xref: /dflybsd-src/sys/kern/kern_sig.c (revision d63cf9941d2a18200388107ed8db010f572a492b)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/sysproto.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/vnode.h>
47 #include <sys/event.h>
48 #include <sys/proc.h>
49 #include <sys/nlookup.h>
50 #include <sys/pioctl.h>
51 #include <sys/acct.h>
52 #include <sys/fcntl.h>
53 #include <sys/lock.h>
54 #include <sys/wait.h>
55 #include <sys/ktrace.h>
56 #include <sys/syslog.h>
57 #include <sys/stat.h>
58 #include <sys/sysent.h>
59 #include <sys/sysctl.h>
60 #include <sys/malloc.h>
61 #include <sys/interrupt.h>
62 #include <sys/unistd.h>
63 #include <sys/kern_syscall.h>
64 #include <sys/vkernel.h>
65 
66 #include <sys/signal2.h>
67 #include <sys/thread2.h>
68 #include <sys/spinlock2.h>
69 
70 #include <machine/cpu.h>
71 #include <machine/smp.h>
72 
73 static int	coredump(struct lwp *, int);
74 static char	*expand_name(const char *, uid_t, pid_t);
75 static int	dokillpg(int sig, int pgid, int all);
76 static int	sig_ffs(sigset_t *set);
77 static int	sigprop(int sig);
78 static void	lwp_signotify(struct lwp *lp);
79 static void	lwp_signotify_remote(void *arg);
80 static int	kern_sigtimedwait(sigset_t set, siginfo_t *info,
81 		    struct timespec *timeout);
82 
83 static int	filt_sigattach(struct knote *kn);
84 static void	filt_sigdetach(struct knote *kn);
85 static int	filt_signal(struct knote *kn, long hint);
86 
87 struct filterops sig_filtops =
88 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
89 
90 static int	kern_logsigexit = 1;
91 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
92     &kern_logsigexit, 0,
93     "Log processes quitting on abnormal signals to syslog(3)");
94 
95 /*
96  * Can process p, with pcred pc, send the signal sig to process q?
97  */
98 #define CANSIGNAL(q, sig) \
99 	(!p_trespass(curproc->p_ucred, (q)->p_ucred) || \
100 	((sig) == SIGCONT && (q)->p_session == curproc->p_session))
101 
102 /*
103  * Policy -- Can real uid ruid with ucred uc send a signal to process q?
104  */
105 #define CANSIGIO(ruid, uc, q) \
106 	((uc)->cr_uid == 0 || \
107 	    (ruid) == (q)->p_ucred->cr_ruid || \
108 	    (uc)->cr_uid == (q)->p_ucred->cr_ruid || \
109 	    (ruid) == (q)->p_ucred->cr_uid || \
110 	    (uc)->cr_uid == (q)->p_ucred->cr_uid)
111 
112 int sugid_coredump;
113 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
114 	&sugid_coredump, 0, "Enable coredumping set user/group ID processes");
115 
116 static int	do_coredump = 1;
117 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
118 	&do_coredump, 0, "Enable/Disable coredumps");
119 
120 /*
121  * Signal properties and actions.
122  * The array below categorizes the signals and their default actions
123  * according to the following properties:
124  */
125 #define	SA_KILL		0x01		/* terminates process by default */
126 #define	SA_CORE		0x02		/* ditto and coredumps */
127 #define	SA_STOP		0x04		/* suspend process */
128 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
129 #define	SA_IGNORE	0x10		/* ignore by default */
130 #define	SA_CONT		0x20		/* continue if suspended */
131 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
132 #define SA_CKPT         0x80            /* checkpoint process */
133 
134 
135 static int sigproptbl[NSIG] = {
136         SA_KILL,                /* SIGHUP */
137         SA_KILL,                /* SIGINT */
138         SA_KILL|SA_CORE,        /* SIGQUIT */
139         SA_KILL|SA_CORE,        /* SIGILL */
140         SA_KILL|SA_CORE,        /* SIGTRAP */
141         SA_KILL|SA_CORE,        /* SIGABRT */
142         SA_KILL|SA_CORE,        /* SIGEMT */
143         SA_KILL|SA_CORE,        /* SIGFPE */
144         SA_KILL,                /* SIGKILL */
145         SA_KILL|SA_CORE,        /* SIGBUS */
146         SA_KILL|SA_CORE,        /* SIGSEGV */
147         SA_KILL|SA_CORE,        /* SIGSYS */
148         SA_KILL,                /* SIGPIPE */
149         SA_KILL,                /* SIGALRM */
150         SA_KILL,                /* SIGTERM */
151         SA_IGNORE,              /* SIGURG */
152         SA_STOP,                /* SIGSTOP */
153         SA_STOP|SA_TTYSTOP,     /* SIGTSTP */
154         SA_IGNORE|SA_CONT,      /* SIGCONT */
155         SA_IGNORE,              /* SIGCHLD */
156         SA_STOP|SA_TTYSTOP,     /* SIGTTIN */
157         SA_STOP|SA_TTYSTOP,     /* SIGTTOU */
158         SA_IGNORE,              /* SIGIO */
159         SA_KILL,                /* SIGXCPU */
160         SA_KILL,                /* SIGXFSZ */
161         SA_KILL,                /* SIGVTALRM */
162         SA_KILL,                /* SIGPROF */
163         SA_IGNORE,              /* SIGWINCH  */
164         SA_IGNORE,              /* SIGINFO */
165         SA_KILL,                /* SIGUSR1 */
166         SA_KILL,                /* SIGUSR2 */
167 	SA_IGNORE,              /* SIGTHR */
168 	SA_CKPT,                /* SIGCKPT */
169 	SA_KILL|SA_CKPT,        /* SIGCKPTEXIT */
170 	SA_IGNORE,
171 	SA_IGNORE,
172 	SA_IGNORE,
173 	SA_IGNORE,
174 	SA_IGNORE,
175 	SA_IGNORE,
176 	SA_IGNORE,
177 	SA_IGNORE,
178 	SA_IGNORE,
179 	SA_IGNORE,
180 	SA_IGNORE,
181 	SA_IGNORE,
182 	SA_IGNORE,
183 	SA_IGNORE,
184 	SA_IGNORE,
185 	SA_IGNORE,
186 	SA_IGNORE,
187 	SA_IGNORE,
188 	SA_IGNORE,
189 	SA_IGNORE,
190 	SA_IGNORE,
191 	SA_IGNORE,
192 	SA_IGNORE,
193 	SA_IGNORE,
194 	SA_IGNORE,
195 	SA_IGNORE,
196 	SA_IGNORE,
197 	SA_IGNORE,
198 	SA_IGNORE,
199 	SA_IGNORE,
200 
201 };
202 
203 static __inline int
204 sigprop(int sig)
205 {
206 
207 	if (sig > 0 && sig < NSIG)
208 		return (sigproptbl[_SIG_IDX(sig)]);
209 	return (0);
210 }
211 
212 static __inline int
213 sig_ffs(sigset_t *set)
214 {
215 	int i;
216 
217 	for (i = 0; i < _SIG_WORDS; i++)
218 		if (set->__bits[i])
219 			return (ffs(set->__bits[i]) + (i * 32));
220 	return (0);
221 }
222 
223 /*
224  * No requirements.
225  */
226 int
227 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact)
228 {
229 	struct thread *td = curthread;
230 	struct proc *p = td->td_proc;
231 	struct lwp *lp;
232 	struct sigacts *ps = p->p_sigacts;
233 
234 	if (sig <= 0 || sig > _SIG_MAXSIG)
235 		return (EINVAL);
236 
237 	lwkt_gettoken(&p->p_token);
238 
239 	if (oact) {
240 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
241 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
242 		oact->sa_flags = 0;
243 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
244 			oact->sa_flags |= SA_ONSTACK;
245 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
246 			oact->sa_flags |= SA_RESTART;
247 		if (SIGISMEMBER(ps->ps_sigreset, sig))
248 			oact->sa_flags |= SA_RESETHAND;
249 		if (SIGISMEMBER(ps->ps_signodefer, sig))
250 			oact->sa_flags |= SA_NODEFER;
251 		if (SIGISMEMBER(ps->ps_siginfo, sig))
252 			oact->sa_flags |= SA_SIGINFO;
253 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDSTOP)
254 			oact->sa_flags |= SA_NOCLDSTOP;
255 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDWAIT)
256 			oact->sa_flags |= SA_NOCLDWAIT;
257 	}
258 	if (act) {
259 		/*
260 		 * Check for invalid requests.  KILL and STOP cannot be
261 		 * caught.
262 		 */
263 		if (sig == SIGKILL || sig == SIGSTOP) {
264 			if (act->sa_handler != SIG_DFL) {
265 				lwkt_reltoken(&p->p_token);
266 				return (EINVAL);
267 			}
268 		}
269 
270 		/*
271 		 * Change setting atomically.
272 		 */
273 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
274 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
275 		if (act->sa_flags & SA_SIGINFO) {
276 			ps->ps_sigact[_SIG_IDX(sig)] =
277 			    (__sighandler_t *)act->sa_sigaction;
278 			SIGADDSET(ps->ps_siginfo, sig);
279 		} else {
280 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
281 			SIGDELSET(ps->ps_siginfo, sig);
282 		}
283 		if (!(act->sa_flags & SA_RESTART))
284 			SIGADDSET(ps->ps_sigintr, sig);
285 		else
286 			SIGDELSET(ps->ps_sigintr, sig);
287 		if (act->sa_flags & SA_ONSTACK)
288 			SIGADDSET(ps->ps_sigonstack, sig);
289 		else
290 			SIGDELSET(ps->ps_sigonstack, sig);
291 		if (act->sa_flags & SA_RESETHAND)
292 			SIGADDSET(ps->ps_sigreset, sig);
293 		else
294 			SIGDELSET(ps->ps_sigreset, sig);
295 		if (act->sa_flags & SA_NODEFER)
296 			SIGADDSET(ps->ps_signodefer, sig);
297 		else
298 			SIGDELSET(ps->ps_signodefer, sig);
299 		if (sig == SIGCHLD) {
300 			if (act->sa_flags & SA_NOCLDSTOP)
301 				p->p_sigacts->ps_flag |= PS_NOCLDSTOP;
302 			else
303 				p->p_sigacts->ps_flag &= ~PS_NOCLDSTOP;
304 			if (act->sa_flags & SA_NOCLDWAIT) {
305 				/*
306 				 * Paranoia: since SA_NOCLDWAIT is implemented
307 				 * by reparenting the dying child to PID 1 (and
308 				 * trust it to reap the zombie), PID 1 itself
309 				 * is forbidden to set SA_NOCLDWAIT.
