?
1722 		  p->p_sysent->sv_coredump(p, vp, limit) : ENOSYS;
1723 
1724 out1:
1725 	lf.l_type = F_UNLCK;
1726 	VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0);
1727 out2:
1728 	error1 = vn_close(vp, FWRITE);
1729 	if (error == 0)
1730 		error = error1;
1731 	return (error);
1732 }
1733 
1734 /*
1735  * Nonexistent system call-- signal process (may want to handle it).
1736  * Flag error in case process won't see signal immediately (blocked or ignored).
1737  */
1738 /* ARGSUSED */
1739 int
1740 sys_nosys(struct nosys_args *args)
1741 {
1742 	ksignal(curproc, SIGSYS);
1743 	return (EINVAL);
1744 }
1745 
1746 /*
1747  * Send a SIGIO or SIGURG signal to a process or process group using
1748  * stored credentials rather than those of the current process.
1749  */
1750 void
1751 pgsigio(struct sigio *sigio, int sig, int checkctty)
1752 {
1753 	if (sigio == NULL)
1754 		return;
1755 
1756 	if (sigio->sio_pgid > 0) {
1757 		if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred,
1758 		             sigio->sio_proc))
1759 			ksignal(sigio->sio_proc, sig);
1760 	} else if (sigio->sio_pgid < 0) {
1761 		struct proc *p;
1762 
1763 		lockmgr(&sigio->sio_pgrp->pg_lock, LK_EXCLUSIVE);
1764 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
1765 			if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) &&
1766 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
1767 				ksignal(p, sig);
1768 		}
1769 		lockmgr(&sigio->sio_pgrp->pg_lock, LK_RELEASE);
1770 	}
1771 }
1772 
1773 static int
1774 filt_sigattach(struct knote *kn)
1775 {
1776 	struct proc *p = curproc;
1777 
1778 	kn->kn_ptr.p_proc = p;
1779 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
1780 
1781 	/* XXX lock the proc here while adding to the list? */
1782 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
1783 
1784 	return (0);
1785 }
1786 
1787 static void
1788 filt_sigdetach(struct knote *kn)
1789 {
1790 	struct proc *p = kn->kn_ptr.p_proc;
1791 
1792 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
1793 }
1794 
1795 /*
1796  * signal knotes are shared with proc knotes, so we apply a mask to
1797  * the hint in order to differentiate them from process hints.  This
1798  * could be avoided by using a signal-specific knote list, but probably
1799  * isn't worth the trouble.
1800  */
1801 static int
1802 filt_signal(struct knote *kn, long hint)
1803 {
1804 	if (hint & NOTE_SIGNAL) {
1805 		hint &= ~NOTE_SIGNAL;
1806 
1807 		if (kn->kn_id == hint)
1808 			kn->kn_data++;
1809 	}
1810 	return (kn->kn_data != 0);
1811 }
1812