xref: /dflybsd-src/sys/kern/kern_sig.c (revision 269ffd40655c28ffc04742b158e7500aec5b0166)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  * $FreeBSD: src/sys/kern/kern_sig.c,v 1.72.2.17 2003/05/16 16:34:34 obrien Exp $
40  * $DragonFly: src/sys/kern/kern_sig.c,v 1.76 2007/03/12 21:08:15 corecode Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/kernel.h>
48 #include <sys/sysproto.h>
49 #include <sys/signalvar.h>
50 #include <sys/signal2.h>
51 #include <sys/resourcevar.h>
52 #include <sys/vnode.h>
53 #include <sys/event.h>
54 #include <sys/proc.h>
55 #include <sys/nlookup.h>
56 #include <sys/pioctl.h>
57 #include <sys/systm.h>
58 #include <sys/acct.h>
59 #include <sys/fcntl.h>
60 #include <sys/lock.h>
61 #include <sys/wait.h>
62 #include <sys/ktrace.h>
63 #include <sys/syslog.h>
64 #include <sys/stat.h>
65 #include <sys/sysent.h>
66 #include <sys/sysctl.h>
67 #include <sys/malloc.h>
68 #include <sys/interrupt.h>
69 #include <sys/unistd.h>
70 #include <sys/kern_syscall.h>
71 #include <sys/vkernel.h>
72 #include <sys/thread2.h>
73 
74 #include <machine/cpu.h>
75 #include <machine/smp.h>
76 
77 static int	coredump(struct lwp *, int);
78 static char	*expand_name(const char *, uid_t, pid_t);
79 static int	dokillpg(int sig, int pgid, int all);
80 static int	sig_ffs(sigset_t *set);
81 static int	sigprop(int sig);
82 #ifdef SMP
83 static void	signotify_remote(void *arg);
84 #endif
85 static int	kern_sigtimedwait(sigset_t set, siginfo_t *info,
86 		    struct timespec *timeout);
87 
88 static int	filt_sigattach(struct knote *kn);
89 static void	filt_sigdetach(struct knote *kn);
90 static int	filt_signal(struct knote *kn, long hint);
91 
92 struct filterops sig_filtops =
93 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
94 
95 static int	kern_logsigexit = 1;
96 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
97     &kern_logsigexit, 0,
98     "Log processes quitting on abnormal signals to syslog(3)");
99 
100 /*
101  * Can process p, with pcred pc, send the signal sig to process q?
102  */
103 #define CANSIGNAL(q, sig) \
104 	(!p_trespass(curproc->p_ucred, (q)->p_ucred) || \
105 	((sig) == SIGCONT && (q)->p_session == curproc->p_session))
106 
107 /*
108  * Policy -- Can real uid ruid with ucred uc send a signal to process q?
109  */
110 #define CANSIGIO(ruid, uc, q) \
111 	((uc)->cr_uid == 0 || \
112 	    (ruid) == (q)->p_ucred->cr_ruid || \
113 	    (uc)->cr_uid == (q)->p_ucred->cr_ruid || \
114 	    (ruid) == (q)->p_ucred->cr_uid || \
115 	    (uc)->cr_uid == (q)->p_ucred->cr_uid)
116 
117 int sugid_coredump;
118 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
119 	&sugid_coredump, 0, "Enable coredumping set user/group ID processes");
120 
121 static int	do_coredump = 1;
122 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
123 	&do_coredump, 0, "Enable/Disable coredumps");
124 
125 /*
126  * Signal properties and actions.