310 				 */
311 				if (p->p_pid == 1)
312 					p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
313 				else
314 					p->p_sigacts->ps_flag |= PS_NOCLDWAIT;
315 			} else {
316 				p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
317 			}
318 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
319 				ps->ps_flag |= PS_CLDSIGIGN;
320 			else
321 				ps->ps_flag &= ~PS_CLDSIGIGN;
322 		}
323 		/*
324 		 * Set bit in p_sigignore for signals that are set to SIG_IGN,
325 		 * and for signals set to SIG_DFL where the default is to
326 		 * ignore. However, don't put SIGCONT in p_sigignore, as we
327 		 * have to restart the process.
328 		 *
329 		 * Also remove the signal from the process and lwp signal
330 		 * list.
331 		 */
332 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
333 		    (sigprop(sig) & SA_IGNORE &&
334 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
335 			SIGDELSET(p->p_siglist, sig);
336 			FOREACH_LWP_IN_PROC(lp, p) {
337 				spin_lock(&lp->lwp_spin);
338 				SIGDELSET(lp->lwp_siglist, sig);
339 				spin_unlock(&lp->lwp_spin);
340 			}
341 			if (sig != SIGCONT) {
342 				/* easier in ksignal */
343 				SIGADDSET(p->p_sigignore, sig);
344 			}
345 			SIGDELSET(p->p_sigcatch, sig);
346 		} else {
347 			SIGDELSET(p->p_sigignore, sig);
348 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
349 				SIGDELSET(p->p_sigcatch, sig);
350 			else
351 				SIGADDSET(p->p_sigcatch, sig);
352 		}
353 	}
354 	lwkt_reltoken(&p->p_token);
355 	return (0);
356 }
357 
358 int
359 sys_sigaction(struct sigaction_args *uap)
360 {
361 	struct sigaction act, oact;
362 	struct sigaction *actp, *oactp;
363 	int error;
364 
365 	actp = (uap->act != NULL) ? &act : NULL;
366 	oactp = (uap->oact != NULL) ? &oact : NULL;
367 	if (actp) {
368 		error = copyin(uap->act, actp, sizeof(act));
369 		if (error)
370 			return (error);
371 	}
372 	error = kern_sigaction(uap->sig, actp, oactp);
373 	if (oactp && !error) {
374 		error = copyout(oactp, uap->oact, sizeof(oact));
375 	}
376 	return (error);
377 }
378 
379 /*
380  * Initialize signal state for process 0;
381  * set to ignore signals that are ignored by default.
382  */
383 void
384 siginit(struct proc *p)
385 {
386 	int i;
387 
388 	for (i = 1; i <= NSIG; i++)
389 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
390 			SIGADDSET(p->p_sigignore, i);
391 }
392 
393 /*
394  * Reset signals for an exec of the specified process.
395  */
396 void
397 execsigs(struct proc *p)
398 {
399 	struct sigacts *ps = p->p_sigacts;
400 	struct lwp *lp;
401 	int sig;
402 
403 	lp = ONLY_LWP_IN_PROC(p);
404 
405 	/*
406 	 * Reset caught signals.  Held signals remain held
407 	 * through p_sigmask (unless they were caught,
408 	 * and are now ignored by default).
409 	 */
410 	while (SIGNOTEMPTY(p->p_sigcatch)) {
411 		sig = sig_ffs(&p->p_sigcatch);
412 		SIGDELSET(p->p_sigcatch, sig);
413 		if (sigprop(sig) & SA_IGNORE) {
414 			if (sig != SIGCONT)
415 				SIGADDSET(p->p_sigignore, sig);
416 			SIGDELSET(p->p_siglist, sig);
417 			/* don't need spinlock */
418 			SIGDELSET(lp->lwp_siglist, sig);
419 		}
420 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
421 	}
422 
423 	/*
424 	 * Reset stack state to the user stack.
425 	 * Clear set of signals caught on the signal stack.
426 	 */
427 	lp->lwp_sigstk.ss_flags = SS_DISABLE;
428 	lp->lwp_sigstk.ss_size = 0;
429 	lp->lwp_sigstk.ss_sp = NULL;
430 	lp->lwp_flags &= ~LWP_ALTSTACK;
431 	/*
432 	 * Reset no zombies if child dies flag as Solaris does.
433 	 */
434 	p->p_sigacts->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
435 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
436 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
437 }
438 
439 /*
440  * kern_sigprocmask() - MP SAFE ONLY IF p == curproc
441  *
442  *	Manipulate signal mask.  This routine is MP SAFE *ONLY* if
443  *	p == curproc.
444  */
445 int
446 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset)
447 {
448 	struct thread *td = curthread;
449 	struct lwp *lp = td->td_lwp;
450 	struct proc *p = td->td_proc;
451 	int error;
452 
453 	lwkt_gettoken(&p->p_token);
454 
455 	if (oset != NULL)
456 		*oset = lp->lwp_sigmask;
457 
458 	error = 0;
459 	if (set != NULL) {
460 		switch (how) {
461 		case SIG_BLOCK:
462 			SIG_CANTMASK(*set);
463 			SIGSETOR(lp->lwp_sigmask, *set);
464 			break;
465 		case SIG_UNBLOCK:
466 			SIGSETNAND(lp->lwp_sigmask, *set);
467 			break;
468 		case SIG_SETMASK:
469 			SIG_CANTMASK(*set);
470 			lp->lwp_sigmask = *set;
471 			break;
472 		default:
473 			error = EINVAL;
474 			break;
475 		}
476 	}
477 
478 	lwkt_reltoken(&p->p_token);
479 
480 	return (error);
481 }
482 
483 /*
484  * sigprocmask()
485  *
486  * MPSAFE
487  */
488 int
489 sys_sigprocmask(struct sigprocmask_args *uap)
490 {
491 	sigset_t set, oset;
492 	sigset_t *setp, *osetp;
493 	int error;
494 
495 	setp = (uap->set != NULL) ? &set : NULL;
496 	osetp = (uap->oset != NULL) ? &oset : NULL;
497 	if (setp) {
498 		error = copyin(uap->set, setp, sizeof(set));
499 		if (error)
500 			return (error);
501 	}
502 	error = kern_sigprocmask(uap->how, setp, osetp);
503 	if (osetp && !error) {
504 		error = copyout(osetp, uap->oset, sizeof(oset));
505 	}
506 	return (error);
507 }
508 
509 /*
510  * MPSAFE
511  */
512 int
513 kern_sigpending(struct __sigset *set)
514 {
515 	struct lwp *lp = curthread->td_lwp;
516 
517 	*set = lwp_sigpend(lp);
518 
519 	return (0);
520 }
521 
522 /*
523  * MPSAFE
524  */
525 int
526 sys_sigpending(struct sigpending_args *uap)
527 {
528 	sigset_t set;
529 	int error;
530 
531 	error = kern_sigpending(&set);
532 
533 	if (error == 0)
534 		error = copyout(&set, uap->set, sizeof(set));
535 	return (error);
536 }
537 
538 /*
539  * Suspend process until signal, providing mask to be set
540  * in the meantime.
541  *
542  * MPSAFE
543  */
544 int
545 kern_sigsuspend(struct __sigset *set)
546 {
547 	struct thread *td = curthread;
548 	struct lwp *lp = td->td_lwp;
549 	struct proc *p = td->td_proc;
550 	struct sigacts *ps = p->p_sigacts;
551 
552 	/*
553 	 * When returning from sigsuspend, we want
554 	 * the old mask to be restored after the
555 	 * signal handler has finished.  Thus, we
556 	 * save it here and mark the sigacts structure
557 	 * to indicate this.
558 	 */
559 	lp->lwp_oldsigmask = lp->lwp_sigmask;
560 	lp->lwp_flags |= LWP_OLDMASK;
561 
562 	SIG_CANTMASK(*set);
563 	lp->lwp_sigmask = *set;
564 	while (tsleep(ps, PCATCH, "pause", 0) == 0)
565 		/* void */;
566 	/* always return EINTR rather than ERESTART... */
567 	return (EINTR);
568 }
569 
570 /*
571  * Note nonstandard calling convention: libc stub passes mask, not
572  * pointer, to save a copyin.
573  *
574  * MPSAFE
575  */
576 int
577 sys_sigsuspend(struct sigsuspend_args *uap)
578 {
579 	sigset_t mask;
580 	int error;
581 
582 	error = copyin(uap->sigmask, &mask, sizeof(mask));
583 	if (error)
584 		return (error);
585 
586 	error = kern_sigsuspend(&mask);
587 
588 	return (error);
589 }
590 
591 /*
592  * MPSAFE
593  */
594 int
595 kern_sigaltstack(struct sigaltstack *ss, struct sigaltstack *oss)
596 {
597 	struct thread *td = curthread;
598 	struct lwp *lp = td->td_lwp;
599 	struct proc *p = td->td_proc;
600 
601 	if ((lp->lwp_flags & LWP_ALTSTACK) == 0)
602 		lp->lwp_sigstk.ss_flags |= SS_DISABLE;
603 
604 	if (oss)
605 		*oss = lp->lwp_sigstk;
606 
607 	if (ss) {
608 		if (ss->ss_flags & ~SS_DISABLE)
609 			return (EINVAL);
610 		if (ss->ss_flags & SS_DISABLE) {
611 			if (lp->lwp_sigstk.ss_flags & SS_ONSTACK)
612 				return (EINVAL);
613 			lp->lwp_flags &= ~LWP_ALTSTACK;
614 			lp->lwp_sigstk.ss_flags = ss->ss_flags;
615 		} else {
616 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
617 				return (ENOMEM);
618 			lp->lwp_flags |= LWP_ALTSTACK;
619 			lp->lwp_sigstk = *ss;
620 		}
621 	}
622 
623 	return (0);
624 }
625 
626 /*
627  * MPSAFE
628  */
629 int
630 sys_sigaltstack(struct sigaltstack_args *uap)
631 {
632 	stack_t ss, oss;
633 	int error;
634 
635 	if (uap->ss) {
636 		error = copyin(uap->ss, &ss, sizeof(ss));
637 		if (error)
638 			return (error);
639 	}
640 
641 	error = kern_sigaltstack(uap->ss ? &ss : NULL,
642 	    uap->oss ? &oss : NULL);
643 
644 	if (error == 0 && uap->oss)
645 		error = copyout(&oss, uap->oss, sizeof(*uap->oss));
646 	return (error);
647 }
648 
649 /*
650  * Common code for kill process group/broadcast kill.
