1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 35 * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $ 36 */ 37 38 #include "opt_ktrace.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/sysproto.h> 44 #include <sys/signalvar.h> 45 #include <sys/resourcevar.h> 46 #include <sys/vnode.h> 47 #include <sys/event.h> 48 #include <sys/proc.h> 49 #include <sys/nlookup.h> 50 #include <sys/pioctl.h> 51 #include <sys/acct.h> 52 #include <sys/fcntl.h> 53 #include <sys/lock.h> 54 #include <sys/wait.h> 55 #include <sys/ktrace.h> 56 #include <sys/syslog.h> 57 #include <sys/stat.h> 58 #include <sys/sysent.h> 59 #include <sys/sysctl.h> 60 #include <sys/malloc.h> 61 #include <sys/interrupt.h> 62 #include <sys/unistd.h> 63 #include <sys/kern_syscall.h> 64 #include <sys/vkernel.h> 65 66 #include <sys/signal2.h> 67 #include <sys/thread2.h> 68 #include <sys/spinlock2.h> 69 70 #include <machine/cpu.h> 71 #include <machine/smp.h> 72 73 static int coredump(struct lwp *, int); 74 static char *expand_name(const char *, uid_t, pid_t); 75 static int dokillpg(int sig, int pgid, int all); 76 static int sig_ffs(sigset_t *set); 77 static int sigprop(int sig); 78 static void lwp_signotify(struct lwp *lp); 79 static void lwp_signotify_remote(void *arg); 80 static int kern_sigtimedwait(sigset_t set, siginfo_t *info, 81 struct timespec *timeout); 82 83 static int filt_sigattach(struct knote *kn); 84 static void filt_sigdetach(struct knote *kn); 85 static int filt_signal(struct knote *kn, long hint); 86 87 struct filterops sig_filtops = 88 { 0, filt_sigattach, filt_sigdetach, filt_signal }; 89 90 static int kern_logsigexit = 1; 91 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW, 92 &kern_logsigexit, 0, 93 "Log processes quitting on abnormal signals to syslog(3)"); 94 95 /* 96 * Can process p, with pcred pc, send the signal sig to process q? 97 */ 98 #define CANSIGNAL(q, sig) \ 99 (!p_trespass(curproc->p_ucred, (q)->p_ucred) || \ 100 ((sig) == SIGCONT && (q)->p_session == curproc->p_session)) 101 102 /* 103 * Policy -- Can real uid ruid with ucred uc send a signal to process q? 104 */ 105 #define CANSIGIO(ruid, uc, q) \ 106 ((uc)->cr_uid == 0 || \ 107 (ruid) == (q)->p_ucred->cr_ruid || \ 108 (uc)->cr_uid == (q)->p_ucred->cr_ruid || \ 109 (ruid) == (q)->p_ucred->cr_uid || \ 110 (uc)->cr_uid == (q)->p_ucred->cr_uid) 111 112 int sugid_coredump; 113 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW, 114 &sugid_coredump, 0, "Enable coredumping set user/group ID processes"); 115 116 static int do_coredump = 1; 117 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW, 118 &do_coredump, 0, "Enable/Disable coredumps"); 119 120 /* 121 * Signal properties and actions. 122 * The array below categorizes the signals and their default actions 123 * according to the following properties: 124 */ 125 #define SA_KILL 0x01 /* terminates process by default */ 126 #define SA_CORE 0x02 /* ditto and coredumps */ 127 #define SA_STOP 0x04 /* suspend process */ 128 #define SA_TTYSTOP 0x08 /* ditto, from tty */ 129 #define SA_IGNORE 0x10 /* ignore by default */ 130 #define SA_CONT 0x20 /* continue if suspended */ 131 #define SA_CANTMASK 0x40 /* non-maskable, catchable */ 132 #define SA_CKPT 0x80 /* checkpoint process */ 133 134 135 static int sigproptbl[NSIG] = { 136 SA_KILL, /* SIGHUP */ 137 SA_KILL, /* SIGINT */ 138 SA_KILL|SA_CORE, /* SIGQUIT */ 139 SA_KILL|SA_CORE, /* SIGILL */ 140 SA_KILL|SA_CORE, /* SIGTRAP */ 141 SA_KILL|SA_CORE, /* SIGABRT */ 142 SA_KILL|SA_CORE, /* SIGEMT */ 143 SA_KILL|SA_CORE, /* SIGFPE */ 144 SA_KILL, /* SIGKILL */ 145 SA_KILL|SA_CORE, /* SIGBUS */ 146 SA_KILL|SA_CORE, /* SIGSEGV */ 147 SA_KILL|SA_CORE, /* SIGSYS */ 148 SA_KILL, /* SIGPIPE */ 149 SA_KILL, /* SIGALRM */ 150 SA_KILL, /* SIGTERM */ 151 SA_IGNORE, /* SIGURG */ 152 SA_STOP, /* SIGSTOP */ 153 SA_STOP|SA_TTYSTOP, /* SIGTSTP */ 154 SA_IGNORE|SA_CONT, /* SIGCONT */ 155 SA_IGNORE, /* SIGCHLD */ 156 SA_STOP|SA_TTYSTOP, /* SIGTTIN */ 157 SA_STOP|SA_TTYSTOP, /* SIGTTOU */ 158 SA_IGNORE, /* SIGIO */ 159 SA_KILL, /* SIGXCPU */ 160 SA_KILL, /* SIGXFSZ */ 161 SA_KILL, /* SIGVTALRM */ 162 SA_KILL, /* SIGPROF */ 163 SA_IGNORE, /* SIGWINCH */ 164 SA_IGNORE, /* SIGINFO */ 165 SA_KILL, /* SIGUSR1 */ 166 SA_KILL, /* SIGUSR2 */ 167 SA_IGNORE, /* SIGTHR */ 168 SA_CKPT, /* SIGCKPT */ 169 SA_KILL|SA_CKPT, /* SIGCKPTEXIT */ 170 SA_IGNORE, 171 SA_IGNORE, 172 SA_IGNORE, 173 SA_IGNORE, 174 SA_IGNORE, 175 SA_IGNORE, 176 SA_IGNORE, 177 SA_IGNORE, 178 SA_IGNORE, 179 SA_IGNORE, 180 SA_IGNORE, 181 SA_IGNORE, 182 SA_IGNORE, 183 SA_IGNORE, 184 SA_IGNORE, 185 SA_IGNORE, 186 SA_IGNORE, 187 SA_IGNORE, 188 SA_IGNORE, 189 SA_IGNORE, 190 SA_IGNORE, 191 SA_IGNORE, 192 SA_IGNORE, 193 SA_IGNORE, 194 SA_IGNORE, 195 SA_IGNORE, 196 SA_IGNORE, 197 SA_IGNORE, 198 SA_IGNORE, 199 SA_IGNORE, 200 201 }; 202 203 static __inline int 204 sigprop(int sig) 205 { 206 207 if (sig > 0 && sig < NSIG) 208 return (sigproptbl[_SIG_IDX(sig)]); 209 return (0); 210 } 211 212 static __inline int 213 sig_ffs(sigset_t *set) 214 { 215 int i; 216 217 for (i = 0; i < _SIG_WORDS; i++) 218 if (set->__bits[i]) 219 return (ffs(set->__bits[i]) + (i * 32)); 220 return (0); 221 } 222 223 /* 224 * No requirements. 225 */ 226 int 227 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact) 228 { 229 struct thread *td = curthread; 230 struct proc *p = td->td_proc; 231 struct lwp *lp; 232 struct sigacts *ps = p->p_sigacts; 233 234 if (sig <= 0 || sig > _SIG_MAXSIG) 235 return (EINVAL); 236 237 lwkt_gettoken(&p->p_token); 238 239 if (oact) { 240 oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)]; 241 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)]; 242 oact->sa_flags = 0; 243 if (SIGISMEMBER(ps->ps_sigonstack, sig)) 244 oact->sa_flags |= SA_ONSTACK; 245 if (!SIGISMEMBER(ps->ps_sigintr, sig)) 246 oact->sa_flags |= SA_RESTART; 247 if (SIGISMEMBER(ps->ps_sigreset, sig)) 248 oact->sa_flags |= SA_RESETHAND; 249 if (SIGISMEMBER(ps->ps_signodefer, sig)) 250 oact->sa_flags |= SA_NODEFER; 251 if (SIGISMEMBER(ps->ps_siginfo, sig)) 252 oact->sa_flags |= SA_SIGINFO; 253 if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDSTOP) 254 oact->sa_flags |= SA_NOCLDSTOP; 255 if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDWAIT) 256 oact->sa_flags |= SA_NOCLDWAIT; 257 } 258 if (act) { 259 /* 260 * Check for invalid requests. KILL and STOP cannot be 261 * caught. 262 */ 263 if (sig == SIGKILL || sig == SIGSTOP) { 264 if (act->sa_handler != SIG_DFL) { 265 lwkt_reltoken(&p->p_token); 266 return (EINVAL); 267 } 268 } 269 270 /* 271 * Change setting atomically. 272 */ 273 ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask; 274 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]); 275 if (act->sa_flags & SA_SIGINFO) { 276 ps->ps_sigact[_SIG_IDX(sig)] = 277 (__sighandler_t *)act->sa_sigaction; 278 SIGADDSET(ps->ps_siginfo, sig); 279 } else { 280 ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler; 281 SIGDELSET(ps->ps_siginfo, sig); 282 } 283 if (!(act->sa_flags & SA_RESTART)) 284 SIGADDSET(ps->ps_sigintr, sig); 285 else 286 SIGDELSET(ps->ps_sigintr, sig); 287 if (act->sa_flags & SA_ONSTACK) 288 SIGADDSET(ps->ps_sigonstack, sig); 289 else 290 SIGDELSET(ps->ps_sigonstack, sig); 291 if (act->sa_flags & SA_RESETHAND) 292 SIGADDSET(ps->ps_sigreset, sig); 293 else 294 SIGDELSET(ps->ps_sigreset, sig); 295 if (act->sa_flags & SA_NODEFER) 296 SIGADDSET(ps->ps_signodefer, sig); 297 else 298 SIGDELSET(ps->ps_signodefer, sig); 299 if (sig == SIGCHLD) { 300 if (act->sa_flags & SA_NOCLDSTOP) 301 p->p_sigacts->ps_flag |= PS_NOCLDSTOP; 302 else 303 p->p_sigacts->ps_flag &= ~PS_NOCLDSTOP; 304 if (act->sa_flags & SA_NOCLDWAIT) { 305 /* 306 * Paranoia: since SA_NOCLDWAIT is implemented 307 * by reparenting the dying child to PID 1 (and 308 * trust it to reap the zombie), PID 1 itself 309 * is forbidden to set SA_NOCLDWAIT. 