127  * The array below categorizes the signals and their default actions
128  * according to the following properties:
129  */
130 #define	SA_KILL		0x01		/* terminates process by default */
131 #define	SA_CORE		0x02		/* ditto and coredumps */
132 #define	SA_STOP		0x04		/* suspend process */
133 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
134 #define	SA_IGNORE	0x10		/* ignore by default */
135 #define	SA_CONT		0x20		/* continue if suspended */
136 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
137 #define SA_CKPT         0x80            /* checkpoint process */
138 
139 
140 static int sigproptbl[NSIG] = {
141         SA_KILL,                /* SIGHUP */
142         SA_KILL,                /* SIGINT */
143         SA_KILL|SA_CORE,        /* SIGQUIT */
144         SA_KILL|SA_CORE,        /* SIGILL */
145         SA_KILL|SA_CORE,        /* SIGTRAP */
146         SA_KILL|SA_CORE,        /* SIGABRT */
147         SA_KILL|SA_CORE,        /* SIGEMT */
148         SA_KILL|SA_CORE,        /* SIGFPE */
149         SA_KILL,                /* SIGKILL */
150         SA_KILL|SA_CORE,        /* SIGBUS */
151         SA_KILL|SA_CORE,        /* SIGSEGV */
152         SA_KILL|SA_CORE,        /* SIGSYS */
153         SA_KILL,                /* SIGPIPE */
154         SA_KILL,                /* SIGALRM */
155         SA_KILL,                /* SIGTERM */
156         SA_IGNORE,              /* SIGURG */
157         SA_STOP,                /* SIGSTOP */
158         SA_STOP|SA_TTYSTOP,     /* SIGTSTP */
159         SA_IGNORE|SA_CONT,      /* SIGCONT */
160         SA_IGNORE,              /* SIGCHLD */
161         SA_STOP|SA_TTYSTOP,     /* SIGTTIN */
162         SA_STOP|SA_TTYSTOP,     /* SIGTTOU */
163         SA_IGNORE,              /* SIGIO */
164         SA_KILL,                /* SIGXCPU */
165         SA_KILL,                /* SIGXFSZ */
166         SA_KILL,                /* SIGVTALRM */
167         SA_KILL,                /* SIGPROF */
168         SA_IGNORE,              /* SIGWINCH  */
169         SA_IGNORE,              /* SIGINFO */
170         SA_KILL,                /* SIGUSR1 */
171         SA_KILL,                /* SIGUSR2 */
172 	SA_IGNORE,              /* SIGTHR */
173 	SA_CKPT,                /* SIGCKPT */
174 	SA_KILL|SA_CKPT,        /* SIGCKPTEXIT */
175 	SA_IGNORE,
176 	SA_IGNORE,
177 	SA_IGNORE,
178 	SA_IGNORE,
179 	SA_IGNORE,
180 	SA_IGNORE,
181 	SA_IGNORE,
182 	SA_IGNORE,
183 	SA_IGNORE,
184 	SA_IGNORE,
185 	SA_IGNORE,
186 	SA_IGNORE,
187 	SA_IGNORE,
188 	SA_IGNORE,
189 	SA_IGNORE,
190 	SA_IGNORE,
191 	SA_IGNORE,
192 	SA_IGNORE,
193 	SA_IGNORE,
194 	SA_IGNORE,
195 	SA_IGNORE,
196 	SA_IGNORE,
197 	SA_IGNORE,
198 	SA_IGNORE,
199 	SA_IGNORE,
200 	SA_IGNORE,
201 	SA_IGNORE,
202 	SA_IGNORE,
203 	SA_IGNORE,
204 	SA_IGNORE,
205 
206 };
207 
208 static __inline int
209 sigprop(int sig)
210 {
211 
212 	if (sig > 0 && sig < NSIG)
213 		return (sigproptbl[_SIG_IDX(sig)]);
214 	return (0);
215 }
216 
217 static __inline int
218 sig_ffs(sigset_t *set)
219 {
220 	int i;
221 
222 	for (i = 0; i < _SIG_WORDS; i++)
223 		if (set->__bits[i])
224 			return (ffs(set->__bits[i]) + (i * 32));
225 	return (0);
226 }
227 
228 int
229 kern_sigaction(int sig, struct sigaction *act, struct sigaction *oact)
230 {
231 	struct thread *td = curthread;
232 	struct proc *p = td->td_proc;
233 	struct lwp *lp;
234 	struct sigacts *ps = p->p_sigacts;
235 
236 	if (sig <= 0 || sig > _SIG_MAXSIG)
237 		return (EINVAL);
238 
239 	if (oact) {
240 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
241 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
242 		oact->sa_flags = 0;
243 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
244 			oact->sa_flags |= SA_ONSTACK;
245 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
246 			oact->sa_flags |= SA_RESTART;
247 		if (SIGISMEMBER(ps->ps_sigreset, sig))
248 			oact->sa_flags |= SA_RESETHAND;
249 		if (SIGISMEMBER(ps->ps_signodefer, sig))
250 			oact->sa_flags |= SA_NODEFER;
251 		if (SIGISMEMBER(ps->ps_siginfo, sig))
252 			oact->sa_flags |= SA_SIGINFO;
253 		if (SIGISMEMBER(ps->ps_sigmailbox, sig))
254 			oact->sa_flags |= SA_MAILBOX;
255 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDSTOP)
256 			oact->sa_flags |= SA_NOCLDSTOP;
257 		if (sig == SIGCHLD && p->p_sigacts->ps_flag & PS_NOCLDWAIT)
258 			oact->sa_flags |= SA_NOCLDWAIT;
259 	}
260 	if (act) {
261 		/*
262 		 * Check for invalid requests.  KILL and STOP cannot be
263 		 * caught.