651  * cp is calling process.
652  */
653 struct killpg_info {
654 	int nfound;
655 	int sig;
656 };
657 
658 static int killpg_all_callback(struct proc *p, void *data);
659 
660 static int
661 dokillpg(int sig, int pgid, int all)
662 {
663 	struct killpg_info info;
664 	struct proc *cp = curproc;
665 	struct proc *p;
666 	struct pgrp *pgrp;
667 
668 	info.nfound = 0;
669 	info.sig = sig;
670 
671 	if (all) {
672 		/*
673 		 * broadcast
674 		 */
675 		allproc_scan(killpg_all_callback, &info);
676 	} else {
677 		if (pgid == 0) {
678 			/*
679 			 * zero pgid means send to my process group.
680 			 */
681 			pgrp = cp->p_pgrp;
682 			pgref(pgrp);
683 		} else {
684 			pgrp = pgfind(pgid);
685 			if (pgrp == NULL)
686 				return (ESRCH);
687 		}
688 
689 		/*
690 		 * Must interlock all signals against fork
691 		 */
692 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
693 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
694 			if (p->p_pid <= 1 ||
695 			    p->p_stat == SZOMB ||
696 			    (p->p_flags & P_SYSTEM) ||
697 			    !CANSIGNAL(p, sig)) {
698 				continue;
699 			}
700 			++info.nfound;
701 			if (sig)
702 				ksignal(p, sig);
703 		}
704 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
705 		pgrel(pgrp);
706 	}
707 	return (info.nfound ? 0 : ESRCH);
708 }
709 
710 static int
711 killpg_all_callback(struct proc *p, void *data)
712 {
713 	struct killpg_info *info = data;
714 
715 	if (p->p_pid <= 1 || (p->p_flags & P_SYSTEM) ||
716 	    p == curproc || !CANSIGNAL(p, info->sig)) {
717 		return (0);
718 	}
719 	++info->nfound;
720 	if (info->sig)
721 		ksignal(p, info->sig);
722 	return(0);
723 }
724 
725 /*
726  * Send a general signal to a process or LWPs within that process.
727  *
728  * Note that new signals cannot be sent if a process is exiting or already
729  * a zombie, but we return success anyway as userland is likely to not handle
730  * the race properly.
731  *
732  * No requirements.
733  */
734 int
735 kern_kill(int sig, pid_t pid, lwpid_t tid)
736 {
737 	int t;
738 
739 	if ((u_int)sig > _SIG_MAXSIG)
740 		return (EINVAL);
741 
742 	lwkt_gettoken(&proc_token);
743 
744 	if (pid > 0) {
745 		struct proc *p;
746 		struct lwp *lp = NULL;
747 
748 		/*
749 		 * Send a signal to a single process.  If the kill() is
750 		 * racing an exiting process which has not yet been reaped
751 		 * act as though the signal was delivered successfully but
752 		 * don't actually try to deliver the signal.
753 		 */
754 		if ((p = pfind(pid)) == NULL) {
755 			if ((p = zpfind(pid)) == NULL) {
756 				lwkt_reltoken(&proc_token);
757 				return (ESRCH);
758 			}
759 			lwkt_reltoken(&proc_token);
760 			PRELE(p);
761 			return (0);
762 		}
763 		lwkt_gettoken(&p->p_token);
764 		if (!CANSIGNAL(p, sig)) {
765 			lwkt_reltoken(&p->p_token);
766 			PRELE(p);
767 			lwkt_reltoken(&proc_token);
768 			return (EPERM);
769 		}
770 
771 		/*
772 		 * NOP if the process is exiting.  Note that lwpsignal() is
773 		 * called directly with P_WEXIT set to kill individual LWPs
774 		 * during exit, which is allowed.
775 		 */
776 		if (p->p_flags & P_WEXIT) {
777 			lwkt_reltoken(&p->p_token);
778 			PRELE(p);
779 			lwkt_reltoken(&proc_token);
780 			return (0);
781 		}
782 		if (tid != -1) {
783 			lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree, tid);
784 			if (lp == NULL) {
785 				lwkt_reltoken(&p->p_token);
786 				PRELE(p);
787 				lwkt_reltoken(&proc_token);
788 				return (ESRCH);
789 			}
790 		}
791 		if (sig)
792 			lwpsignal(p, lp, sig);
793 		lwkt_reltoken(&p->p_token);
794 		PRELE(p);
795 		lwkt_reltoken(&proc_token);
796 		return (0);
797 	}
798 
799 	/*
800 	 * If we come here, pid is a special broadcast pid.
801 	 * This doesn't mix with a tid.
802 	 */
803 	if (tid != -1) {
804 		lwkt_reltoken(&proc_token);
805 		return (EINVAL);
806 	}
807 	switch (pid) {
808 	case -1:		/* broadcast signal */
809 		t = (dokillpg(sig, 0, 1));
810 		break;
811 	case 0:			/* signal own process group */
812 		t = (dokillpg(sig, 0, 0));
813 		break;
814 	default:		/* negative explicit process group */
815 		t = (dokillpg(sig, -pid, 0));
816 		break;
817 	}
818 	lwkt_reltoken(&proc_token);
819 	return t;
820 }
821 
822 int
823 sys_kill(struct kill_args *uap)
824 {
825 	int error;
826 
827 	error = kern_kill(uap->signum, uap->pid, -1);
828 	return (error);
829 }
830 
831 int
832 sys_lwp_kill(struct lwp_kill_args *uap)
833 {
834 	int error;
835 	pid_t pid = uap->pid;
836 
837 	/*
838 	 * A tid is mandatory for lwp_kill(), otherwise
839 	 * you could simply use kill().
840 	 */
841 	if (uap->tid == -1)
842 		return (EINVAL);
843 
844 	/*
845 	 * To save on a getpid() function call for intra-process
846 	 * signals, pid == -1 means current process.
847 	 */
848 	if (pid == -1)
849 		pid = curproc->p_pid;
850 
851 	error = kern_kill(uap->signum, pid, uap->tid);
852 	return (error);
853 }
854 
855 /*
856  * Send a signal to a process group.
857  */
858 void
859 gsignal(int pgid, int sig)
860 {
861 	struct pgrp *pgrp;
862 
863 	if (pgid && (pgrp = pgfind(pgid)))
864 		pgsignal(pgrp, sig, 0);
865 }
866 
867 /*
868  * Send a signal to a process group.  If checktty is 1,
869  * limit to members which have a controlling terminal.
870  *
871  * pg_lock interlocks against a fork that might be in progress, to
872  * ensure that the new child process picks up the signal.
873  */
874 void
875 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
876 {
877 	struct proc *p;
878 
879 	/*
880 	 * Must interlock all signals against fork
881 	 */
882 	if (pgrp) {
883 		pgref(pgrp);
884 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
885 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
886 			if (checkctty == 0 || p->p_flags & P_CONTROLT)
887 				ksignal(p, sig);
888 		}
889 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
890 		pgrel(pgrp);
891 	}
892 }
893 
894 /*
895  * Send a signal caused by a trap to the current lwp.  If it will be caught
896  * immediately, deliver it with correct code.  Otherwise, post it normally.
897  *
898  * These signals may ONLY be delivered to the specified lwp and may never
899  * be delivered to the process generically.
900  */
901 void
902 trapsignal(struct lwp *lp, int sig, u_long code)
903 {
904 	struct proc *p = lp->lwp_proc;
905 	struct sigacts *ps = p->p_sigacts;
906 
907 	/*
908 	 * If we are a virtual kernel running an emulated user process
909 	 * context, switch back to the virtual kernel context before
910 	 * trying to post the signal.
911 	 */
912 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
913 		struct trapframe *tf = lp->lwp_md.md_regs;
914 		tf->tf_trapno = 0;
915 		vkernel_trap(lp, tf);
916 	}
917 
918 
919 	if ((p->p_flags & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) &&
920 	    !SIGISMEMBER(lp->lwp_sigmask, sig)) {
921 		lp->lwp_ru.ru_nsignals++;
922 #ifdef KTRACE
923 		if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
924 			ktrpsig(lp, sig, ps->ps_sigact[_SIG_IDX(sig)],
925 				&lp->lwp_sigmask, code);
926 #endif
927 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig,
928 						&lp->lwp_sigmask, code);
929 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
930 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
931 			SIGADDSET(lp->lwp_sigmask, sig);
932 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
933 			/*
934 			 * See kern_sigaction() for origin of this code.
935 			 */
936 			SIGDELSET(p->p_sigcatch, sig);
937 			if (sig != SIGCONT &&
938 			    sigprop(sig) & SA_IGNORE)
939 				SIGADDSET(p->p_sigignore, sig);
940 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
941 		}
942 	} else {
943 		lp->lwp_code = code;	/* XXX for core dump/debugger */
944 		lp->lwp_sig = sig;	/* XXX to verify code */
945 		lwpsignal(p, lp, sig);
946 	}
947 }
948 
949 /*
950  * Find a suitable lwp to deliver the signal to.  Returns NULL if all
951  * lwps hold the signal blocked.
952  *
953  * Caller must hold p->p_token.
954  *
955  * Returns a lp or NULL.  If non-NULL the lp is held and its token is
956  * acquired.
957  */
958 static struct lwp *
959 find_lwp_for_signal(struct proc *p, int sig)
960 {
961 	struct lwp *lp;
962 	struct lwp *run, *sleep, *stop;
963 
964 	/*
965 	 * If the running/preempted thread belongs to the proc to which
966 	 * the signal is being delivered and this thread does not block
967 	 * the signal, then we can avoid a context switch by delivering
968 	 * the signal to this thread, because it will return to userland
969 	 * soon anyways.