310 */ 311 if (p->p_pid == 1) 312 p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT; 313 else 314 p->p_sigacts->ps_flag |= PS_NOCLDWAIT; 315 } else { 316 p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT; 317 } 318 if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN) 319 ps->ps_flag |= PS_CLDSIGIGN; 320 else 321 ps->ps_flag &= ~PS_CLDSIGIGN; 322 } 323 /* 324 * Set bit in p_sigignore for signals that are set to SIG_IGN, 325 * and for signals set to SIG_DFL where the default is to 326 * ignore. However, don't put SIGCONT in p_sigignore, as we 327 * have to restart the process. 328 * 329 * Also remove the signal from the process and lwp signal 330 * list. 331 */ 332 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN || 333 (sigprop(sig) & SA_IGNORE && 334 ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) { 335 SIGDELSET(p->p_siglist, sig); 336 FOREACH_LWP_IN_PROC(lp, p) { 337 spin_lock(&lp->lwp_spin); 338 SIGDELSET(lp->lwp_siglist, sig); 339 spin_unlock(&lp->lwp_spin); 340 } 341 if (sig != SIGCONT) { 342 /* easier in ksignal */ 343 SIGADDSET(p->p_sigignore, sig); 344 } 345 SIGDELSET(p->p_sigcatch, sig); 346 } else { 347 SIGDELSET(p->p_sigignore, sig); 348 if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL) 349 SIGDELSET(p->p_sigcatch, sig); 350 else 351 SIGADDSET(p->p_sigcatch, sig); 352 } 353 } 354 lwkt_reltoken(&p->p_token); 355 return (0); 356 } 357 358 int 359 sys_sigaction(struct sigaction_args *uap) 360 { 361 struct sigaction act, oact; 362 struct sigaction *actp, *oactp; 363 int error; 364 365 actp = (uap->act != NULL) ? &act : NULL; 366 oactp = (uap->oact != NULL) ? &oact : NULL; 367 if (actp) { 368 error = copyin(uap->act, actp, sizeof(act)); 369 if (error) 370 return (error); 371 } 372 error = kern_sigaction(uap->sig, actp, oactp); 373 if (oactp && !error) { 374 error = copyout(oactp, uap->oact, sizeof(oact)); 375 } 376 return (error); 377 } 378 379 /* 380 * Initialize signal state for process 0; 381 * set to ignore signals that are ignored by default. 382 */ 383 void 384 siginit(struct proc *p) 385 { 386 int i; 387 388 for (i = 1; i <= NSIG; i++) 389 if (sigprop(i) & SA_IGNORE && i != SIGCONT) 390 SIGADDSET(p->p_sigignore, i); 391 } 392 393 /* 394 * Reset signals for an exec of the specified process. 395 */ 396 void 397 execsigs(struct proc *p) 398 { 399 struct sigacts *ps = p->p_sigacts; 400 struct lwp *lp; 401 int sig; 402 403 lp = ONLY_LWP_IN_PROC(p); 404 405 /* 406 * Reset caught signals. Held signals remain held 407 * through p_sigmask (unless they were caught, 408 * and are now ignored by default). 409 */ 410 while (SIGNOTEMPTY(p->p_sigcatch)) { 411 sig = sig_ffs(&p->p_sigcatch); 412 SIGDELSET(p->p_sigcatch, sig); 413 if (sigprop(sig) & SA_IGNORE) { 414 if (sig != SIGCONT) 415 SIGADDSET(p->p_sigignore, sig); 416 SIGDELSET(p->p_siglist, sig); 417 /* don't need spinlock */ 418 SIGDELSET(lp->lwp_siglist, sig); 419 } 420 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL; 421 } 422 423 /* 424 * Reset stack state to the user stack. 425 * Clear set of signals caught on the signal stack. 426 */ 427 lp->lwp_sigstk.ss_flags = SS_DISABLE; 428 lp->lwp_sigstk.ss_size = 0; 429 lp->lwp_sigstk.ss_sp = NULL; 430 lp->lwp_flags &= ~LWP_ALTSTACK; 431 /* 432 * Reset no zombies if child dies flag as Solaris does. 433 */ 434 p->p_sigacts->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN); 435 if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN) 436 ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL; 437 } 438 439 /* 440 * kern_sigprocmask() - MP SAFE ONLY IF p == curproc 441 * 442 * Manipulate signal mask. This routine is MP SAFE *ONLY* if 443 * p == curproc. 444 */ 445 int 446 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset) 447 { 448 struct thread *td = curthread; 449 struct lwp *lp = td->td_lwp; 450 struct proc *p = td->td_proc; 451 int error; 452 453 lwkt_gettoken(&p->p_token); 454 455 if (oset != NULL) 456 *oset = lp->lwp_sigmask; 457 458 error = 0; 459 if (set != NULL) { 460 switch (how) { 461 case SIG_BLOCK: 462 SIG_CANTMASK(*set); 463 SIGSETOR(lp->lwp_sigmask, *set); 464 break; 465 case SIG_UNBLOCK: 466 SIGSETNAND(lp->lwp_sigmask, *set); 467 break; 468 case SIG_SETMASK: 469 SIG_CANTMASK(*set); 470 lp->lwp_sigmask = *set; 471 break; 472 default: 473 error = EINVAL; 474 break; 475 } 476 } 477 478 lwkt_reltoken(&p->p_token); 479 480 return (error); 481 } 482 483 /* 484 * sigprocmask() 485 * 486 * MPSAFE 487 */ 488 int 489 sys_sigprocmask(struct sigprocmask_args *uap) 490 { 491 sigset_t set, oset; 492 sigset_t *setp, *osetp; 493 int error; 494 495 setp = (uap->set != NULL) ? &set : NULL; 496 osetp = (uap->oset != NULL) ? &oset : NULL; 497 if (setp) { 498 error = copyin(uap->set, setp, sizeof(set)); 499 if (error) 500 return (error); 501 } 502 error = kern_sigprocmask(uap->how, setp, osetp); 503 if (osetp && !error) { 504 error = copyout(osetp, uap->oset, sizeof(oset)); 505 } 506 return (error); 507 } 508 509 /* 510 * MPSAFE 511 */ 512 int 513 kern_sigpending(struct __sigset *set) 514 { 515 struct lwp *lp = curthread->td_lwp; 516 517 *set = lwp_sigpend(lp); 518 519 return (0); 520 } 521 522 /* 523 * MPSAFE 524 */ 525 int 526 sys_sigpending(struct sigpending_args *uap) 527 { 528 sigset_t set; 529 int error; 530 531 error = kern_sigpending(&set); 532 533 if (error == 0) 534 error = copyout(&set, uap->set, sizeof(set)); 535 return (error); 536 } 537 538 /* 539 * Suspend process until signal, providing mask to be set 540 * in the meantime. 541 * 542 * MPSAFE 543 */ 544 int 545 kern_sigsuspend(struct __sigset *set) 546 { 547 struct thread *td = curthread; 548 struct lwp *lp = td->td_lwp; 549 struct proc *p = td->td_proc; 550 struct sigacts *ps = p->p_sigacts; 551 552 /* 553 * When returning from sigsuspend, we want 554 * the old mask to be restored after the 555 * signal handler has finished. Thus, we 556 * save it here and mark the sigacts structure 557 * to indicate this. 558 */ 559 lp->lwp_oldsigmask = lp->lwp_sigmask; 560 lp->lwp_flags |= LWP_OLDMASK; 561 562 SIG_CANTMASK(*set); 563 lp->lwp_sigmask = *set; 564 while (tsleep(ps, PCATCH, "pause", 0) == 0) 565 /* void */; 566 /* always return EINTR rather than ERESTART... */ 567 return (EINTR); 568 } 569 570 /* 571 * Note nonstandard calling convention: libc stub passes mask, not 572 * pointer, to save a copyin. 573 * 574 * MPSAFE 575 */ 576 int 577 sys_sigsuspend(struct sigsuspend_args *uap) 578 { 579 sigset_t mask; 580 int error; 581 582 error = copyin(uap->sigmask, &mask, sizeof(mask)); 583 if (error) 584 return (error); 585 586 error = kern_sigsuspend(&mask); 587 588 return (error); 589 } 590 591 /* 592 * MPSAFE 593 */ 594 int 595 kern_sigaltstack(struct sigaltstack *ss, struct sigaltstack *oss) 596 { 597 struct thread *td = curthread; 598 struct lwp *lp = td->td_lwp; 599 struct proc *p = td->td_proc; 600 601 if ((lp->lwp_flags & LWP_ALTSTACK) == 0) 602 lp->lwp_sigstk.ss_flags |= SS_DISABLE; 603 604 if (oss) 605 *oss = lp->lwp_sigstk; 606 607 if (ss) { 608 if (ss->ss_flags & SS_DISABLE) { 609 if (lp->lwp_sigstk.ss_flags & SS_ONSTACK) 610 return (EINVAL); 611 lp->lwp_flags &= ~LWP_ALTSTACK; 612 lp->lwp_sigstk.ss_flags = ss->ss_flags; 613 } else { 614 if (ss->ss_size < p->p_sysent->sv_minsigstksz) 615 return (ENOMEM); 616 lp->lwp_flags |= LWP_ALTSTACK; 617 lp->lwp_sigstk = *ss; 618 } 619 } 620 621 return (0); 622 } 623 624 /* 625 * MPSAFE 626 */ 627 int 628 sys_sigaltstack(struct sigaltstack_args *uap) 629 { 630 stack_t ss, oss; 631 int error; 632 633 if (uap->ss) { 634 error = copyin(uap->ss, &ss, sizeof(ss)); 635 if (error) 636 return (error); 637 } 638 639 error = kern_sigaltstack(uap->ss ? &ss : NULL, 640 uap->oss ? &oss : NULL); 641 642 if (error == 0 && uap->oss) 643 error = copyout(&oss, uap->oss, sizeof(*uap->oss)); 644 return (error); 645 } 646 647 /* 648 * Common code for kill process group/broadcast kill. 649 * cp is calling process. 