264 		 */
265 		if (sig == SIGKILL || sig == SIGSTOP) {
266 			if (act->sa_handler != SIG_DFL)
267 				return (EINVAL);
268 #if 0
269 			/* (not needed, SIG_DFL forces action to occur) */
270 			if (act->sa_flags & SA_MAILBOX)
271 				return (EINVAL);
272 #endif
273 		}
274 
275 		/*
276 		 * Change setting atomically.
277 		 */
278 		crit_enter();
279 
280 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
281 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
282 		if (act->sa_flags & SA_SIGINFO) {
283 			ps->ps_sigact[_SIG_IDX(sig)] =
284 			    (__sighandler_t *)act->sa_sigaction;
285 			SIGADDSET(ps->ps_siginfo, sig);
286 		} else {
287 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
288 			SIGDELSET(ps->ps_siginfo, sig);
289 		}
290 		if (!(act->sa_flags & SA_RESTART))
291 			SIGADDSET(ps->ps_sigintr, sig);
292 		else
293 			SIGDELSET(ps->ps_sigintr, sig);
294 		if (act->sa_flags & SA_ONSTACK)
295 			SIGADDSET(ps->ps_sigonstack, sig);
296 		else
297 			SIGDELSET(ps->ps_sigonstack, sig);
298 		if (act->sa_flags & SA_RESETHAND)
299 			SIGADDSET(ps->ps_sigreset, sig);
300 		else
301 			SIGDELSET(ps->ps_sigreset, sig);
302 		if (act->sa_flags & SA_NODEFER)
303 			SIGADDSET(ps->ps_signodefer, sig);
304 		else
305 			SIGDELSET(ps->ps_signodefer, sig);
306 		if (act->sa_flags & SA_MAILBOX)
307 			SIGADDSET(ps->ps_sigmailbox, sig);
308 		else
309 			SIGDELSET(ps->ps_sigmailbox, sig);
310 		if (sig == SIGCHLD) {
311 			if (act->sa_flags & SA_NOCLDSTOP)
312 				p->p_sigacts->ps_flag |= PS_NOCLDSTOP;
313 			else
314 				p->p_sigacts->ps_flag &= ~PS_NOCLDSTOP;
315 			if (act->sa_flags & SA_NOCLDWAIT) {
316 				/*
317 				 * Paranoia: since SA_NOCLDWAIT is implemented
318 				 * by reparenting the dying child to PID 1 (and
319 				 * trust it to reap the zombie), PID 1 itself
320 				 * is forbidden to set SA_NOCLDWAIT.
321 				 */
322 				if (p->p_pid == 1)
323 					p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
324 				else
325 					p->p_sigacts->ps_flag |= PS_NOCLDWAIT;
326 			} else {
327 				p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
328 			}
329 		}
330 		/*
331 		 * Set bit in p_sigignore for signals that are set to SIG_IGN,
332 		 * and for signals set to SIG_DFL where the default is to
333 		 * ignore. However, don't put SIGCONT in p_sigignore, as we
334 		 * have to restart the process.