970 	 */
971 	lp = lwkt_preempted_proc();
972 	if (lp != NULL && lp->lwp_proc == p) {
973 		LWPHOLD(lp);
974 		lwkt_gettoken(&lp->lwp_token);
975 		if (!SIGISMEMBER(lp->lwp_sigmask, sig)) {
976 			/* return w/ token held */
977 			return (lp);
978 		}
979 		lwkt_reltoken(&lp->lwp_token);
980 		LWPRELE(lp);
981 	}
982 
983 	run = sleep = stop = NULL;
984 	FOREACH_LWP_IN_PROC(lp, p) {
985 		/*
986 		 * If the signal is being blocked by the lwp, then this
987 		 * lwp is not eligible for receiving the signal.
988 		 */
989 		LWPHOLD(lp);
990 		lwkt_gettoken(&lp->lwp_token);
991 
992 		if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
993 			lwkt_reltoken(&lp->lwp_token);
994 			LWPRELE(lp);
995 			continue;
996 		}
997 
998 		switch (lp->lwp_stat) {
999 		case LSRUN:
1000 			if (sleep) {
1001 				lwkt_token_swap();
1002 				lwkt_reltoken(&sleep->lwp_token);
1003 				LWPRELE(sleep);
1004 				sleep = NULL;
1005 				run = lp;
1006 			} else if (stop) {
1007 				lwkt_token_swap();
1008 				lwkt_reltoken(&stop->lwp_token);
1009 				LWPRELE(stop);
1010 				stop = NULL;
1011 				run = lp;
1012 			} else {
1013 				run = lp;
1014 			}
1015 			break;
1016 		case LSSLEEP:
1017 			if (lp->lwp_flags & LWP_SINTR) {
1018 				if (sleep) {
1019 					lwkt_reltoken(&lp->lwp_token);
1020 					LWPRELE(lp);
1021 				} else if (stop) {
1022 					lwkt_token_swap();
1023 					lwkt_reltoken(&stop->lwp_token);
1024 					LWPRELE(stop);
1025 					stop = NULL;
1026 					sleep = lp;
1027 				} else {
1028 					sleep = lp;
1029 				}
1030 			} else {
1031 				lwkt_reltoken(&lp->lwp_token);
1032 				LWPRELE(lp);
1033 			}
1034 			break;
1035 		case LSSTOP:
1036 			if (sleep) {
1037 				lwkt_reltoken(&lp->lwp_token);
1038 				LWPRELE(lp);
1039 			} else if (stop) {
1040 				lwkt_reltoken(&lp->lwp_token);
1041 				LWPRELE(lp);
1042 			} else {
1043 				stop = lp;
1044 			}
1045 			break;
1046 		}
1047 		if (run)
1048 			break;
1049 	}
1050 
1051 	if (run != NULL)
1052 		return (run);
1053 	else if (sleep != NULL)
1054 		return (sleep);
1055 	else
1056 		return (stop);
1057 }
1058 
1059 /*
1060  * Send the signal to the process.  If the signal has an action, the action
1061  * is usually performed by the target process rather than the caller; we add
1062  * the signal to the set of pending signals for the process.
1063  *
1064  * Exceptions:
1065  *   o When a stop signal is sent to a sleeping process that takes the
1066  *     default action, the process is stopped without awakening it.
1067  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1068  *     regardless of the signal action (eg, blocked or ignored).
1069  *
1070  * Other ignored signals are discarded immediately.
1071  *
1072  * If the caller wishes to call this function from a hard code section the
1073  * caller must already hold p->p_token (see kern_clock.c).
1074  *
1075  * No requirements.
1076  */
1077 void
1078 ksignal(struct proc *p, int sig)
1079 {
1080 	lwpsignal(p, NULL, sig);
1081 }
1082 
1083 /*
1084  * The core for ksignal.  lp may be NULL, then a suitable thread
1085  * will be chosen.  If not, lp MUST be a member of p.
1086  *
1087  * If the caller wishes to call this function from a hard code section the
1088  * caller must already hold p->p_token.
1089  *
1090  * No requirements.
1091  */
1092 void
1093 lwpsignal(struct proc *p, struct lwp *lp, int sig)
1094 {
1095 	struct proc *q;
1096 	sig_t action;
1097 	int prop;
1098 
1099 	if (sig > _SIG_MAXSIG || sig <= 0) {
1100 		kprintf("lwpsignal: signal %d\n", sig);
1101 		panic("lwpsignal signal number");
1102 	}
1103 
1104 	KKASSERT(lp == NULL || lp->lwp_proc == p);
1105 
1106 	/*
1107 	 * We don't want to race... well, all sorts of things.  Get appropriate
1108 	 * tokens.
1109 	 *
1110 	 * Don't try to deliver a generic signal to an exiting process,
1111 	 * the signal structures could be in flux.  We check the LWP later
1112 	 * on.
1113 	 */
1114 	PHOLD(p);
1115 	lwkt_gettoken(&p->p_token);
1116 	if (lp) {
1117 		LWPHOLD(lp);
1118 		lwkt_gettoken(&lp->lwp_token);
1119 	} else if (p->p_flags & P_WEXIT) {
1120 		goto out;
1121 	}
1122 
1123 	prop = sigprop(sig);
1124 
1125 	/*
1126 	 * If proc is traced, always give parent a chance;
1127 	 * if signal event is tracked by procfs, give *that*
1128 	 * a chance, as well.
1129 	 */
1130 	if ((p->p_flags & P_TRACED) || (p->p_stops & S_SIG)) {
1131 		action = SIG_DFL;
1132 	} else {
1133 		/*
1134 		 * Do not try to deliver signals to an exiting lwp.  Note
1135 		 * that we must still deliver the signal if P_WEXIT is set
1136 		 * in the process flags.
1137 		 */
1138 		if (lp && (lp->lwp_mpflags & LWP_MP_WEXIT)) {
1139 			if (lp) {
1140 				lwkt_reltoken(&lp->lwp_token);
1141 				LWPRELE(lp);
1142 			}
1143 			lwkt_reltoken(&p->p_token);
1144 			PRELE(p);
1145 			return;
1146 		}
1147 
1148 		/*
1149 		 * If the signal is being ignored, then we forget about
1150 		 * it immediately.  NOTE: We don't set SIGCONT in p_sigignore,
1151 		 * and if it is set to SIG_IGN, action will be SIG_DFL here.
1152 		 */
1153 		if (SIGISMEMBER(p->p_sigignore, sig)) {
1154 			/*
1155 			 * Even if a signal is set SIG_IGN, it may still be
1156 			 * lurking in a kqueue.
1157 			 */
1158 			KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1159 			if (lp) {
1160 				lwkt_reltoken(&lp->lwp_token);
1161 				LWPRELE(lp);
1162 			}
1163 			lwkt_reltoken(&p->p_token);
1164 			PRELE(p);
1165 			return;
1166 		}
1167 		if (SIGISMEMBER(p->p_sigcatch, sig))
1168 			action = SIG_CATCH;
1169 		else
1170 			action = SIG_DFL;
1171 	}
1172 
1173 	/*
1174 	 * If continuing, clear any pending STOP signals.
1175 	 */
1176 	if (prop & SA_CONT)
1177 		SIG_STOPSIGMASK(p->p_siglist);
1178 
1179 	if (prop & SA_STOP) {
1180 		/*
1181 		 * If sending a tty stop signal to a member of an orphaned
1182 		 * process group, discard the signal here if the action
1183 		 * is default; don't stop the process below if sleeping,
1184 		 * and don't clear any pending SIGCONT.
1185 		 */
1186 		if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 &&
1187 		    action == SIG_DFL) {
1188 			if (lp) {
1189 				lwkt_reltoken(&lp->lwp_token);
1190 				LWPRELE(lp);
1191 			}
1192 			lwkt_reltoken(&p->p_token);
1193 			PRELE(p);
1194 		        return;
1195 		}
1196 		SIG_CONTSIGMASK(p->p_siglist);
1197 		p->p_flags &= ~P_CONTINUED;
1198 	}
1199 
1200 	if (p->p_stat == SSTOP) {
1201 		/*
1202 		 * Nobody can handle this signal, add it to the lwp or
1203 		 * process pending list
1204 		 */
1205 		if (lp) {
1206 			spin_lock(&lp->lwp_spin);
1207 			SIGADDSET(lp->lwp_siglist, sig);
1208 			spin_unlock(&lp->lwp_spin);
1209 		} else {
1210 			SIGADDSET(p->p_siglist, sig);
1211 		}
1212 
1213 		/*
1214 		 * If the process is stopped and is being traced, then no
1215 		 * further action is necessary.
1216 		 */
1217 		if (p->p_flags & P_TRACED)
1218 			goto out;
1219 
1220 		/*
1221 		 * If the process is stopped and receives a KILL signal,
1222 		 * make the process runnable.
1223 		 */
1224 		if (sig == SIGKILL) {
1225 			proc_unstop(p);
1226 			goto active_process;
1227 		}
1228 
1229 		/*
1230 		 * If the process is stopped and receives a CONT signal,
1231 		 * then try to make the process runnable again.
1232 		 */
1233 		if (prop & SA_CONT) {
1234 			/*
1235 			 * If SIGCONT is default (or ignored), we continue the
1236 			 * process but don't leave the signal in p_siglist, as
1237 			 * it has no further action.  If SIGCONT is held, we
1238 			 * continue the process and leave the signal in
1239 			 * p_siglist.  If the process catches SIGCONT, let it
1240 			 * handle the signal itself.
1241 			 *
1242 			 * XXX what if the signal is being held blocked?
1243 			 *
1244 			 * Token required to interlock kern_wait().
1245 			 * Reparenting can also cause a race so we have to
1246 			 * hold (q).
1247 			 */
1248 			q = p->p_pptr;
1249 			PHOLD(q);
1250 			lwkt_gettoken(&q->p_token);
1251 			p->p_flags |= P_CONTINUED;
1252 			wakeup(q);
1253 			if (action == SIG_DFL)
1254 				SIGDELSET(p->p_siglist, sig);
1255 			proc_unstop(p);
1256 			lwkt_reltoken(&q->p_token);
1257 			PRELE(q);
1258 			if (action == SIG_CATCH)
1259 				goto active_process;
1260 			goto out;
1261 		}
1262 
1263 		/*
1264 		 * If the process is stopped and receives another STOP
1265 		 * signal, we do not need to stop it again.  If we did
1266 		 * the shell could get confused.
1267 		 *
1268 		 * However, if the current/preempted lwp is part of the
1269 		 * process receiving the signal, we need to keep it,
1270 		 * so that this lwp can stop in issignal() later, as
1271 		 * we don't want to wait until it reaches userret!