650 */ 651 struct killpg_info { 652 int nfound; 653 int sig; 654 }; 655 656 static int killpg_all_callback(struct proc *p, void *data); 657 658 static int 659 dokillpg(int sig, int pgid, int all) 660 { 661 struct killpg_info info; 662 struct proc *cp = curproc; 663 struct proc *p; 664 struct pgrp *pgrp; 665 666 info.nfound = 0; 667 info.sig = sig; 668 669 if (all) { 670 /* 671 * broadcast 672 */ 673 allproc_scan(killpg_all_callback, &info); 674 } else { 675 if (pgid == 0) { 676 /* 677 * zero pgid means send to my process group. 678 */ 679 pgrp = cp->p_pgrp; 680 pgref(pgrp); 681 } else { 682 pgrp = pgfind(pgid); 683 if (pgrp == NULL) 684 return (ESRCH); 685 } 686 687 /* 688 * Must interlock all signals against fork 689 */ 690 lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE); 691 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 692 if (p->p_pid <= 1 || 693 p->p_stat == SZOMB || 694 (p->p_flags & P_SYSTEM) || 695 !CANSIGNAL(p, sig)) { 696 continue; 697 } 698 ++info.nfound; 699 if (sig) 700 ksignal(p, sig); 701 } 702 lockmgr(&pgrp->pg_lock, LK_RELEASE); 703 pgrel(pgrp); 704 } 705 return (info.nfound ? 0 : ESRCH); 706 } 707 708 static int 709 killpg_all_callback(struct proc *p, void *data) 710 { 711 struct killpg_info *info = data; 712 713 if (p->p_pid <= 1 || (p->p_flags & P_SYSTEM) || 714 p == curproc || !CANSIGNAL(p, info->sig)) { 715 return (0); 716 } 717 ++info->nfound; 718 if (info->sig) 719 ksignal(p, info->sig); 720 return(0); 721 } 722 723 /* 724 * Send a general signal to a process or LWPs within that process. 725 * 726 * Note that new signals cannot be sent if a process is exiting or already 727 * a zombie, but we return success anyway as userland is likely to not handle 728 * the race properly. 729 * 730 * No requirements. 731 */ 732 int 733 kern_kill(int sig, pid_t pid, lwpid_t tid) 734 { 735 int t; 736 737 if ((u_int)sig > _SIG_MAXSIG) 738 return (EINVAL); 739 740 lwkt_gettoken(&proc_token); 741 742 if (pid > 0) { 743 struct proc *p; 744 struct lwp *lp = NULL; 745 746 /* 747 * Send a signal to a single process. If the kill() is 748 * racing an exiting process which has not yet been reaped 749 * act as though the signal was delivered successfully but 750 * don't actually try to deliver the signal. 751 */ 752 if ((p = pfind(pid)) == NULL) { 753 if ((p = zpfind(pid)) == NULL) { 754 lwkt_reltoken(&proc_token); 755 return (ESRCH); 756 } 757 lwkt_reltoken(&proc_token); 758 PRELE(p); 759 return (0); 760 } 761 lwkt_gettoken(&p->p_token); 762 if (!CANSIGNAL(p, sig)) { 763 lwkt_reltoken(&p->p_token); 764 PRELE(p); 765 lwkt_reltoken(&proc_token); 766 return (EPERM); 767 } 768 769 /* 770 * NOP if the process is exiting. Note that lwpsignal() is 771 * called directly with P_WEXIT set to kill individual LWPs 772 * during exit, which is allowed. 773 */ 774 if (p->p_flags & P_WEXIT) { 775 lwkt_reltoken(&p->p_token); 776 PRELE(p); 777 lwkt_reltoken(&proc_token); 778 return (0); 779 } 780 if (tid != -1) { 781 lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, tid); 782 if (lp == NULL) { 783 lwkt_reltoken(&p->p_token); 784 PRELE(p); 785 lwkt_reltoken(&proc_token); 786 return (ESRCH); 787 } 788 } 789 if (sig) 790 lwpsignal(p, lp, sig); 791 lwkt_reltoken(&p->p_token); 792 PRELE(p); 793 lwkt_reltoken(&proc_token); 794 return (0); 795 } 796 797 /* 798 * If we come here, pid is a special broadcast pid. 799 * This doesn't mix with a tid. 800 */ 801 if (tid != -1) { 802 lwkt_reltoken(&proc_token); 803 return (EINVAL); 804 } 805 switch (pid) { 806 case -1: /* broadcast signal */ 807 t = (dokillpg(sig, 0, 1)); 808 break; 809 case 0: /* signal own process group */ 810 t = (dokillpg(sig, 0, 0)); 811 break; 812 default: /* negative explicit process group */ 813 t = (dokillpg(sig, -pid, 0)); 814 break; 815 } 816 lwkt_reltoken(&proc_token); 817 return t; 818 } 819 820 int 821 sys_kill(struct kill_args *uap) 822 { 823 int error; 824 825 error = kern_kill(uap->signum, uap->pid, -1); 826 return (error); 827 } 828 829 int 830 sys_lwp_kill(struct lwp_kill_args *uap) 831 { 832 int error; 833 pid_t pid = uap->pid; 834 835 /* 836 * A tid is mandatory for lwp_kill(), otherwise 837 * you could simply use kill(). 838 */ 839 if (uap->tid == -1) 840 return (EINVAL); 841 842 /* 843 * To save on a getpid() function call for intra-process 844 * signals, pid == -1 means current process. 845 */ 846 if (pid == -1) 847 pid = curproc->p_pid; 848 849 error = kern_kill(uap->signum, pid, uap->tid); 850 return (error); 851 } 852 853 /* 854 * Send a signal to a process group. 855 */ 856 void 857 gsignal(int pgid, int sig) 858 { 859 struct pgrp *pgrp; 860 861 if (pgid && (pgrp = pgfind(pgid))) 862 pgsignal(pgrp, sig, 0); 863 } 864 865 /* 866 * Send a signal to a process group. If checktty is 1, 867 * limit to members which have a controlling terminal. 868 * 869 * pg_lock interlocks against a fork that might be in progress, to 870 * ensure that the new child process picks up the signal. 871 */ 872 void 873 pgsignal(struct pgrp *pgrp, int sig, int checkctty) 874 { 875 struct proc *p; 876 877 /* 878 * Must interlock all signals against fork 879 */ 880 if (pgrp) { 881 pgref(pgrp); 882 lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE); 883 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 884 if (checkctty == 0 || p->p_flags & P_CONTROLT) 885 ksignal(p, sig); 886 } 887 lockmgr(&pgrp->pg_lock, LK_RELEASE); 888 pgrel(pgrp); 889 } 890 } 891 892 /* 893 * Send a signal caused by a trap to the current lwp. If it will be caught 894 * immediately, deliver it with correct code. Otherwise, post it normally. 895 * 896 * These signals may ONLY be delivered to the specified lwp and may never 897 * be delivered to the process generically. 898 */ 899 void 900 trapsignal(struct lwp *lp, int sig, u_long code) 901 { 902 struct proc *p = lp->lwp_proc; 903 struct sigacts *ps = p->p_sigacts; 904 905 /* 906 * If we are a virtual kernel running an emulated user process 907 * context, switch back to the virtual kernel context before 908 * trying to post the signal. 909 */ 910 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) { 911 struct trapframe *tf = lp->lwp_md.md_regs; 912 tf->tf_trapno = 0; 913 vkernel_trap(lp, tf); 914 } 915 916 917 if ((p->p_flags & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) && 918 !SIGISMEMBER(lp->lwp_sigmask, sig)) { 919 lp->lwp_ru.ru_nsignals++; 920 #ifdef KTRACE 921 if (KTRPOINT(lp->lwp_thread, KTR_PSIG)) 922 ktrpsig(lp, sig, ps->ps_sigact[_SIG_IDX(sig)], 923 &lp->lwp_sigmask, code); 924 #endif 925 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig, 926 &lp->lwp_sigmask, code); 927 SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]); 928 if (!SIGISMEMBER(ps->ps_signodefer, sig)) 929 SIGADDSET(lp->lwp_sigmask, sig); 930 if (SIGISMEMBER(ps->ps_sigreset, sig)) { 931 /* 932 * See kern_sigaction() for origin of this code. 933 */ 934 SIGDELSET(p->p_sigcatch, sig); 935 if (sig != SIGCONT && 936 sigprop(sig) & SA_IGNORE) 937 SIGADDSET(p->p_sigignore, sig); 938 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL; 939 } 940 } else { 941 lp->lwp_code = code; /* XXX for core dump/debugger */ 942 lp->lwp_sig = sig; /* XXX to verify code */ 943 lwpsignal(p, lp, sig); 944 } 945 } 946 947 /* 948 * Find a suitable lwp to deliver the signal to. Returns NULL if all 949 * lwps hold the signal blocked. 950 * 951 * Caller must hold p->p_token. 952 * 953 * Returns a lp or NULL. If non-NULL the lp is held and its token is 954 * acquired. 955 */ 956 static struct lwp * 957 find_lwp_for_signal(struct proc *p, int sig) 958 { 959 struct lwp *lp; 960 struct lwp *run, *sleep, *stop; 961 962 /* 963 * If the running/preempted thread belongs to the proc to which 964 * the signal is being delivered and this thread does not block 965 * the signal, then we can avoid a context switch by delivering 966 * the signal to this thread, because it will return to userland 967 * soon anyways. 