335 		 */
336 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
337 		    (sigprop(sig) & SA_IGNORE &&
338 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
339 			/* never to be seen again */
340 			SIGDELSET(p->p_siglist, sig);
341 			/*
342 			 * Remove the signal also from the thread lists.
343 			 */
344 			FOREACH_LWP_IN_PROC(lp, p) {
345 				SIGDELSET(lp->lwp_siglist, sig);
346 			}
347 			if (sig != SIGCONT)
348 				/* easier in ksignal */
349 				SIGADDSET(p->p_sigignore, sig);
350 			SIGDELSET(p->p_sigcatch, sig);
351 		} else {
352 			SIGDELSET(p->p_sigignore, sig);
353 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
354 				SIGDELSET(p->p_sigcatch, sig);
355 			else
356 				SIGADDSET(p->p_sigcatch, sig);
357 		}
358 
359 		crit_exit();
360 	}
361 	return (0);
362 }
363 
364 int
365 sys_sigaction(struct sigaction_args *uap)
366 {
367 	struct sigaction act, oact;
368 	struct sigaction *actp, *oactp;
369 	int error;
370 
371 	actp = (uap->act != NULL) ? &act : NULL;
372 	oactp = (uap->oact != NULL) ? &oact : NULL;
373 	if (actp) {
374 		error = copyin(uap->act, actp, sizeof(act));
375 		if (error)
376 			return (error);
377 	}
378 	error = kern_sigaction(uap->sig, actp, oactp);
379 	if (oactp && !error) {
380 		error = copyout(oactp, uap->oact, sizeof(oact));
381 	}
382 	return (error);
383 }
384 
385 /*
386  * Initialize signal state for process 0;
387  * set to ignore signals that are ignored by default.
388  */
389 void
390 siginit(struct proc *p)
391 {
392 	int i;
393 
394 	for (i = 1; i <= NSIG; i++)
395 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
396 			SIGADDSET(p->p_sigignore, i);
397 }
398 
399 /*
400  * Reset signals for an exec of the specified process.
401  */
402 void
403 execsigs(struct proc *p)
404 {
405 	struct sigacts *ps = p->p_sigacts;
406 	struct lwp *lp;
407 	int sig;
408 
409 	lp = ONLY_LWP_IN_PROC(p);
410 
411 	/*
412 	 * Reset caught signals.  Held signals remain held
413 	 * through p_sigmask (unless they were caught,
414 	 * and are now ignored by default).
415 	 */
416 	while (SIGNOTEMPTY(p->p_sigcatch)) {
417 		sig = sig_ffs(&p->p_sigcatch);
418 		SIGDELSET(p->p_sigcatch, sig);
419 		if (sigprop(sig) & SA_IGNORE) {
420 			if (sig != SIGCONT)
421 				SIGADDSET(p->p_sigignore, sig);
422 			SIGDELSET(p->p_siglist, sig);
423 			SIGDELSET(lp->lwp_siglist, sig);
424 		}
425 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
426 	}
427 
428 	/*
429 	 * Reset stack state to the user stack.
430 	 * Clear set of signals caught on the signal stack.
431 	 */
432 	lp->lwp_sigstk.ss_flags = SS_DISABLE;
433 	lp->lwp_sigstk.ss_size = 0;
434 	lp->lwp_sigstk.ss_sp = 0;
435 	lp->lwp_flag &= ~LWP_ALTSTACK;
436 	/*
437 	 * Reset no zombies if child dies flag as Solaris does.
438 	 */
439 	p->p_sigacts->ps_flag &= ~PS_NOCLDWAIT;
440 }
441 
442 /*
443  * kern_sigprocmask() - MP SAFE ONLY IF p == curproc
444  *
445  *	Manipulate signal mask.  This routine is MP SAFE *ONLY* if
446  *	p == curproc.