1272 		 */
1273 		if (prop & SA_STOP) {
1274 			if (lwkt_preempted_proc() == NULL ||
1275 			    lwkt_preempted_proc()->lwp_proc != p)
1276 				SIGDELSET(p->p_siglist, sig);
1277 		}
1278 
1279 		/*
1280 		 * Otherwise the process is stopped and it received some
1281 		 * signal, which does not change its stopped state.  When
1282 		 * the process is continued a wakeup(p) will be issued which
1283 		 * will wakeup any threads sleeping in tstop().
1284 		 */
1285 		if (lp == NULL) {
1286 			/* NOTE: returns lp w/ token held */
1287 			lp = find_lwp_for_signal(p, sig);
1288 		}
1289 		goto out;
1290 
1291 		/* NOTREACHED */
1292 	}
1293 	/* else not stopped */
1294 active_process:
1295 
1296 	/*
1297 	 * Never deliver a lwp-specific signal to a random lwp.
1298 	 */
1299 	if (lp == NULL) {
1300 		/* NOTE: returns lp w/ token held */
1301 		lp = find_lwp_for_signal(p, sig);
1302 		if (lp) {
1303 			if (SIGISMEMBER(lp->lwp_sigmask, sig)) {
1304 				lwkt_reltoken(&lp->lwp_token);
1305 				LWPRELE(lp);
1306 				lp = NULL;
1307 			}
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * Deliver to the process generically if (1) the signal is being
1313 	 * sent to any thread or (2) we could not find a thread to deliver
1314 	 * it to.
1315 	 */
1316 	if (lp == NULL) {
1317 		SIGADDSET(p->p_siglist, sig);
1318 		goto out;
1319 	}
1320 
1321 	/*
1322 	 * Deliver to a specific LWP whether it masks it or not.  It will
1323 	 * not be dispatched if masked but we must still deliver it.
1324 	 */
1325 	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
1326 	    (p->p_flags & P_TRACED) == 0) {
1327 		p->p_nice = NZERO;
1328 	}
1329 
1330 	/*
1331 	 * If the process receives a STOP signal which indeed needs to
1332 	 * stop the process, do so.  If the process chose to catch the
1333 	 * signal, it will be treated like any other signal.
1334 	 */
1335 	if ((prop & SA_STOP) && action == SIG_DFL) {
1336 		/*
1337 		 * If a child holding parent blocked, stopping
1338 		 * could cause deadlock.  Take no action at this
1339 		 * time.
1340 		 */
1341 		if (p->p_flags & P_PPWAIT) {
1342 			SIGADDSET(p->p_siglist, sig);
1343 			goto out;
1344 		}
1345 
1346 		/*
1347 		 * Do not actually try to manipulate the process, but simply
1348 		 * stop it.  Lwps will stop as soon as they safely can.
1349 		 *
1350 		 * Ignore stop if the process is exiting.
1351 		 */
1352 		if ((p->p_flags & P_WEXIT) == 0) {
1353 			p->p_xstat = sig;
1354 			proc_stop(p);
1355 		}
1356 		goto out;
1357 	}
1358 
1359 	/*
1360 	 * If it is a CONT signal with default action, just ignore it.
1361 	 */
1362 	if ((prop & SA_CONT) && action == SIG_DFL)
1363 		goto out;
1364 
1365 	/*
1366 	 * Mark signal pending at this specific thread.
1367 	 */
1368 	spin_lock(&lp->lwp_spin);
1369 	SIGADDSET(lp->lwp_siglist, sig);
1370 	spin_unlock(&lp->lwp_spin);
1371 
1372 	lwp_signotify(lp);
1373 
1374 out:
1375 	if (lp) {
1376 		lwkt_reltoken(&lp->lwp_token);
1377 		LWPRELE(lp);
1378 	}
1379 	lwkt_reltoken(&p->p_token);
1380 	PRELE(p);
1381 }
1382 
1383 /*
1384  * Notify the LWP that a signal has arrived.  The LWP does not have to be
1385  * sleeping on the current cpu.
1386  *
1387  * p->p_token and lp->lwp_token must be held on call.
1388  *
1389  * We can only safely schedule the thread on its current cpu and only if
1390  * one of the SINTR flags is set.  If an SINTR flag is set AND we are on
1391  * the correct cpu we are properly interlocked, otherwise we could be
1392  * racing other thread transition states (or the lwp is on the user scheduler
1393  * runq but not scheduled) and must not do anything.
1394  *
1395  * Since we hold the lwp token we know the lwp cannot be ripped out from
1396  * under us so we can safely hold it to prevent it from being ripped out
1397  * from under us if we are forced to IPI another cpu to make the local
1398  * checks there.
1399  *
1400  * Adjustment of lp->lwp_stat can only occur when we hold the lwp_token,
1401  * which we won't in an IPI so any fixups have to be done here, effectively
1402  * replicating part of what setrunnable() does.
1403  */
1404 static void
1405 lwp_signotify(struct lwp *lp)
1406 {
1407 	ASSERT_LWKT_TOKEN_HELD(&lp->lwp_proc->p_token);
1408 
1409 	crit_enter();
1410 	if (lp == lwkt_preempted_proc()) {
1411 		/*
1412 		 * lwp is on the current cpu AND it is currently running
1413 		 * (we preempted it).
1414 		 */
1415 		signotify();
1416 	} else if (lp->lwp_flags & LWP_SINTR) {
1417 		/*
1418 		 * lwp is sitting in tsleep() with PCATCH set
1419 		 */
1420 		if (lp->lwp_thread->td_gd == mycpu) {
1421 			setrunnable(lp);
1422 		} else {
1423 			/*
1424 			 * We can only adjust lwp_stat while we hold the
1425 			 * lwp_token, and we won't in the IPI function.
1426 			 */
1427 			LWPHOLD(lp);
1428 			if (lp->lwp_stat == LSSTOP)
1429 				lp->lwp_stat = LSSLEEP;
1430 			lwkt_send_ipiq(lp->lwp_thread->td_gd,
1431 				       lwp_signotify_remote, lp);
1432 		}
1433 	} else if (lp->lwp_thread->td_flags & TDF_SINTR) {
1434 		/*
1435 		 * lwp is sitting in lwkt_sleep() with PCATCH set.
1436 		 */
1437 		if (lp->lwp_thread->td_gd == mycpu) {
1438 			setrunnable(lp);
1439 		} else {
1440 			/*
1441 			 * We can only adjust lwp_stat while we hold the
1442 			 * lwp_token, and we won't in the IPI function.
1443 			 */
1444 			LWPHOLD(lp);
1445 			if (lp->lwp_stat == LSSTOP)
1446 				lp->lwp_stat = LSSLEEP;
1447 			lwkt_send_ipiq(lp->lwp_thread->td_gd,
1448 				       lwp_signotify_remote, lp);
1449 		}
1450 	} else {
1451 		/*
1452 		 * Otherwise the lwp is either in some uninterruptable state
1453 		 * or it is on the userland scheduler's runqueue waiting to
1454 		 * be scheduled to a cpu.
1455 		 */
1456 	}
1457 	crit_exit();
1458 }
1459 
1460 /*
1461  * This function is called via an IPI so we cannot call setrunnable() here
1462  * (because while we hold the lp we don't own its token, and can't get it
1463  * from an IPI).
1464  *
1465  * We are interlocked by virtue of being on the same cpu as the target.  If
1466  * we still are and LWP_SINTR or TDF_SINTR is set we can safely schedule
1467  * the target thread.
1468  */
1469 static void
1470 lwp_signotify_remote(void *arg)
1471 {
1472 	struct lwp *lp = arg;
1473 	thread_t td = lp->lwp_thread;
1474 
1475 	if (lp == lwkt_preempted_proc()) {
1476 		signotify();
1477 		LWPRELE(lp);
1478 	} else if (td->td_gd == mycpu) {
1479 		if ((lp->lwp_flags & LWP_SINTR) ||
1480 		    (td->td_flags & TDF_SINTR)) {
1481 			lwkt_schedule(td);
1482 		}
1483 		LWPRELE(lp);
1484 	} else {
1485 		lwkt_send_ipiq(td->td_gd, lwp_signotify_remote, lp);
1486 		/* LWPHOLD() is forwarded to the target cpu */
1487 	}
1488 }
1489 
1490 /*
1491  * Caller must hold p->p_token
1492  */
1493 void
1494 proc_stop(struct proc *p)
1495 {
1496 	struct proc *q;
1497 	struct lwp *lp;
1498 
1499 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1500 
1501 	/* If somebody raced us, be happy with it */
1502 	if (p->p_stat == SSTOP || p->p_stat == SZOMB) {
1503 		return;
1504 	}
1505 	p->p_stat = SSTOP;
1506 
1507 	FOREACH_LWP_IN_PROC(lp, p) {
1508 		LWPHOLD(lp);
1509 		lwkt_gettoken(&lp->lwp_token);
1510 
1511 		switch (lp->lwp_stat) {
1512 		case LSSTOP:
1513 			/*
1514 			 * Do nothing, we are already counted in
1515 			 * p_nstopped.
1516 			 */
1517 			break;
1518 
1519 		case LSSLEEP:
1520 			/*
1521 			 * We're sleeping, but we will stop before
1522 			 * returning to userspace, so count us
1523 			 * as stopped as well.  We set LWP_MP_WSTOP
1524 			 * to signal the lwp that it should not
1525 			 * increase p_nstopped when reaching tstop().
1526 			 *
1527 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1528 			 */
1529 			if ((lp->lwp_mpflags & LWP_MP_WSTOP) == 0) {
1530 				atomic_set_int(&lp->lwp_mpflags, LWP_MP_WSTOP);
1531 				++p->p_nstopped;
1532 			}
1533 			break;
1534 
1535 		case LSRUN:
1536 			/*
1537 			 * We might notify ourself, but that's not
1538 			 * a problem.
1539 			 */
1540 			lwp_signotify(lp);
1541 			break;
1542 		}
1543 		lwkt_reltoken(&lp->lwp_token);
1544 		LWPRELE(lp);
1545 	}
1546 
1547 	if (p->p_nstopped == p->p_nthreads) {
1548 		/*
1549 		 * Token required to interlock kern_wait().  Reparenting can
1550 		 * also cause a race so we have to hold (q).