968 */ 969 lp = lwkt_preempted_proc(); 970 if (lp != NULL && lp->lwp_proc == p) { 971 LWPHOLD(lp); 972 lwkt_gettoken(&lp->lwp_token); 973 if (!SIGISMEMBER(lp->lwp_sigmask, sig)) { 974 /* return w/ token held */ 975 return (lp); 976 } 977 lwkt_reltoken(&lp->lwp_token); 978 LWPRELE(lp); 979 } 980 981 run = sleep = stop = NULL; 982 FOREACH_LWP_IN_PROC(lp, p) { 983 /* 984 * If the signal is being blocked by the lwp, then this 985 * lwp is not eligible for receiving the signal. 986 */ 987 LWPHOLD(lp); 988 lwkt_gettoken(&lp->lwp_token); 989 990 if (SIGISMEMBER(lp->lwp_sigmask, sig)) { 991 lwkt_reltoken(&lp->lwp_token); 992 LWPRELE(lp); 993 continue; 994 } 995 996 switch (lp->lwp_stat) { 997 case LSRUN: 998 if (sleep) { 999 lwkt_token_swap(); 1000 lwkt_reltoken(&sleep->lwp_token); 1001 LWPRELE(sleep); 1002 sleep = NULL; 1003 run = lp; 1004 } else if (stop) { 1005 lwkt_token_swap(); 1006 lwkt_reltoken(&stop->lwp_token); 1007 LWPRELE(stop); 1008 stop = NULL; 1009 run = lp; 1010 } else { 1011 run = lp; 1012 } 1013 break; 1014 case LSSLEEP: 1015 if (lp->lwp_flags & LWP_SINTR) { 1016 if (sleep) { 1017 lwkt_reltoken(&lp->lwp_token); 1018 LWPRELE(lp); 1019 } else if (stop) { 1020 lwkt_token_swap(); 1021 lwkt_reltoken(&stop->lwp_token); 1022 LWPRELE(stop); 1023 stop = NULL; 1024 sleep = lp; 1025 } else { 1026 sleep = lp; 1027 } 1028 } else { 1029 lwkt_reltoken(&lp->lwp_token); 1030 LWPRELE(lp); 1031 } 1032 break; 1033 case LSSTOP: 1034 if (sleep) { 1035 lwkt_reltoken(&lp->lwp_token); 1036 LWPRELE(lp); 1037 } else if (stop) { 1038 lwkt_reltoken(&lp->lwp_token); 1039 LWPRELE(lp); 1040 } else { 1041 stop = lp; 1042 } 1043 break; 1044 } 1045 if (run) 1046 break; 1047 } 1048 1049 if (run != NULL) 1050 return (run); 1051 else if (sleep != NULL) 1052 return (sleep); 1053 else 1054 return (stop); 1055 } 1056 1057 /* 1058 * Send the signal to the process. If the signal has an action, the action 1059 * is usually performed by the target process rather than the caller; we add 1060 * the signal to the set of pending signals for the process. 1061 * 1062 * Exceptions: 1063 * o When a stop signal is sent to a sleeping process that takes the 1064 * default action, the process is stopped without awakening it. 1065 * o SIGCONT restarts stopped processes (or puts them back to sleep) 1066 * regardless of the signal action (eg, blocked or ignored). 1067 * 1068 * Other ignored signals are discarded immediately. 1069 * 1070 * If the caller wishes to call this function from a hard code section the 1071 * caller must already hold p->p_token (see kern_clock.c). 1072 * 1073 * No requirements. 1074 */ 1075 void 1076 ksignal(struct proc *p, int sig) 1077 { 1078 lwpsignal(p, NULL, sig); 1079 } 1080 1081 /* 1082 * The core for ksignal. lp may be NULL, then a suitable thread 1083 * will be chosen. If not, lp MUST be a member of p. 1084 * 1085 * If the caller wishes to call this function from a hard code section the 1086 * caller must already hold p->p_token. 1087 * 1088 * No requirements. 1089 */ 1090 void 1091 lwpsignal(struct proc *p, struct lwp *lp, int sig) 1092 { 1093 struct proc *q; 1094 sig_t action; 1095 int prop; 1096 1097 if (sig > _SIG_MAXSIG || sig <= 0) { 1098 kprintf("lwpsignal: signal %d\n", sig); 1099 panic("lwpsignal signal number"); 1100 } 1101 1102 KKASSERT(lp == NULL || lp->lwp_proc == p); 1103 1104 /* 1105 * We don't want to race... well, all sorts of things. Get appropriate 1106 * tokens. 1107 * 1108 * Don't try to deliver a generic signal to an exiting process, 1109 * the signal structures could be in flux. We check the LWP later 1110 * on. 1111 */ 1112 PHOLD(p); 1113 lwkt_gettoken(&p->p_token); 1114 if (lp) { 1115 LWPHOLD(lp); 1116 lwkt_gettoken(&lp->lwp_token); 1117 } else if (p->p_flags & P_WEXIT) { 1118 goto out; 1119 } 1120 1121 prop = sigprop(sig); 1122 1123 /* 1124 * If proc is traced, always give parent a chance; 1125 * if signal event is tracked by procfs, give *that* 1126 * a chance, as well. 1127 */ 1128 if ((p->p_flags & P_TRACED) || (p->p_stops & S_SIG)) { 1129 action = SIG_DFL; 1130 } else { 1131 /* 1132 * Do not try to deliver signals to an exiting lwp. Note 1133 * that we must still deliver the signal if P_WEXIT is set 1134 * in the process flags. 1135 */ 1136 if (lp && (lp->lwp_mpflags & LWP_MP_WEXIT)) { 1137 if (lp) { 1138 lwkt_reltoken(&lp->lwp_token); 1139 LWPRELE(lp); 1140 } 1141 lwkt_reltoken(&p->p_token); 1142 PRELE(p); 1143 return; 1144 } 1145 1146 /* 1147 * If the signal is being ignored, then we forget about 1148 * it immediately. NOTE: We don't set SIGCONT in p_sigignore, 1149 * and if it is set to SIG_IGN, action will be SIG_DFL here. 1150 */ 1151 if (SIGISMEMBER(p->p_sigignore, sig)) { 1152 /* 1153 * Even if a signal is set SIG_IGN, it may still be 1154 * lurking in a kqueue. 1155 */ 1156 KNOTE(&p->p_klist, NOTE_SIGNAL | sig); 1157 if (lp) { 1158 lwkt_reltoken(&lp->lwp_token); 1159 LWPRELE(lp); 1160 } 1161 lwkt_reltoken(&p->p_token); 1162 PRELE(p); 1163 return; 1164 } 1165 if (SIGISMEMBER(p->p_sigcatch, sig)) 1166 action = SIG_CATCH; 1167 else 1168 action = SIG_DFL; 1169 } 1170 1171 /* 1172 * If continuing, clear any pending STOP signals. 1173 */ 1174 if (prop & SA_CONT) 1175 SIG_STOPSIGMASK(p->p_siglist); 1176 1177 if (prop & SA_STOP) { 1178 /* 1179 * If sending a tty stop signal to a member of an orphaned 1180 * process group, discard the signal here if the action 1181 * is default; don't stop the process below if sleeping, 1182 * and don't clear any pending SIGCONT. 1183 */ 1184 if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 && 1185 action == SIG_DFL) { 1186 lwkt_reltoken(&p->p_token); 1187 PRELE(p); 1188 return; 1189 } 1190 SIG_CONTSIGMASK(p->p_siglist); 1191 p->p_flags &= ~P_CONTINUED; 1192 } 1193 1194 if (p->p_stat == SSTOP) { 1195 /* 1196 * Nobody can handle this signal, add it to the lwp or 1197 * process pending list 1198 */ 1199 if (lp) { 1200 spin_lock(&lp->lwp_spin); 1201 SIGADDSET(lp->lwp_siglist, sig); 1202 spin_unlock(&lp->lwp_spin); 1203 } else { 1204 SIGADDSET(p->p_siglist, sig); 1205 } 1206 1207 /* 1208 * If the process is stopped and is being traced, then no 1209 * further action is necessary. 1210 */ 1211 if (p->p_flags & P_TRACED) 1212 goto out; 1213 1214 /* 1215 * If the process is stopped and receives a KILL signal, 1216 * make the process runnable. 1217 */ 1218 if (sig == SIGKILL) { 1219 proc_unstop(p); 1220 goto active_process; 1221 } 1222 1223 /* 1224 * If the process is stopped and receives a CONT signal, 1225 * then try to make the process runnable again. 1226 */ 1227 if (prop & SA_CONT) { 1228 /* 1229 * If SIGCONT is default (or ignored), we continue the 1230 * process but don't leave the signal in p_siglist, as 1231 * it has no further action. If SIGCONT is held, we 1232 * continue the process and leave the signal in 1233 * p_siglist. If the process catches SIGCONT, let it 1234 * handle the signal itself. 1235 * 1236 * XXX what if the signal is being held blocked? 1237 * 1238 * Token required to interlock kern_wait(). 1239 * Reparenting can also cause a race so we have to 1240 * hold (q). 1241 */ 1242 q = p->p_pptr; 1243 PHOLD(q); 1244 lwkt_gettoken(&q->p_token); 1245 p->p_flags |= P_CONTINUED; 1246 wakeup(q); 1247 if (action == SIG_DFL) 1248 SIGDELSET(p->p_siglist, sig); 1249 proc_unstop(p); 1250 lwkt_reltoken(&q->p_token); 1251 PRELE(q); 1252 if (action == SIG_CATCH) 1253 goto active_process; 1254 goto out; 1255 } 1256 1257 /* 1258 * If the process is stopped and receives another STOP 1259 * signal, we do not need to stop it again. If we did 1260 * the shell could get confused. 1261 * 1262 * However, if the current/preempted lwp is part of the 1263 * process receiving the signal, we need to keep it, 1264 * so that this lwp can stop in issignal() later, as 1265 * we don't want to wait until it reaches userret! 1266 */ 1267 if (prop & SA_STOP) { 1268 if (lwkt_preempted_proc() == NULL || 1269 lwkt_preempted_proc()->lwp_proc != p) 1270 SIGDELSET(p->p_siglist, sig); 1271 } 1272 1273 /* 1274 * Otherwise the process is stopped and it received some 1275 * signal, which does not change its stopped state. When 1276 * the process is continued a wakeup(p) will be issued which 1277 * will wakeup any threads sleeping in tstop(). 