447  */
448 int
449 kern_sigprocmask(int how, sigset_t *set, sigset_t *oset)
450 {
451 	struct thread *td = curthread;
452 	struct lwp *lp = td->td_lwp;
453 	int error;
454 
455 	if (oset != NULL)
456 		*oset = lp->lwp_sigmask;
457 
458 	error = 0;
459 	if (set != NULL) {
460 		switch (how) {
461 		case SIG_BLOCK:
462 			SIG_CANTMASK(*set);
463 			SIGSETOR(lp->lwp_sigmask, *set);
464 			break;
465 		case SIG_UNBLOCK:
466 			SIGSETNAND(lp->lwp_sigmask, *set);
467 			break;
468 		case SIG_SETMASK:
469 			SIG_CANTMASK(*set);
470 			lp->lwp_sigmask = *set;
471 			break;
472 		default:
473 			error = EINVAL;
474 			break;
475 		}
476 	}
477 	return (error);
478 }
479 
480 /*
481  * sigprocmask() - MP SAFE
482  */
483 int
484 sys_sigprocmask(struct sigprocmask_args *uap)
485 {
486 	sigset_t set, oset;
487 	sigset_t *setp, *osetp;
488 	int error;
489 
490 	setp = (uap->set != NULL) ? &set : NULL;
491 	osetp = (uap->oset != NULL) ? &oset : NULL;
492 	if (setp) {
493 		error = copyin(uap->set, setp, sizeof(set));
494 		if (error)
495 			return (error);
496 	}
497 	error = kern_sigprocmask(uap->how, setp, osetp);
498 	if (osetp && !error) {
499 		error = copyout(osetp, uap->oset, sizeof(oset));
500 	}
501 	return (error);
502 }
503 
504 int
505 kern_sigpending(struct __sigset *set)
506 {
507 	struct lwp *lp = curthread->td_lwp;
508 
509 	*set = lwp_sigpend(lp);
510 
511 	return (0);
512 }
513 
514 int
515 sys_sigpending(struct sigpending_args *uap)
516 {
517 	sigset_t set;
518 	int error;
519 
520 	error = kern_sigpending(&set);
521 
522 	if (error == 0)
523 		error = copyout(&set, uap->set, sizeof(set));
524 	return (error);
525 }
526 
527 /*
528  * Suspend process until signal, providing mask to be set
529  * in the meantime.
530  */
531 int
532 kern_sigsuspend(struct __sigset *set)
533 {
534 	struct thread *td = curthread;
535 	struct lwp *lp = td->td_lwp;
536 	struct proc *p = td->td_proc;
537 	struct sigacts *ps = p->p_sigacts;
538 
539 	/*
540 	 * When returning from sigsuspend, we want
541 	 * the old mask to be restored after the
542 	 * signal handler has finished.  Thus, we
543 	 * save it here and mark the sigacts structure
544 	 * to indicate this.
545 	 */
546 	lp->lwp_oldsigmask = lp->lwp_sigmask;
547 	lp->lwp_flag |= LWP_OLDMASK;
548 
549 	SIG_CANTMASK(*set);
550 	lp->lwp_sigmask = *set;
551 	while (tsleep(ps, PCATCH, "pause", 0) == 0)
552 		/* void */;
553 	/* always return EINTR rather than ERESTART... */
554 	return (EINTR);
555 }
556 
557 /*
558  * Note nonstandard calling convention: libc stub passes mask, not
559  * pointer, to save a copyin.
560  */
561 int
562 sys_sigsuspend(struct sigsuspend_args *uap)
563 {
564 	sigset_t mask;
565 	int error;
566 
567 	error = copyin(uap->sigmask, &mask, sizeof(mask));
568 	if (error)
569 		return (error);
570 
571 	error = kern_sigsuspend(&mask);
572 
573 	return (error);
574 }
575 
576 int
577 kern_sigaltstack(struct sigaltstack *ss, struct sigaltstack *oss)
578 {
579 	struct thread *td = curthread;
580 	struct lwp *lp = td->td_lwp;
581 	struct proc *p = td->td_proc;
582 
583 	if ((lp->lwp_flag & LWP_ALTSTACK) == 0)
584 		lp->lwp_sigstk.ss_flags |= SS_DISABLE;
585 
586 	if (oss)
587 		*oss = lp->lwp_sigstk;
588 
589 	if (ss) {
590 		if (ss->ss_flags & SS_DISABLE) {
591 			if (lp->lwp_sigstk.ss_flags & SS_ONSTACK)
592 				return (EINVAL);
593 			lp->lwp_flag &= ~LWP_ALTSTACK;
594 			lp->lwp_sigstk.ss_flags = ss->ss_flags;
595 		} else {
596 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
597 				return (ENOMEM);
598 			lp->lwp_flag |= LWP_ALTSTACK;
599 			lp->lwp_sigstk = *ss;
600 		}
601 	}
602 
603 	return (0);
604 }
605 
606 int
607 sys_sigaltstack(struct sigaltstack_args *uap)
608 {
609 	stack_t ss, oss;
610 	int error;
611 
612 	if (uap->ss) {
613 		error = copyin(uap->ss, &ss, sizeof(ss));
614 		if (error)
615 			return (error);
616 	}
617 
618 	error = kern_sigaltstack(uap->ss ? &ss : NULL,
619 	    uap->oss ? &oss : NULL);
620 
621 	if (error == 0 && uap->oss)
622 		error = copyout(&oss, uap->oss, sizeof(*uap->oss));
623 	return (error);
624 }
625 
626 /*
627  * Common code for kill process group/broadcast kill.