1551 		 */
1552 		q = p->p_pptr;
1553 		PHOLD(q);
1554 		lwkt_gettoken(&q->p_token);
1555 		p->p_flags &= ~P_WAITED;
1556 		wakeup(q);
1557 		if ((q->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1558 			ksignal(p->p_pptr, SIGCHLD);
1559 		lwkt_reltoken(&q->p_token);
1560 		PRELE(q);
1561 	}
1562 }
1563 
1564 /*
1565  * Caller must hold proc_token
1566  */
1567 void
1568 proc_unstop(struct proc *p)
1569 {
1570 	struct lwp *lp;
1571 
1572 	ASSERT_LWKT_TOKEN_HELD(&p->p_token);
1573 
1574 	if (p->p_stat != SSTOP)
1575 		return;
1576 
1577 	p->p_stat = SACTIVE;
1578 
1579 	FOREACH_LWP_IN_PROC(lp, p) {
1580 		LWPHOLD(lp);
1581 		lwkt_gettoken(&lp->lwp_token);
1582 
1583 		switch (lp->lwp_stat) {
1584 		case LSRUN:
1585 			/*
1586 			 * Uh?  Not stopped?  Well, I guess that's okay.
1587 			 */
1588 			if (bootverbose)
1589 				kprintf("proc_unstop: lwp %d/%d not sleeping\n",
1590 					p->p_pid, lp->lwp_tid);
1591 			break;
1592 
1593 		case LSSLEEP:
1594 			/*
1595 			 * Still sleeping.  Don't bother waking it up.
1596 			 * However, if this thread was counted as
1597 			 * stopped, undo this.
1598 			 *
1599 			 * Nevertheless we call setrunnable() so that it
1600 			 * will wake up in case a signal or timeout arrived
1601 			 * in the meantime.
1602 			 *
1603 			 * LWP_MP_WSTOP is protected by lp->lwp_token.
1604 			 */
1605 			if (lp->lwp_mpflags & LWP_MP_WSTOP) {
1606 				atomic_clear_int(&lp->lwp_mpflags,
1607 						 LWP_MP_WSTOP);
1608 				--p->p_nstopped;
1609 			} else {
1610 				if (bootverbose)
1611 					kprintf("proc_unstop: lwp %d/%d sleeping, not stopped\n",
1612 						p->p_pid, lp->lwp_tid);
1613 			}
1614 			/* FALLTHROUGH */
1615 
1616 		case LSSTOP:
1617 			/*
1618 			 * This handles any lwp's waiting in a tsleep with
1619 			 * SIGCATCH.
1620 			 */
1621 			lwp_signotify(lp);
1622 			break;
1623 
1624 		}
1625 		lwkt_reltoken(&lp->lwp_token);
1626 		LWPRELE(lp);
1627 	}
1628 
1629 	/*
1630 	 * This handles any lwp's waiting in tstop().  We have interlocked
1631 	 * the setting of p_stat by acquiring and releasing each lpw's
1632 	 * token.
1633 	 */
1634 	wakeup(p);
1635 }
1636 
1637 /*
1638  * No requirements.
1639  */
1640 static int
1641 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout)
1642 {
1643 	sigset_t savedmask, set;
1644 	struct proc *p = curproc;
1645 	struct lwp *lp = curthread->td_lwp;
1646 	int error, sig, hz, timevalid = 0;
1647 	struct timespec rts, ets, ts;
1648 	struct timeval tv;
1649 
1650 	error = 0;
1651 	sig = 0;
1652 	ets.tv_sec = 0;		/* silence compiler warning */
1653 	ets.tv_nsec = 0;	/* silence compiler warning */
1654 	SIG_CANTMASK(waitset);
1655 	savedmask = lp->lwp_sigmask;
1656 
1657 	if (timeout) {
1658 		if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 &&
1659 		    timeout->tv_nsec < 1000000000) {
1660 			timevalid = 1;
1661 			getnanouptime(&rts);
1662 		 	ets = rts;
1663 			timespecadd(&ets, timeout);
1664 		}
1665 	}
1666 
1667 	for (;;) {
1668 		set = lwp_sigpend(lp);
1669 		SIGSETAND(set, waitset);
1670 		if ((sig = sig_ffs(&set)) != 0) {
1671 			SIGFILLSET(lp->lwp_sigmask);
1672 			SIGDELSET(lp->lwp_sigmask, sig);
1673 			SIG_CANTMASK(lp->lwp_sigmask);
1674 			sig = issignal(lp, 1);
1675 			/*
1676 			 * It may be a STOP signal, in the case, issignal
1677 			 * returns 0, because we may stop there, and new
1678 			 * signal can come in, we should restart if we got
1679 			 * nothing.
1680 			 */
1681 			if (sig == 0)
1682 				continue;
1683 			else
1684 				break;
1685 		}
1686 
1687 		/*
1688 		 * Previous checking got nothing, and we retried but still
1689 		 * got nothing, we should return the error status.
1690 		 */
1691 		if (error)
1692 			break;
1693 
1694 		/*
1695 		 * POSIX says this must be checked after looking for pending
1696 		 * signals.
1697 		 */
1698 		if (timeout) {
1699 			if (timevalid == 0) {
1700 				error = EINVAL;
1701 				break;
1702 			}
1703 			getnanouptime(&rts);
1704 			if (timespeccmp(&rts, &ets, >=)) {
1705 				error = EAGAIN;
1706 				break;
1707 			}
1708 			ts = ets;
1709 			timespecsub(&ts, &rts);
1710 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1711 			hz = tvtohz_high(&tv);
1712 		} else {
1713 			hz = 0;
1714 		}
1715 
1716 		lp->lwp_sigmask = savedmask;
1717 		SIGSETNAND(lp->lwp_sigmask, waitset);
1718 		/*
1719 		 * We won't ever be woken up.  Instead, our sleep will
1720 		 * be broken in lwpsignal().
1721 		 */
1722 		error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz);
1723 		if (timeout) {
1724 			if (error == ERESTART) {
1725 				/* can not restart a timeout wait. */
1726 				error = EINTR;
1727 			} else if (error == EAGAIN) {
1728 				/* will calculate timeout by ourself. */
1729 				error = 0;
1730 			}
1731 		}
1732 		/* Retry ... */
1733 	}
1734 
1735 	lp->lwp_sigmask = savedmask;
1736 	if (sig) {
1737 		error = 0;
1738 		bzero(info, sizeof(*info));
1739 		info->si_signo = sig;
1740 		spin_lock(&lp->lwp_spin);
1741 		lwp_delsig(lp, sig);	/* take the signal! */
1742 		spin_unlock(&lp->lwp_spin);
1743 
1744 		if (sig == SIGKILL) {
1745 			sigexit(lp, sig);
1746 			/* NOT REACHED */
1747 		}
1748 	}
1749 
1750 	return (error);
1751 }
1752 
1753 /*
1754  * MPALMOSTSAFE
1755  */
1756 int
1757 sys_sigtimedwait(struct sigtimedwait_args *uap)
1758 {
1759 	struct timespec ts;
1760 	struct timespec *timeout;
1761 	sigset_t set;
1762 	siginfo_t info;
1763 	int error;
1764 
1765 	if (uap->timeout) {
1766 		error = copyin(uap->timeout, &ts, sizeof(ts));
1767 		if (error)
1768 			return (error);
1769 		timeout = &ts;
1770 	} else {
1771 		timeout = NULL;
1772 	}
1773 	error = copyin(uap->set, &set, sizeof(set));
1774 	if (error)
1775 		return (error);
1776 	error = kern_sigtimedwait(set, &info, timeout);
1777 	if (error)
1778 		return (error);
1779 	if (uap->info)
1780 		error = copyout(&info, uap->info, sizeof(info));
1781 	/* Repost if we got an error. */
1782 	/*
1783 	 * XXX lwp
1784 	 *
1785 	 * This could transform a thread-specific signal to another
1786 	 * thread / process pending signal.
1787 	 */
1788 	if (error) {
1789 		ksignal(curproc, info.si_signo);
1790 	} else {
1791 		uap->sysmsg_result = info.si_signo;
1792 	}
1793 	return (error);
1794 }
1795 
1796 /*
1797  * MPALMOSTSAFE
1798  */
1799 int
1800 sys_sigwaitinfo(struct sigwaitinfo_args *uap)
1801 {
1802 	siginfo_t info;
1803 	sigset_t set;
1804 	int error;
1805 
1806 	error = copyin(uap->set, &set, sizeof(set));
1807 	if (error)
1808 		return (error);
1809 	error = kern_sigtimedwait(set, &info, NULL);
1810 	if (error)
1811 		return (error);
1812 	if (uap->info)
1813 		error = copyout(&info, uap->info, sizeof(info));
1814 	/* Repost if we got an error. */
1815 	/*
1816 	 * XXX lwp
1817 	 *
1818 	 * This could transform a thread-specific signal to another
1819 	 * thread / process pending signal.
1820 	 */
1821 	if (error) {
1822 		ksignal(curproc, info.si_signo);
1823 	} else {
1824 		uap->sysmsg_result = info.si_signo;
1825 	}
1826 	return (error);
1827 }
1828 
1829 /*
1830  * If the current process has received a signal that would interrupt a
1831  * system call, return EINTR or ERESTART as appropriate.
1832  */
1833 int
1834 iscaught(struct lwp *lp)
1835 {
1836 	struct proc *p = lp->lwp_proc;
1837 	int sig;
1838 
1839 	if (p) {
1840 		if ((sig = CURSIG(lp)) != 0) {
1841 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
1842 				return (EINTR);
1843 			return (ERESTART);
1844 		}
1845 	}
1846 	return(EWOULDBLOCK);
1847 }
1848 
1849 /*
1850  * If the current process has received a signal (should be caught or cause
1851  * termination, should interrupt current syscall), return the signal number.
1852  * Stop signals with default action are processed immediately, then cleared;
1853  * they aren't returned.  This is checked after each entry to the system for
1854  * a syscall or trap (though this can usually be done without calling issignal
1855  * by checking the pending signal masks in the CURSIG macro).
1856  *
1857  * This routine is called via CURSIG/__cursig.  We will acquire and release
1858  * p->p_token but if the caller needs to interlock the test the caller must
1859  * also hold p->p_token.