1278 */ 1279 if (lp == NULL) { 1280 /* NOTE: returns lp w/ token held */ 1281 lp = find_lwp_for_signal(p, sig); 1282 } 1283 goto out; 1284 1285 /* NOTREACHED */ 1286 } 1287 /* else not stopped */ 1288 active_process: 1289 1290 /* 1291 * Never deliver a lwp-specific signal to a random lwp. 1292 */ 1293 if (lp == NULL) { 1294 /* NOTE: returns lp w/ token held */ 1295 lp = find_lwp_for_signal(p, sig); 1296 if (lp) { 1297 if (SIGISMEMBER(lp->lwp_sigmask, sig)) { 1298 lwkt_reltoken(&lp->lwp_token); 1299 LWPRELE(lp); 1300 lp = NULL; 1301 } 1302 } 1303 } 1304 1305 /* 1306 * Deliver to the process generically if (1) the signal is being 1307 * sent to any thread or (2) we could not find a thread to deliver 1308 * it to. 1309 */ 1310 if (lp == NULL) { 1311 SIGADDSET(p->p_siglist, sig); 1312 goto out; 1313 } 1314 1315 /* 1316 * Deliver to a specific LWP whether it masks it or not. It will 1317 * not be dispatched if masked but we must still deliver it. 1318 */ 1319 if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) && 1320 (p->p_flags & P_TRACED) == 0) { 1321 p->p_nice = NZERO; 1322 } 1323 1324 /* 1325 * If the process receives a STOP signal which indeed needs to 1326 * stop the process, do so. If the process chose to catch the 1327 * signal, it will be treated like any other signal. 1328 */ 1329 if ((prop & SA_STOP) && action == SIG_DFL) { 1330 /* 1331 * If a child holding parent blocked, stopping 1332 * could cause deadlock. Take no action at this 1333 * time. 1334 */ 1335 if (p->p_flags & P_PPWAIT) { 1336 SIGADDSET(p->p_siglist, sig); 1337 goto out; 1338 } 1339 1340 /* 1341 * Do not actually try to manipulate the process, but simply 1342 * stop it. Lwps will stop as soon as they safely can. 1343 * 1344 * Ignore stop if the process is exiting. 1345 */ 1346 if ((p->p_flags & P_WEXIT) == 0) { 1347 p->p_xstat = sig; 1348 proc_stop(p); 1349 } 1350 goto out; 1351 } 1352 1353 /* 1354 * If it is a CONT signal with default action, just ignore it. 1355 */ 1356 if ((prop & SA_CONT) && action == SIG_DFL) 1357 goto out; 1358 1359 /* 1360 * Mark signal pending at this specific thread. 1361 */ 1362 spin_lock(&lp->lwp_spin); 1363 SIGADDSET(lp->lwp_siglist, sig); 1364 spin_unlock(&lp->lwp_spin); 1365 1366 lwp_signotify(lp); 1367 1368 out: 1369 if (lp) { 1370 lwkt_reltoken(&lp->lwp_token); 1371 LWPRELE(lp); 1372 } 1373 lwkt_reltoken(&p->p_token); 1374 PRELE(p); 1375 } 1376 1377 /* 1378 * Notify the LWP that a signal has arrived. The LWP does not have to be 1379 * sleeping on the current cpu. 1380 * 1381 * p->p_token and lp->lwp_token must be held on call. 1382 * 1383 * We can only safely schedule the thread on its current cpu and only if 1384 * one of the SINTR flags is set. If an SINTR flag is set AND we are on 1385 * the correct cpu we are properly interlocked, otherwise we could be 1386 * racing other thread transition states (or the lwp is on the user scheduler 1387 * runq but not scheduled) and must not do anything. 1388 * 1389 * Since we hold the lwp token we know the lwp cannot be ripped out from 1390 * under us so we can safely hold it to prevent it from being ripped out 1391 * from under us if we are forced to IPI another cpu to make the local 1392 * checks there. 1393 * 1394 * Adjustment of lp->lwp_stat can only occur when we hold the lwp_token, 1395 * which we won't in an IPI so any fixups have to be done here, effectively 1396 * replicating part of what setrunnable() does. 1397 */ 1398 static void 1399 lwp_signotify(struct lwp *lp) 1400 { 1401 ASSERT_LWKT_TOKEN_HELD(&lp->lwp_proc->p_token); 1402 1403 crit_enter(); 1404 if (lp == lwkt_preempted_proc()) { 1405 /* 1406 * lwp is on the current cpu AND it is currently running 1407 * (we preempted it). 1408 */ 1409 signotify(); 1410 } else if (lp->lwp_flags & LWP_SINTR) { 1411 /* 1412 * lwp is sitting in tsleep() with PCATCH set 1413 */ 1414 if (lp->lwp_thread->td_gd == mycpu) { 1415 setrunnable(lp); 1416 } else { 1417 /* 1418 * We can only adjust lwp_stat while we hold the 1419 * lwp_token, and we won't in the IPI function. 1420 */ 1421 LWPHOLD(lp); 1422 if (lp->lwp_stat == LSSTOP) 1423 lp->lwp_stat = LSSLEEP; 1424 lwkt_send_ipiq(lp->lwp_thread->td_gd, 1425 lwp_signotify_remote, lp); 1426 } 1427 } else if (lp->lwp_thread->td_flags & TDF_SINTR) { 1428 /* 1429 * lwp is sitting in lwkt_sleep() with PCATCH set. 1430 */ 1431 if (lp->lwp_thread->td_gd == mycpu) { 1432 setrunnable(lp); 1433 } else { 1434 /* 1435 * We can only adjust lwp_stat while we hold the 1436 * lwp_token, and we won't in the IPI function. 1437 */ 1438 LWPHOLD(lp); 1439 if (lp->lwp_stat == LSSTOP) 1440 lp->lwp_stat = LSSLEEP; 1441 lwkt_send_ipiq(lp->lwp_thread->td_gd, 1442 lwp_signotify_remote, lp); 1443 } 1444 } else { 1445 /* 1446 * Otherwise the lwp is either in some uninterruptable state 1447 * or it is on the userland scheduler's runqueue waiting to 1448 * be scheduled to a cpu. 1449 */ 1450 } 1451 crit_exit(); 1452 } 1453 1454 /* 1455 * This function is called via an IPI so we cannot call setrunnable() here 1456 * (because while we hold the lp we don't own its token, and can't get it 1457 * from an IPI). 1458 * 1459 * We are interlocked by virtue of being on the same cpu as the target. If 1460 * we still are and LWP_SINTR or TDF_SINTR is set we can safely schedule 1461 * the target thread. 1462 */ 1463 static void 1464 lwp_signotify_remote(void *arg) 1465 { 1466 struct lwp *lp = arg; 1467 thread_t td = lp->lwp_thread; 1468 1469 if (lp == lwkt_preempted_proc()) { 1470 signotify(); 1471 LWPRELE(lp); 1472 } else if (td->td_gd == mycpu) { 1473 if ((lp->lwp_flags & LWP_SINTR) || 1474 (td->td_flags & TDF_SINTR)) { 1475 lwkt_schedule(td); 1476 } 1477 LWPRELE(lp); 1478 } else { 1479 lwkt_send_ipiq(td->td_gd, lwp_signotify_remote, lp); 1480 /* LWPHOLD() is forwarded to the target cpu */ 1481 } 1482 } 1483 1484 /* 1485 * Caller must hold p->p_token 1486 */ 1487 void 1488 proc_stop(struct proc *p) 1489 { 1490 struct proc *q; 1491 struct lwp *lp; 1492 1493 ASSERT_LWKT_TOKEN_HELD(&p->p_token); 1494 1495 /* If somebody raced us, be happy with it */ 1496 if (p->p_stat == SSTOP || p->p_stat == SZOMB) { 1497 return; 1498 } 1499 p->p_stat = SSTOP; 1500 1501 FOREACH_LWP_IN_PROC(lp, p) { 1502 LWPHOLD(lp); 1503 lwkt_gettoken(&lp->lwp_token); 1504 1505 switch (lp->lwp_stat) { 1506 case LSSTOP: 1507 /* 1508 * Do nothing, we are already counted in 1509 * p_nstopped. 1510 */ 1511 break; 1512 1513 case LSSLEEP: 1514 /* 1515 * We're sleeping, but we will stop before 1516 * returning to userspace, so count us 1517 * as stopped as well. We set LWP_MP_WSTOP 1518 * to signal the lwp that it should not 1519 * increase p_nstopped when reaching tstop(). 1520 * 1521 * LWP_MP_WSTOP is protected by lp->lwp_token. 1522 */ 1523 if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) { 1524 atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP); 1525 ++p->p_nstopped; 1526 } 1527 break; 1528 1529 case LSRUN: 1530 /* 1531 * We might notify ourself, but that's not 1532 * a problem. 1533 */ 1534 lwp_signotify(lp); 1535 break; 1536 } 1537 lwkt_reltoken(&lp->lwp_token); 1538 LWPRELE(lp); 1539 } 1540 1541 if (p->p_nstopped == p->p_nthreads) { 1542 /* 1543 * Token required to interlock kern_wait(). Reparenting can 1544 * also cause a race so we have to hold (q). 