628  * cp is calling process.
629  */
630 struct killpg_info {
631 	int nfound;
632 	int sig;
633 };
634 
635 static int killpg_all_callback(struct proc *p, void *data);
636 
637 static int
638 dokillpg(int sig, int pgid, int all)
639 {
640 	struct killpg_info info;
641 	struct proc *cp = curproc;
642 	struct proc *p;
643 	struct pgrp *pgrp;
644 
645 	info.nfound = 0;
646 	info.sig = sig;
647 
648 	if (all) {
649 		/*
650 		 * broadcast
651 		 */
652 		allproc_scan(killpg_all_callback, &info);
653 	} else {
654 		if (pgid == 0) {
655 			/*
656 			 * zero pgid means send to my process group.
657 			 */
658 			pgrp = cp->p_pgrp;
659 		} else {
660 			pgrp = pgfind(pgid);
661 			if (pgrp == NULL)
662 				return (ESRCH);
663 		}
664 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
665 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
666 			if (p->p_pid <= 1 ||
667 			    p->p_stat == SZOMB ||
668 			    (p->p_flag & P_SYSTEM) ||
669 			    !CANSIGNAL(p, sig)) {
670 				continue;
671 			}
672 			++info.nfound;
673 			if (sig)
674 				ksignal(p, sig);
675 		}
676 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
677 	}
678 	return (info.nfound ? 0 : ESRCH);
679 }
680 
681 static int
682 killpg_all_callback(struct proc *p, void *data)
683 {
684 	struct killpg_info *info = data;
685 
686 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) ||
687 	    p == curproc || !CANSIGNAL(p, info->sig)) {
688 		return (0);
689 	}
690 	++info->nfound;
691 	if (info->sig)
692 		ksignal(p, info->sig);
693 	return(0);
694 }
695 
696 int
697 kern_kill(int sig, pid_t pid, lwpid_t tid)
698 {
699 	struct thread *td = curthread;
700 	struct proc *p = td->td_proc;
701 	struct lwp *lp = NULL;
702 
703 	if ((u_int)sig > _SIG_MAXSIG)
704 		return (EINVAL);
705 	if (pid > 0) {
706 		/* kill single process */
707 		if ((p = pfind(pid)) == NULL)
708 			return (ESRCH);
709 		if (!CANSIGNAL(p, sig))
710 			return (EPERM);
711 		if (tid != -1) {
712 			FOREACH_LWP_IN_PROC(lp, p) {
713 				if (lp->lwp_tid == tid)
714 					break;
715 			}
716 			if (lp == NULL)
717 				return (ESRCH);
718 		}
719 		if (sig)
720 			lwpsignal(p, lp, sig);
721 		return (0);
722 	}
723 	/*
724 	 * If we come here, pid is a special broadcast pid.
725 	 * This doesn't mix with a tid.