1860  *
1861  *	while (sig = CURSIG(curproc))
1862  *		postsig(sig);
1863  *
1864  * MPSAFE
1865  */
1866 int
1867 issignal(struct lwp *lp, int maytrace)
1868 {
1869 	struct proc *p = lp->lwp_proc;
1870 	sigset_t mask;
1871 	int sig, prop;
1872 
1873 	lwkt_gettoken(&p->p_token);
1874 
1875 	for (;;) {
1876 		int traced = (p->p_flags & P_TRACED) || (p->p_stops & S_SIG);
1877 
1878 		/*
1879 		 * If this process is supposed to stop, stop this thread.
1880 		 */
1881 		if (p->p_stat == SSTOP)
1882 			tstop();
1883 
1884 		mask = lwp_sigpend(lp);
1885 		SIGSETNAND(mask, lp->lwp_sigmask);
1886 		if (p->p_flags & P_PPWAIT)
1887 			SIG_STOPSIGMASK(mask);
1888 		if (SIGISEMPTY(mask)) {		/* no signal to send */
1889 			lwkt_reltoken(&p->p_token);
1890 			return (0);
1891 		}
1892 		sig = sig_ffs(&mask);
1893 
1894 		STOPEVENT(p, S_SIG, sig);
1895 
1896 		/*
1897 		 * We should see pending but ignored signals
1898 		 * only if P_TRACED was on when they were posted.
1899 		 */
1900 		if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) {
1901 			spin_lock(&lp->lwp_spin);
1902 			lwp_delsig(lp, sig);
1903 			spin_unlock(&lp->lwp_spin);
1904 			continue;
1905 		}
1906 		if (maytrace &&
1907 		    (p->p_flags & P_TRACED) &&
1908 		    (p->p_flags & P_PPWAIT) == 0) {
1909 			/*
1910 			 * If traced, always stop, and stay stopped until
1911 			 * released by the parent.
1912 			 *
1913 			 * NOTE: SSTOP may get cleared during the loop,
1914 			 * but we do not re-notify the parent if we have
1915 			 * to loop several times waiting for the parent
1916 			 * to let us continue.
1917 			 *
1918 			 * XXX not sure if this is still true
1919 			 */
1920 			p->p_xstat = sig;
1921 			proc_stop(p);
1922 			do {
1923 				tstop();
1924 			} while (!trace_req(p) && (p->p_flags & P_TRACED));
1925 
1926 			/*
1927 			 * If parent wants us to take the signal,
1928 			 * then it will leave it in p->p_xstat;
1929 			 * otherwise we just look for signals again.
1930 			 */
1931 			spin_lock(&lp->lwp_spin);
1932 			lwp_delsig(lp, sig);	/* clear old signal */
1933 			spin_unlock(&lp->lwp_spin);
1934 			sig = p->p_xstat;
1935 			if (sig == 0)
1936 				continue;
1937 
1938 			/*
1939 			 * Put the new signal into p_siglist.  If the
1940 			 * signal is being masked, look for other signals.
1941 			 *
1942 			 * XXX lwp might need a call to ksignal()
1943 			 */
1944 			SIGADDSET(p->p_siglist, sig);
1945 			if (SIGISMEMBER(lp->lwp_sigmask, sig))
1946 				continue;
1947 
1948 			/*
1949 			 * If the traced bit got turned off, go back up
1950 			 * to the top to rescan signals.  This ensures
1951 			 * that p_sig* and ps_sigact are consistent.
1952 			 */
1953 			if ((p->p_flags & P_TRACED) == 0)
1954 				continue;
1955 		}
1956 
1957 		prop = sigprop(sig);
1958 
1959 		/*
1960 		 * Decide whether the signal should be returned.
1961 		 * Return the signal's number, or fall through
1962 		 * to clear it from the pending mask.
1963 		 */
1964 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
1965 		case (intptr_t)SIG_DFL:
1966 			/*
1967 			 * Don't take default actions on system processes.
1968 			 */
1969 			if (p->p_pid <= 1) {
1970 #ifdef DIAGNOSTIC
1971 				/*
1972 				 * Are you sure you want to ignore SIGSEGV
1973 				 * in init? XXX
1974 				 */
1975 				kprintf("Process (pid %lu) got signal %d\n",
1976 					(u_long)p->p_pid, sig);
1977 #endif
1978 				break;		/* == ignore */
1979 			}
1980 
1981 			/*
1982 			 * Handle the in-kernel checkpoint action
1983 			 */
1984 			if (prop & SA_CKPT) {
1985 				checkpoint_signal_handler(lp);
1986 				break;
1987 			}
1988 
1989 			/*
1990 			 * If there is a pending stop signal to process
1991 			 * with default action, stop here,
1992 			 * then clear the signal.  However,
1993 			 * if process is member of an orphaned
1994 			 * process group, ignore tty stop signals.
1995 			 */
1996 			if (prop & SA_STOP) {
1997 				if (p->p_flags & P_TRACED ||
1998 		    		    (p->p_pgrp->pg_jobc == 0 &&
1999 				    prop & SA_TTYSTOP))
2000 					break;	/* == ignore */
2001 				if ((p->p_flags & P_WEXIT) == 0) {
2002 					p->p_xstat = sig;
2003 					proc_stop(p);
2004 					tstop();
2005 				}
2006 				break;
2007 			} else if (prop & SA_IGNORE) {
2008 				/*
2009 				 * Except for SIGCONT, shouldn't get here.
2010 				 * Default action is to ignore; drop it.
2011 				 */
2012 				break;		/* == ignore */
2013 			} else {
2014 				lwkt_reltoken(&p->p_token);
2015 				return (sig);
2016 			}
2017 
2018 			/*NOTREACHED*/
2019 
2020 		case (intptr_t)SIG_IGN:
2021 			/*
2022 			 * Masking above should prevent us ever trying
2023 			 * to take action on an ignored signal other
2024 			 * than SIGCONT, unless process is traced.
2025 			 */
2026 			if ((prop & SA_CONT) == 0 &&
2027 			    (p->p_flags & P_TRACED) == 0)
2028 				kprintf("issignal\n");
2029 			break;		/* == ignore */
2030 
2031 		default:
2032 			/*
2033 			 * This signal has an action, let
2034 			 * postsig() process it.
2035 			 */
2036 			lwkt_reltoken(&p->p_token);
2037 			return (sig);
2038 		}
2039 		spin_lock(&lp->lwp_spin);
2040 		lwp_delsig(lp, sig);		/* take the signal! */
2041 		spin_unlock(&lp->lwp_spin);
2042 	}
2043 	/* NOTREACHED */
2044 }
2045 
2046 /*
2047  * Take the action for the specified signal
2048  * from the current set of pending signals.
2049  *
2050  * Caller must hold p->p_token
2051  */
2052 void
2053 postsig(int sig)
2054 {
2055 	struct lwp *lp = curthread->td_lwp;
2056 	struct proc *p = lp->lwp_proc;
2057 	struct sigacts *ps = p->p_sigacts;
2058 	sig_t action;
2059 	sigset_t returnmask;
2060 	int code;
2061 
2062 	KASSERT(sig != 0, ("postsig"));
2063 
2064 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
2065 
2066 	/*
2067 	 * If we are a virtual kernel running an emulated user process
2068 	 * context, switch back to the virtual kernel context before
2069 	 * trying to post the signal.
2070 	 */
2071 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
2072 		struct trapframe *tf = lp->lwp_md.md_regs;
2073 		tf->tf_trapno = 0;
2074 		vkernel_trap(lp, tf);
2075 	}
2076 
2077 	spin_lock(&lp->lwp_spin);
2078 	lwp_delsig(lp, sig);
2079 	spin_unlock(&lp->lwp_spin);
2080 	action = ps->ps_sigact[_SIG_IDX(sig)];
2081 #ifdef KTRACE
2082 	if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
2083 		ktrpsig(lp, sig, action, lp->lwp_flags & LWP_OLDMASK ?
2084 			&lp->lwp_oldsigmask : &lp->lwp_sigmask, 0);
2085 #endif
2086 	STOPEVENT(p, S_SIG, sig);
2087 
2088 	if (action == SIG_DFL) {
2089 		/*
2090 		 * Default action, where the default is to kill
2091 		 * the process.  (Other cases were ignored above.)
2092 		 */
2093 		sigexit(lp, sig);
2094 		/* NOTREACHED */
2095 	} else {
2096 		/*
2097 		 * If we get here, the signal must be caught.
2098 		 */
2099 		KASSERT(action != SIG_IGN && !SIGISMEMBER(lp->lwp_sigmask, sig),
2100 		    ("postsig action"));
2101 
2102 		/*
2103 		 * Reset the signal handler if asked to
2104 		 */
2105 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2106 			/*
2107 			 * See kern_sigaction() for origin of this code.
2108 			 */
2109 			SIGDELSET(p->p_sigcatch, sig);
2110 			if (sig != SIGCONT &&
2111 			    sigprop(sig) & SA_IGNORE)
2112 				SIGADDSET(p->p_sigignore, sig);
2113 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2114 		}
2115 
2116 		/*
2117 		 * Set the signal mask and calculate the mask to restore
2118 		 * when the signal function returns.
2119 		 *
2120 		 * Special case: user has done a sigsuspend.  Here the
2121 		 * current mask is not of interest, but rather the
2122 		 * mask from before the sigsuspend is what we want
2123 		 * restored after the signal processing is completed.
2124 		 */
2125 		if (lp->lwp_flags & LWP_OLDMASK) {
2126 			returnmask = lp->lwp_oldsigmask;
2127 			lp->lwp_flags &= ~LWP_OLDMASK;
2128 		} else {
2129 			returnmask = lp->lwp_sigmask;
2130 		}
2131 
2132 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2133 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2134 			SIGADDSET(lp->lwp_sigmask, sig);
2135 
2136 		lp->lwp_ru.ru_nsignals++;
2137 		if (lp->lwp_sig != sig) {
2138 			code = 0;
2139 		} else {
2140 			code = lp->lwp_code;
2141 			lp->lwp_code = 0;
2142 			lp->lwp_sig = 0;
2143 		}
2144 		(*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code);
2145 	}
2146 }
2147 
2148 /*
2149  * Kill the current process for stated reason.