1545 */ 1546 q = p->p_pptr; 1547 PHOLD(q); 1548 lwkt_gettoken(&q->p_token); 1549 p->p_flags &= ~P_WAITED; 1550 wakeup(q); 1551 if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0) 1552 ksignal(p->p_pptr, SIGCHLD); 1553 lwkt_reltoken(&q->p_token); 1554 PRELE(q); 1555 } 1556 } 1557 1558 /* 1559 * Caller must hold proc_token 1560 */ 1561 void 1562 proc_unstop(struct proc *p) 1563 { 1564 struct lwp *lp; 1565 1566 ASSERT_LWKT_TOKEN_HELD(&p->p_token); 1567 1568 if (p->p_stat != SSTOP) 1569 return; 1570 1571 p->p_stat = SACTIVE; 1572 1573 FOREACH_LWP_IN_PROC(lp, p) { 1574 LWPHOLD(lp); 1575 lwkt_gettoken(&lp->lwp_token); 1576 1577 switch (lp->lwp_stat) { 1578 case LSRUN: 1579 /* 1580 * Uh? Not stopped? Well, I guess that's okay. 1581 */ 1582 if (bootverbose) 1583 kprintf("proc_unstop: lwp %d/%d not sleeping\n", 1584 p->p_pid, lp->lwp_tid); 1585 break; 1586 1587 case LSSLEEP: 1588 /* 1589 * Still sleeping. Don't bother waking it up. 1590 * However, if this thread was counted as 1591 * stopped, undo this. 1592 * 1593 * Nevertheless we call setrunnable() so that it 1594 * will wake up in case a signal or timeout arrived 1595 * in the meantime. 1596 * 1597 * LWP_MP_WSTOP is protected by lp->lwp_token. 1598 */ 1599 if (lp->lwp_mpflags & LWP_MP_WSTOP) { 1600 atomic_clear_int(&lp->lwp_mpflags, 1601 LWP_MP_WSTOP); 1602 --p->p_nstopped; 1603 } else { 1604 if (bootverbose) 1605 kprintf("proc_unstop: lwp %d/%d sleeping, not stopped\n", 1606 p->p_pid, lp->lwp_tid); 1607 } 1608 /* FALLTHROUGH */ 1609 1610 case LSSTOP: 1611 /* 1612 * This handles any lwp's waiting in a tsleep with 1613 * SIGCATCH. 1614 */ 1615 lwp_signotify(lp); 1616 break; 1617 1618 } 1619 lwkt_reltoken(&lp->lwp_token); 1620 LWPRELE(lp); 1621 } 1622 1623 /* 1624 * This handles any lwp's waiting in tstop(). We have interlocked 1625 * the setting of p_stat by acquiring and releasing each lpw's 1626 * token. 1627 */ 1628 wakeup(p); 1629 } 1630 1631 /* 1632 * No requirements. 1633 */ 1634 static int 1635 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout) 1636 { 1637 sigset_t savedmask, set; 1638 struct proc *p = curproc; 1639 struct lwp *lp = curthread->td_lwp; 1640 int error, sig, hz, timevalid = 0; 1641 struct timespec rts, ets, ts; 1642 struct timeval tv; 1643 1644 error = 0; 1645 sig = 0; 1646 ets.tv_sec = 0; /* silence compiler warning */ 1647 ets.tv_nsec = 0; /* silence compiler warning */ 1648 SIG_CANTMASK(waitset); 1649 savedmask = lp->lwp_sigmask; 1650 1651 if (timeout) { 1652 if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 && 1653 timeout->tv_nsec < 1000000000) { 1654 timevalid = 1; 1655 getnanouptime(&rts); 1656 ets = rts; 1657 timespecadd(&ets, timeout); 1658 } 1659 } 1660 1661 for (;;) { 1662 set = lwp_sigpend(lp); 1663 SIGSETAND(set, waitset); 1664 if ((sig = sig_ffs(&set)) != 0) { 1665 SIGFILLSET(lp->lwp_sigmask); 1666 SIGDELSET(lp->lwp_sigmask, sig); 1667 SIG_CANTMASK(lp->lwp_sigmask); 1668 sig = issignal(lp, 1); 1669 /* 1670 * It may be a STOP signal, in the case, issignal 1671 * returns 0, because we may stop there, and new 1672 * signal can come in, we should restart if we got 1673 * nothing. 1674 */ 1675 if (sig == 0) 1676 continue; 1677 else 1678 break; 1679 } 1680 1681 /* 1682 * Previous checking got nothing, and we retried but still 1683 * got nothing, we should return the error status. 1684 */ 1685 if (error) 1686 break; 1687 1688 /* 1689 * POSIX says this must be checked after looking for pending 1690 * signals. 1691 */ 1692 if (timeout) { 1693 if (timevalid == 0) { 1694 error = EINVAL; 1695 break; 1696 } 1697 getnanouptime(&rts); 1698 if (timespeccmp(&rts, &ets, >=)) { 1699 error = EAGAIN; 1700 break; 1701 } 1702 ts = ets; 1703 timespecsub(&ts, &rts); 1704 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1705 hz = tvtohz_high(&tv); 1706 } else { 1707 hz = 0; 1708 } 1709 1710 lp->lwp_sigmask = savedmask; 1711 SIGSETNAND(lp->lwp_sigmask, waitset); 1712 /* 1713 * We won't ever be woken up. Instead, our sleep will 1714 * be broken in lwpsignal(). 1715 */ 1716 error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz); 1717 if (timeout) { 1718 if (error == ERESTART) { 1719 /* can not restart a timeout wait. */ 1720 error = EINTR; 1721 } else if (error == EAGAIN) { 1722 /* will calculate timeout by ourself. */ 1723 error = 0; 1724 } 1725 } 1726 /* Retry ... */ 1727 } 1728 1729 lp->lwp_sigmask = savedmask; 1730 if (sig) { 1731 error = 0; 1732 bzero(info, sizeof(*info)); 1733 info->si_signo = sig; 1734 spin_lock(&lp->lwp_spin); 1735 lwp_delsig(lp, sig); /* take the signal! */ 1736 spin_unlock(&lp->lwp_spin); 1737 1738 if (sig == SIGKILL) { 1739 sigexit(lp, sig); 1740 /* NOT REACHED */ 1741 } 1742 } 1743 1744 return (error); 1745 } 1746 1747 /* 1748 * MPALMOSTSAFE 1749 */ 1750 int 1751 sys_sigtimedwait(struct sigtimedwait_args *uap) 1752 { 1753 struct timespec ts; 1754 struct timespec *timeout; 1755 sigset_t set; 1756 siginfo_t info; 1757 int error; 1758 1759 if (uap->timeout) { 1760 error = copyin(uap->timeout, &ts, sizeof(ts)); 1761 if (error) 1762 return (error); 1763 timeout = &ts; 1764 } else { 1765 timeout = NULL; 1766 } 1767 error = copyin(uap->set, &set, sizeof(set)); 1768 if (error) 1769 return (error); 1770 error = kern_sigtimedwait(set, &info, timeout); 1771 if (error) 1772 return (error); 1773 if (uap->info) 1774 error = copyout(&info, uap->info, sizeof(info)); 1775 /* Repost if we got an error. */ 1776 /* 1777 * XXX lwp 1778 * 1779 * This could transform a thread-specific signal to another 1780 * thread / process pending signal. 1781 */ 1782 if (error) { 1783 ksignal(curproc, info.si_signo); 1784 } else { 1785 uap->sysmsg_result = info.si_signo; 1786 } 1787 return (error); 1788 } 1789 1790 /* 1791 * MPALMOSTSAFE 1792 */ 1793 int 1794 sys_sigwaitinfo(struct sigwaitinfo_args *uap) 1795 { 1796 siginfo_t info; 1797 sigset_t set; 1798 int error; 1799 1800 error = copyin(uap->set, &set, sizeof(set)); 1801 if (error) 1802 return (error); 1803 error = kern_sigtimedwait(set, &info, NULL); 1804 if (error) 1805 return (error); 1806 if (uap->info) 1807 error = copyout(&info, uap->info, sizeof(info)); 1808 /* Repost if we got an error. */ 1809 /* 1810 * XXX lwp 1811 * 1812 * This could transform a thread-specific signal to another 1813 * thread / process pending signal. 1814 */ 1815 if (error) { 1816 ksignal(curproc, info.si_signo); 1817 } else { 1818 uap->sysmsg_result = info.si_signo; 1819 } 1820 return (error); 1821 } 1822 1823 /* 1824 * If the current process has received a signal that would interrupt a 1825 * system call, return EINTR or ERESTART as appropriate. 1826 */ 1827 int 1828 iscaught(struct lwp *lp) 1829 { 1830 struct proc *p = lp->lwp_proc; 1831 int sig; 1832 1833 if (p) { 1834 if ((sig = CURSIG(lp)) != 0) { 1835 if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig)) 1836 return (EINTR); 1837 return (ERESTART); 1838 } 1839 } 1840 return(EWOULDBLOCK); 1841 } 1842 1843 /* 1844 * If the current process has received a signal (should be caught or cause 1845 * termination, should interrupt current syscall), return the signal number. 1846 * Stop signals with default action are processed immediately, then cleared; 1847 * they aren't returned. This is checked after each entry to the system for 1848 * a syscall or trap (though this can usually be done without calling issignal 1849 * by checking the pending signal masks in the CURSIG macro). 1850 * 1851 * This routine is called via CURSIG/__cursig. We will acquire and release 1852 * p->p_token but if the caller needs to interlock the test the caller must 1853 * also hold p->p_token. 1854 * 1855 * while (sig = CURSIG(curproc)) 1856 * postsig(sig); 1857 * 1858 * MPSAFE 1859 */ 1860 int 1861 issignal(struct lwp *lp, int maytrace) 1862 { 1863 struct proc *p = lp->lwp_proc; 1864 sigset_t mask; 1865 int sig, prop; 1866 1867 lwkt_gettoken(&p->p_token); 1868 1869 for (;;) { 1870 int traced = (p->p_flags & P_TRACED) || (p->p_stops & S_SIG); 1871 1872 /* 1873 * If this process is supposed to stop, stop this thread. 1874 */ 1875 if (p->p_stat == SSTOP) 1876 tstop(); 1877 1878 mask = lwp_sigpend(lp); 1879 SIGSETNAND(mask, lp->lwp_sigmask); 1880 if (p->p_flags & P_PPWAIT) 1881 SIG_STOPSIGMASK(mask); 1882 if (SIGISEMPTY(mask)) { /* no signal to send */ 1883 lwkt_reltoken(&p->p_token); 1884 return (0); 1885 } 1886 sig = sig_ffs(&mask); 1887 1888 STOPEVENT(p, S_SIG, sig); 1889 1890 /* 1891 * We should see pending but ignored signals 1892 * only if P_TRACED was on when they were posted. 