2150  */
2151 void
2152 killproc(struct proc *p, char *why)
2153 {
2154 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n",
2155 		p->p_pid, p->p_comm,
2156 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2157 	ksignal(p, SIGKILL);
2158 }
2159 
2160 /*
2161  * Force the current process to exit with the specified signal, dumping core
2162  * if appropriate.  We bypass the normal tests for masked and caught signals,
2163  * allowing unrecoverable failures to terminate the process without changing
2164  * signal state.  Mark the accounting record with the signal termination.
2165  * If dumping core, save the signal number for the debugger.  Calls exit and
2166  * does not return.
2167  *
2168  * This routine does not return.
2169  */
2170 void
2171 sigexit(struct lwp *lp, int sig)
2172 {
2173 	struct proc *p = lp->lwp_proc;
2174 
2175 	lwkt_gettoken(&p->p_token);
2176 	p->p_acflag |= AXSIG;
2177 	if (sigprop(sig) & SA_CORE) {
2178 		lp->lwp_sig = sig;
2179 		/*
2180 		 * Log signals which would cause core dumps
2181 		 * (Log as LOG_INFO to appease those who don't want
2182 		 * these messages.)
2183 		 * XXX : Todo, as well as euid, write out ruid too
2184 		 */
2185 		if (coredump(lp, sig) == 0)
2186 			sig |= WCOREFLAG;
2187 		if (kern_logsigexit)
2188 			log(LOG_INFO,
2189 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2190 			    p->p_pid, p->p_comm,
2191 			    p->p_ucred ? p->p_ucred->cr_uid : -1,
2192 			    sig &~ WCOREFLAG,
2193 			    sig & WCOREFLAG ? " (core dumped)" : "");
2194 	}
2195 	lwkt_reltoken(&p->p_token);
2196 	exit1(W_EXITCODE(0, sig));
2197 	/* NOTREACHED */
2198 }
2199 
2200 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2201 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2202 	      sizeof(corefilename), "process corefile name format string");
2203 
2204 /*
2205  * expand_name(name, uid, pid)
2206  * Expand the name described in corefilename, using name, uid, and pid.
2207  * corefilename is a kprintf-like string, with three format specifiers:
2208  *	%N	name of process ("name")
2209  *	%P	process id (pid)
2210  *	%U	user id (uid)
2211  * For example, "%N.core" is the default; they can be disabled completely
2212  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2213  * This is controlled by the sysctl variable kern.corefile (see above).
2214  */
2215 
2216 static char *
2217 expand_name(const char *name, uid_t uid, pid_t pid)
2218 {
2219 	char *temp;
2220 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2221 	int i, n;
2222 	char *format = corefilename;
2223 	size_t namelen;
2224 
2225 	temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT);
2226 	if (temp == NULL)
2227 		return NULL;
2228 	namelen = strlen(name);
2229 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2230 		int l;
2231 		switch (format[i]) {
2232 		case '%':	/* Format character */
2233 			i++;
2234 			switch (format[i]) {
2235 			case '%':
2236 				temp[n++] = '%';
2237 				break;
2238 			case 'N':	/* process name */
2239 				if ((n + namelen) > MAXPATHLEN) {
2240 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2241 					    pid, name, uid, temp, name);
2242 					kfree(temp, M_TEMP);
2243 					return NULL;
2244 				}
2245 				memcpy(temp+n, name, namelen);
2246 				n += namelen;
2247 				break;
2248 			case 'P':	/* process id */
2249 				l = ksprintf(buf, "%u", pid);
2250 				if ((n + l) > MAXPATHLEN) {
2251 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2252 					    pid, name, uid, temp, name);
2253 					kfree(temp, M_TEMP);
2254 					return NULL;
2255 				}
2256 				memcpy(temp+n, buf, l);
2257 				n += l;
2258 				break;
2259 			case 'U':	/* user id */
2260 				l = ksprintf(buf, "%u", uid);
2261 				if ((n + l) > MAXPATHLEN) {
2262 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
2263 					    pid, name, uid, temp, name);
2264 					kfree(temp, M_TEMP);
2265 					return NULL;
2266 				}
2267 				memcpy(temp+n, buf, l);
2268 				n += l;
2269 				break;
2270 			default:
2271 			  	log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format);
2272 			}
2273 			break;
2274 		default:
2275 			temp[n++] = format[i];
2276 		}
2277 	}
2278 	temp[n] = '\0';
2279 	return temp;
2280 }
2281 
2282 /*
2283  * Dump a process' core.  The main routine does some
2284  * policy checking, and creates the name of the coredump;
2285  * then it passes on a vnode and a size limit to the process-specific
2286  * coredump routine if there is one; if there _is not_ one, it returns
2287  * ENOSYS; otherwise it returns the error from the process-specific routine.
2288  *
2289  * The parameter `lp' is the lwp which triggered the coredump.
2290  */
2291 
2292 static int
2293 coredump(struct lwp *lp, int sig)
2294 {
2295 	struct proc *p = lp->lwp_proc;
2296 	struct vnode *vp;
2297 	struct ucred *cred = p->p_ucred;
2298 	struct flock lf;
2299 	struct nlookupdata nd;
2300 	struct vattr vattr;
2301 	int error, error1;
2302 	char *name;			/* name of corefile */
2303 	off_t limit;
2304 
2305 	STOPEVENT(p, S_CORE, 0);
2306 
2307 	if (((sugid_coredump == 0) && p->p_flags & P_SUGID) || do_coredump == 0)
2308 		return (EFAULT);
2309 
2310 	/*
2311 	 * Note that the bulk of limit checking is done after
2312 	 * the corefile is created.  The exception is if the limit
2313 	 * for corefiles is 0, in which case we don't bother
2314 	 * creating the corefile at all.  This layout means that
2315 	 * a corefile is truncated instead of not being created,
2316 	 * if it is larger than the limit.
2317 	 */
2318 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
2319 	if (limit == 0)
2320 		return EFBIG;
2321 
2322 	name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid);
2323 	if (name == NULL)
2324 		return (EINVAL);
2325 	error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP);
2326 	if (error == 0)
2327 		error = vn_open(&nd, NULL, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
2328 	kfree(name, M_TEMP);
2329 	if (error) {
2330 		nlookup_done(&nd);
2331 		return (error);
2332 	}
2333 	vp = nd.nl_open_vp;
2334 	nd.nl_open_vp = NULL;
2335 	nlookup_done(&nd);
2336 
2337 	vn_unlock(vp);
2338 	lf.l_whence = SEEK_SET;
2339 	lf.l_start = 0;
2340 	lf.l_len = 0;
2341 	lf.l_type = F_WRLCK;
2342 	error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0);
2343 	if (error)
2344 		goto out2;
2345 
2346 	/* Don't dump to non-regular files or files with links. */
2347 	if (vp->v_type != VREG ||
2348 	    VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) {
2349 		error = EFAULT;
2350 		goto out1;
2351 	}
2352 
2353 	/* Don't dump to files current user does not own */
2354 	if (vattr.va_uid != p->p_ucred->cr_uid) {
2355 		error = EFAULT;
2356 		goto out1;
2357 	}
2358 
2359 	VATTR_NULL(&vattr);
2360 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2361 	vattr.va_size = 0;
2362 	VOP_SETATTR(vp, &vattr, cred);
2363 	p->p_acflag |= ACORE;
2364 	vn_unlock(vp);
2365 
2366 	error = p->p_sysent->sv_coredump ?
2367 		  p->p_sysent->sv_coredump(lp, sig, vp, limit) : ENOSYS;
2368 
2369 out1:
2370 	lf.l_type = F_UNLCK;
2371 	VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0);
2372 out2:
2373 	error1 = vn_close(vp, FWRITE);
2374 	if (error == 0)
2375 		error = error1;
2376 	return (error);
2377 }
2378 
2379 /*
2380  * Nonexistent system call-- signal process (may want to handle it).
2381  * Flag error in case process won't see signal immediately (blocked or ignored).
2382  *
2383  * MPALMOSTSAFE
2384  */
2385 /* ARGSUSED */
2386 int
2387 sys_nosys(struct nosys_args *args)
2388 {
2389 	lwpsignal(curproc, curthread->td_lwp, SIGSYS);
2390 	return (EINVAL);
2391 }
2392 
2393 /*
2394  * Send a SIGIO or SIGURG signal to a process or process group using
2395  * stored credentials rather than those of the current process.
2396  */
2397 void
2398 pgsigio(struct sigio *sigio, int sig, int checkctty)
2399 {
2400 	if (sigio == NULL)
2401 		return;
2402 
2403 	if (sigio->sio_pgid > 0) {
2404 		if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred,
2405 		             sigio->sio_proc))
2406 			ksignal(sigio->sio_proc, sig);
2407 	} else if (sigio->sio_pgid < 0) {
2408 		struct proc *p;
2409 		struct pgrp *pg = sigio->sio_pgrp;
2410 
2411 		/*
2412 		 * Must interlock all signals against fork
2413 		 */
2414 		pgref(pg);
2415 		lockmgr(&pg->pg_lock, LK_EXCLUSIVE);
2416 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
2417 			if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) &&
2418 			    (checkctty == 0 || (p->p_flags & P_CONTROLT)))
2419 				ksignal(p, sig);
2420 		}
2421 		lockmgr(&pg->pg_lock, LK_RELEASE);
2422 		pgrel(pg);
2423 	}
2424 }
2425 
2426 static int
2427 filt_sigattach(struct knote *kn)
2428 {
2429 	struct proc *p = curproc;
2430 
2431 	kn->kn_ptr.p_proc = p;
2432 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2433 
2434 	/* XXX lock the proc here while adding to the list? */
2435 	knote_insert(&p->p_klist, kn);
2436 
2437 	return (0);
2438 }
2439 
2440 static void
2441 filt_sigdetach(struct knote *kn)
2442 {
2443 	struct proc *p = kn->kn_ptr.p_proc;
2444 
2445 	knote_remove(&p->p_klist, kn);
2446 }
2447 
2448 /*
2449  * signal knotes are shared with proc knotes, so we apply a mask to
2450  * the hint in order to differentiate them from process hints.  This
2451  * could be avoided by using a signal-specific knote list, but probably
2452  * isn't worth the trouble.
2453  */
2454 static int
2455 filt_signal(struct knote *kn, long hint)
2456 {
2457 	if (hint & NOTE_SIGNAL) {
2458 		hint &= ~NOTE_SIGNAL;
2459 
2460 		if (kn->kn_id == hint)
2461 			kn->kn_data++;
2462 	}
2463 	return (kn->kn_data != 0);
2464 }
2465