1893 */ 1894 if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) { 1895 spin_lock(&lp->lwp_spin); 1896 lwp_delsig(lp, sig); 1897 spin_unlock(&lp->lwp_spin); 1898 continue; 1899 } 1900 if (maytrace && 1901 (p->p_flags & P_TRACED) && 1902 (p->p_flags & P_PPWAIT) == 0) { 1903 /* 1904 * If traced, always stop, and stay stopped until 1905 * released by the parent. 1906 * 1907 * NOTE: SSTOP may get cleared during the loop, 1908 * but we do not re-notify the parent if we have 1909 * to loop several times waiting for the parent 1910 * to let us continue. 1911 * 1912 * XXX not sure if this is still true 1913 */ 1914 p->p_xstat = sig; 1915 proc_stop(p); 1916 do { 1917 tstop(); 1918 } while (!trace_req(p) && (p->p_flags & P_TRACED)); 1919 1920 /* 1921 * If parent wants us to take the signal, 1922 * then it will leave it in p->p_xstat; 1923 * otherwise we just look for signals again. 1924 */ 1925 spin_lock(&lp->lwp_spin); 1926 lwp_delsig(lp, sig); /* clear old signal */ 1927 spin_unlock(&lp->lwp_spin); 1928 sig = p->p_xstat; 1929 if (sig == 0) 1930 continue; 1931 1932 /* 1933 * Put the new signal into p_siglist. If the 1934 * signal is being masked, look for other signals. 1935 * 1936 * XXX lwp might need a call to ksignal() 1937 */ 1938 SIGADDSET(p->p_siglist, sig); 1939 if (SIGISMEMBER(lp->lwp_sigmask, sig)) 1940 continue; 1941 1942 /* 1943 * If the traced bit got turned off, go back up 1944 * to the top to rescan signals. This ensures 1945 * that p_sig* and ps_sigact are consistent. 1946 */ 1947 if ((p->p_flags & P_TRACED) == 0) 1948 continue; 1949 } 1950 1951 prop = sigprop(sig); 1952 1953 /* 1954 * Decide whether the signal should be returned. 1955 * Return the signal's number, or fall through 1956 * to clear it from the pending mask. 1957 */ 1958 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) { 1959 case (intptr_t)SIG_DFL: 1960 /* 1961 * Don't take default actions on system processes. 1962 */ 1963 if (p->p_pid <= 1) { 1964 #ifdef DIAGNOSTIC 1965 /* 1966 * Are you sure you want to ignore SIGSEGV 1967 * in init? XXX 1968 */ 1969 kprintf("Process (pid %lu) got signal %d\n", 1970 (u_long)p->p_pid, sig); 1971 #endif 1972 break; /* == ignore */ 1973 } 1974 1975 /* 1976 * Handle the in-kernel checkpoint action 1977 */ 1978 if (prop & SA_CKPT) { 1979 checkpoint_signal_handler(lp); 1980 break; 1981 } 1982 1983 /* 1984 * If there is a pending stop signal to process 1985 * with default action, stop here, 1986 * then clear the signal. However, 1987 * if process is member of an orphaned 1988 * process group, ignore tty stop signals. 1989 */ 1990 if (prop & SA_STOP) { 1991 if (p->p_flags & P_TRACED || 1992 (p->p_pgrp->pg_jobc == 0 && 1993 prop & SA_TTYSTOP)) 1994 break; /* == ignore */ 1995 if ((p->p_flags & P_WEXIT) == 0) { 1996 p->p_xstat = sig; 1997 proc_stop(p); 1998 tstop(); 1999 } 2000 break; 2001 } else if (prop & SA_IGNORE) { 2002 /* 2003 * Except for SIGCONT, shouldn't get here. 2004 * Default action is to ignore; drop it. 2005 */ 2006 break; /* == ignore */ 2007 } else { 2008 lwkt_reltoken(&p->p_token); 2009 return (sig); 2010 } 2011 2012 /*NOTREACHED*/ 2013 2014 case (intptr_t)SIG_IGN: 2015 /* 2016 * Masking above should prevent us ever trying 2017 * to take action on an ignored signal other 2018 * than SIGCONT, unless process is traced. 2019 */ 2020 if ((prop & SA_CONT) == 0 && 2021 (p->p_flags & P_TRACED) == 0) 2022 kprintf("issignal\n"); 2023 break; /* == ignore */ 2024 2025 default: 2026 /* 2027 * This signal has an action, let 2028 * postsig() process it. 2029 */ 2030 lwkt_reltoken(&p->p_token); 2031 return (sig); 2032 } 2033 spin_lock(&lp->lwp_spin); 2034 lwp_delsig(lp, sig); /* take the signal! */ 2035 spin_unlock(&lp->lwp_spin); 2036 } 2037 /* NOTREACHED */ 2038 } 2039 2040 /* 2041 * Take the action for the specified signal 2042 * from the current set of pending signals. 2043 * 2044 * Caller must hold p->p_token 2045 */ 2046 void 2047 postsig(int sig) 2048 { 2049 struct lwp *lp = curthread->td_lwp; 2050 struct proc *p = lp->lwp_proc; 2051 struct sigacts *ps = p->p_sigacts; 2052 sig_t action; 2053 sigset_t returnmask; 2054 int code; 2055 2056 KASSERT(sig != 0, ("postsig")); 2057 2058 KNOTE(&p->p_klist, NOTE_SIGNAL | sig); 2059 2060 /* 2061 * If we are a virtual kernel running an emulated user process 2062 * context, switch back to the virtual kernel context before 2063 * trying to post the signal. 2064 */ 2065 if (lp->lwp_vkernel && lp->lwp_vkernel->ve) { 2066 struct trapframe *tf = lp->lwp_md.md_regs; 2067 tf->tf_trapno = 0; 2068 vkernel_trap(lp, tf); 2069 } 2070 2071 spin_lock(&lp->lwp_spin); 2072 lwp_delsig(lp, sig); 2073 spin_unlock(&lp->lwp_spin); 2074 action = ps->ps_sigact[_SIG_IDX(sig)]; 2075 #ifdef KTRACE 2076 if (KTRPOINT(lp->lwp_thread, KTR_PSIG)) 2077 ktrpsig(lp, sig, action, lp->lwp_flags & LWP_OLDMASK ? 2078 &lp->lwp_oldsigmask : &lp->lwp_sigmask, 0); 2079 #endif 2080 STOPEVENT(p, S_SIG, sig); 2081 2082 if (action == SIG_DFL) { 2083 /* 2084 * Default action, where the default is to kill 2085 * the process. (Other cases were ignored above.) 2086 */ 2087 sigexit(lp, sig); 2088 /* NOTREACHED */ 2089 } else { 2090 /* 2091 * If we get here, the signal must be caught. 2092 */ 2093 KASSERT(action != SIG_IGN && !SIGISMEMBER(lp->lwp_sigmask, sig), 2094 ("postsig action")); 2095 2096 /* 2097 * Reset the signal handler if asked to 2098 */ 2099 if (SIGISMEMBER(ps->ps_sigreset, sig)) { 2100 /* 2101 * See kern_sigaction() for origin of this code. 2102 */ 2103 SIGDELSET(p->p_sigcatch, sig); 2104 if (sig != SIGCONT && 2105 sigprop(sig) & SA_IGNORE) 2106 SIGADDSET(p->p_sigignore, sig); 2107 ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL; 2108 } 2109 2110 /* 2111 * Set the signal mask and calculate the mask to restore 2112 * when the signal function returns. 2113 * 2114 * Special case: user has done a sigsuspend. Here the 2115 * current mask is not of interest, but rather the 2116 * mask from before the sigsuspend is what we want 2117 * restored after the signal processing is completed. 2118 */ 2119 if (lp->lwp_flags & LWP_OLDMASK) { 2120 returnmask = lp->lwp_oldsigmask; 2121 lp->lwp_flags &= ~LWP_OLDMASK; 2122 } else { 2123 returnmask = lp->lwp_sigmask; 2124 } 2125 2126 SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]); 2127 if (!SIGISMEMBER(ps->ps_signodefer, sig)) 2128 SIGADDSET(lp->lwp_sigmask, sig); 2129 2130 lp->lwp_ru.ru_nsignals++; 2131 if (lp->lwp_sig != sig) { 2132 code = 0; 2133 } else { 2134 code = lp->lwp_code; 2135 lp->lwp_code = 0; 2136 lp->lwp_sig = 0; 2137 } 2138 (*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code); 2139 } 2140 } 2141 2142 /* 2143 * Kill the current process for stated reason. 2144 */ 2145 void 2146 killproc(struct proc *p, char *why) 2147 { 2148 log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", 2149 p->p_pid, p->p_comm, 2150 p->p_ucred ? p->p_ucred->cr_uid : -1, why); 2151 ksignal(p, SIGKILL); 2152 } 2153 2154 /* 2155 * Force the current process to exit with the specified signal, dumping core 2156 * if appropriate. We bypass the normal tests for masked and caught signals, 2157 * allowing unrecoverable failures to terminate the process without changing 2158 * signal state. Mark the accounting record with the signal termination. 2159 * If dumping core, save the signal number for the debugger. Calls exit and 2160 * does not return. 2161 * 2162 * This routine does not return. 2163 */ 2164 void 2165 sigexit(struct lwp *lp, int sig) 2166 { 2167 struct proc *p = lp->lwp_proc; 2168 2169 lwkt_gettoken(&p->p_token); 2170 p->p_acflag |= AXSIG; 2171 if (sigprop(sig) & SA_CORE) { 2172 lp->lwp_sig = sig; 2173 /* 2174 * Log signals which would cause core dumps 2175 * (Log as LOG_INFO to appease those who don't want 2176 * these messages.) 2177 * XXX : Todo, as well as euid, write out ruid too 2178 */ 2179 if (coredump(lp, sig) == 0) 2180 sig |= WCOREFLAG; 2181 if (kern_logsigexit) 2182 log(LOG_INFO, 2183 "pid %d (%s), uid %d: exited on signal %d%s\n", 2184 p->p_pid, p->p_comm, 2185 p->p_ucred ? p->p_ucred->cr_uid : -1, 2186 sig &~ WCOREFLAG, 2187 sig & WCOREFLAG ? " (core dumped)" : ""); 2188 } 2189 lwkt_reltoken(&p->p_token); 2190 exit1(W_EXITCODE(0, sig)); 2191 /* NOTREACHED */ 2192 } 2193 2194 static char corefilename[MAXPATHLEN+1] = {"%N.core"}; 2195 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename, 2196 sizeof(corefilename), "process corefile name format string"); 2197 2198 /* 2199 * expand_name(name, uid, pid) 2200 * Expand the name described in corefilename, using name, uid, and pid. 2201 * corefilename is a kprintf-like string, with three format specifiers: 2202 * %N name of process ("name") 2203 * %P process id (pid) 2204 * %U user id (uid) 2205 * For example, "%N.core" is the default; they can be disabled completely 2206 * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P". 2207 * This is controlled by the sysctl variable kern.corefile (see above). 2208 */ 2209 2210 static char * 2211 expand_name(const char *name, uid_t uid, pid_t pid) 2212 { 2213 char *temp; 2214 char buf[11]; /* Buffer for pid/uid -- max 4B */ 2215 int i, n; 2216 char *format = corefilename; 2217 size_t namelen; 2218 2219 temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT); 2220 if (temp == NULL) 2221 return NULL; 2222 namelen = strlen(name); 2223 for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) { 2224 int l; 2225 switch (format[i]) { 2226 case '%': /* Format character */ 2227 i++; 2228 switch (format[i]) { 2229 case '%': 2230 temp[n++] = '%'; 2231 break; 2232 case 'N': /* process name */ 2233 if ((n + namelen) > MAXPATHLEN) { 2234 log(LOG_ERR, "pid %d (%s), uid (%u): Path `%s%s' is too long\n", 2235 pid, name, uid, temp, name); 2236 kfree(temp, M_TEMP); 2237 return NULL; 2238 } 2239 memcpy(temp+n, name, namelen); 2240 n += namelen; 2241 break; 2242 case 'P': /* process id */ 2243 l = ksprintf(buf, "%u", pid); 2244 if ((n + l) > MAXPATHLEN) { 2245 log(LOG_ERR, "pid %d (%s), uid (%u): Path `%s%s' is too long\n", 2246 pid, name, uid, temp, name); 2247 kfree(temp, M_TEMP); 2248 return NULL; 2249 } 2250 memcpy(temp+n, buf, l); 2251 n += l; 2252 break; 2253 case 'U': /* user id */ 2254 l = ksprintf(buf, "%u", uid); 2255 if ((n + l) > MAXPATHLEN) { 2256 log(LOG_ERR, "pid %d (%s), uid (%u): Path `%s%s' is too long\n", 2257 pid, name, uid, temp, name); 2258 kfree(temp, M_TEMP); 2259 return NULL; 2260 } 2261 memcpy(temp+n, buf, l); 2262 n += l; 2263 break; 2264 default: 2265 log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format); 2266 } 2267 break; 2268 default: 2269 temp[n++] = format[i]; 2270 } 2271 } 2272 temp[n] = '\0'; 2273 return temp; 2274 } 2275 2276 /* 2277 * Dump a process' core. The main routine does some 2278 * policy checking, and creates the name of the coredump; 2279 * then it passes on a vnode and a size limit to the process-specific 2280 * coredump routine if there is one; if there _is not_ one, it returns 2281 * ENOSYS; otherwise it returns the error from the process-specific routine. 2282 * 2283 * The parameter `lp' is the lwp which triggered the coredump. 2284 */ 2285 2286 static int 2287 coredump(struct lwp *lp, int sig) 2288 { 2289 struct proc *p = lp->lwp_proc; 2290 struct vnode *vp; 2291 struct ucred *cred = p->p_ucred; 2292 struct flock lf; 2293 struct nlookupdata nd; 2294 struct vattr vattr; 2295 int error, error1; 2296 char *name; /* name of corefile */ 2297 off_t limit; 2298 2299 STOPEVENT(p, S_CORE, 0); 2300 2301 if (((sugid_coredump == 0) && p->p_flags & P_SUGID) || do_coredump == 0) 2302 return (EFAULT); 2303 2304 /* 2305 * Note that the bulk of limit checking is done after 2306 * the corefile is created. The exception is if the limit 2307 * for corefiles is 0, in which case we don't bother 2308 * creating the corefile at all. This layout means that 2309 * a corefile is truncated instead of not being created, 2310 * if it is larger than the limit. 2311 */ 2312 limit = p->p_rlimit[RLIMIT_CORE].rlim_cur; 2313 if (limit == 0) 2314 return EFBIG; 2315 2316 name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid); 2317 if (name == NULL) 2318 return (EINVAL); 2319 error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP); 2320 if (error == 0) 2321 error = vn_open(&nd, NULL, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR); 2322 kfree(name, M_TEMP); 2323 if (error) { 2324 nlookup_done(&nd); 2325 return (error); 2326 } 2327 vp = nd.nl_open_vp; 2328 nd.nl_open_vp = NULL; 2329 nlookup_done(&nd); 2330 2331 vn_unlock(vp); 2332 lf.l_whence = SEEK_SET; 2333 lf.l_start = 0; 2334 lf.l_len = 0; 2335 lf.l_type = F_WRLCK; 2336 error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0); 2337 if (error) 2338 goto out2; 2339 2340 /* Don't dump to non-regular files or files with links. */ 2341 if (vp->v_type != VREG || 2342 VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) { 2343 error = EFAULT; 2344 goto out1; 2345 } 2346 2347 /* Don't dump to files current user does not own */ 2348 if (vattr.va_uid != p->p_ucred->cr_uid) { 2349 error = EFAULT; 2350 goto out1; 2351 } 2352 2353 VATTR_NULL(&vattr); 2354 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2355 vattr.va_size = 0; 2356 VOP_SETATTR(vp, &vattr, cred); 2357 p->p_acflag |= ACORE; 2358 vn_unlock(vp); 2359 2360 error = p->p_sysent->sv_coredump ? 2361 p->p_sysent->sv_coredump(lp, sig, vp, limit) : ENOSYS; 2362 2363 out1: 2364 lf.l_type = F_UNLCK; 2365 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0); 2366 out2: 2367 error1 = vn_close(vp, FWRITE); 2368 if (error == 0) 2369 error = error1; 2370 return (error); 2371 } 2372 2373 /* 2374 * Nonexistent system call-- signal process (may want to handle it). 2375 * Flag error in case process won't see signal immediately (blocked or ignored). 2376 * 2377 * MPALMOSTSAFE 2378 */ 2379 /* ARGSUSED */ 2380 int 2381 sys_nosys(struct nosys_args *args) 2382 { 2383 lwpsignal(curproc, curthread->td_lwp, SIGSYS); 2384 return (EINVAL); 2385 } 2386 2387 /* 2388 * Send a SIGIO or SIGURG signal to a process or process group using 2389 * stored credentials rather than those of the current process. 2390 */ 2391 void 2392 pgsigio(struct sigio *sigio, int sig, int checkctty) 2393 { 2394 if (sigio == NULL) 2395 return; 2396 2397 if (sigio->sio_pgid > 0) { 2398 if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, 2399 sigio->sio_proc)) 2400 ksignal(sigio->sio_proc, sig); 2401 } else if (sigio->sio_pgid < 0) { 2402 struct proc *p; 2403 struct pgrp *pg = sigio->sio_pgrp; 2404 2405 /* 2406 * Must interlock all signals against fork 2407 */ 2408 pgref(pg); 2409 lockmgr(&pg->pg_lock, LK_EXCLUSIVE); 2410 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 2411 if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) && 2412 (checkctty == 0 || (p->p_flags & P_CONTROLT))) 2413 ksignal(p, sig); 2414 } 2415 lockmgr(&pg->pg_lock, LK_RELEASE); 2416 pgrel(pg); 2417 } 2418 } 2419 2420 static int 2421 filt_sigattach(struct knote *kn) 2422 { 2423 struct proc *p = curproc; 2424 2425 kn->kn_ptr.p_proc = p; 2426 kn->kn_flags |= EV_CLEAR; /* automatically set */ 2427 2428 /* XXX lock the proc here while adding to the list? */ 2429 knote_insert(&p->p_klist, kn); 2430 2431 return (0); 2432 } 2433 2434 static void 2435 filt_sigdetach(struct knote *kn) 2436 { 2437 struct proc *p = kn->kn_ptr.p_proc; 2438 2439 knote_remove(&p->p_klist, kn); 2440 } 2441 2442 /* 2443 * signal knotes are shared with proc knotes, so we apply a mask to 2444 * the hint in order to differentiate them from process hints. This 2445 * could be avoided by using a signal-specific knote list, but probably 2446 * isn't worth the trouble. 2447 */ 2448 static int 2449 filt_signal(struct knote *kn, long hint) 2450 { 2451 if (hint & NOTE_SIGNAL) { 2452 hint &= ~NOTE_SIGNAL; 2453 2454 if (kn->kn_id == hint) 2455 kn->kn_data++; 2456 } 2457 return (kn->kn_data != 0); 2458 } 2459