726 	 */
727 	if (tid != -1)
728 		return (EINVAL);
729 	switch (pid) {
730 	case -1:		/* broadcast signal */
731 		return (dokillpg(sig, 0, 1));
732 	case 0:			/* signal own process group */
733 		return (dokillpg(sig, 0, 0));
734 	default:		/* negative explicit process group */
735 		return (dokillpg(sig, -pid, 0));
736 	}
737 	/* NOTREACHED */
738 }
739 
740 int
741 sys_kill(struct kill_args *uap)
742 {
743 	int error;
744 
745 	error = kern_kill(uap->signum, uap->pid, -1);
746 	return (error);
747 }
748 
749 int
750 sys_lwp_kill(struct lwp_kill_args *uap)
751 {
752 	int error;
753 	pid_t pid = uap->pid;
754 
755 	/*
756 	 * A tid is mandatory for lwp_kill(), otherwise
757 	 * you could simply use kill().
758 	 */
759 	if (uap->tid == -1)
760 		return (EINVAL);
761 
762 	/*
763 	 * To save on a getpid() function call for intra-process
764 	 * signals, pid == -1 means current process.
765 	 */
766 	if (pid == -1)
767 		pid = curproc->p_pid;
768 
769 	error = kern_kill(uap->signum, pid, uap->tid);
770 	return (error);
771 }
772 
773 /*
774  * Send a signal to a process group.
775  */
776 void
777 gsignal(int pgid, int sig)
778 {
779 	struct pgrp *pgrp;
780 
781 	if (pgid && (pgrp = pgfind(pgid)))
782 		pgsignal(pgrp, sig, 0);
783 }
784 
785 /*
786  * Send a signal to a process group.  If checktty is 1,
787  * limit to members which have a controlling terminal.
788  *
789  * pg_lock interlocks against a fork that might be in progress, to
790  * ensure that the new child process picks up the signal.
791  */
792 void
793 pgsignal(struct pgrp *pgrp, int sig, int checkctty)
794 {
795 	struct proc *p;
796 
797 	if (pgrp) {
798 		lockmgr(&pgrp->pg_lock, LK_EXCLUSIVE);
799 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
800 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
801 				ksignal(p, sig);
802 		}
803 		lockmgr(&pgrp->pg_lock, LK_RELEASE);
804 	}
805 }
806 
807 /*
808  * Send a signal caused by a trap to the current process.
809  * If it will be caught immediately, deliver it with correct code.
810  * Otherwise, post it normally.
811  */
812 void
813 trapsignal(struct lwp *lp, int sig, u_long code)
814 {
815 	struct proc *p = lp->lwp_proc;
816 	struct sigacts *ps = p->p_sigacts;
817 
818 	/*
819 	 * If we are a virtual kernel running an emulated user process
820 	 * context, switch back to the virtual kernel context before
821 	 * trying to post the signal.
822 	 */
823 	if (p->p_vkernel && p->p_vkernel->vk_current) {
824 		struct trapframe *tf = curthread->td_lwp->lwp_md.md_regs;
825 		tf->tf_trapno = 0;
826 		vkernel_trap(p, tf);
827 	}
828 
829 
830 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(p->p_sigcatch, sig) &&
831 	    !SIGISMEMBER(lp->lwp_sigmask, sig)) {
832 		lp->lwp_ru.ru_nsignals++;
833 #ifdef KTRACE
834 		if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
835 			ktrpsig(p, sig, ps->ps_sigact[_SIG_IDX(sig)],
836 				&lp->lwp_sigmask, code);
837 #endif
838 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)], sig,
839 						&lp->lwp_sigmask, code);
840 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
841 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
842 			SIGADDSET(lp->lwp_sigmask, sig);
843 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
844 			/*
845 			 * See kern_sigaction() for origin of this code.
846 			 */
847 			SIGDELSET(p->p_sigcatch, sig);
848 			if (sig != SIGCONT &&
849 			    sigprop(sig) & SA_IGNORE)
850 				SIGADDSET(p->p_sigignore, sig);
851 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
852 		}
853 	} else {
854 		lp->lwp_code = code;	/* XXX for core dump/debugger */
855 		lp->lwp_sig = sig;	/* XXX to verify code */
856 		lwpsignal(p, lp, sig);
857 	}
858 }
859 
860 /*
861  * Find a suitable lwp to deliver the signal to.
862  *
863  * Returns NULL if all lwps hold the signal blocked.
864  */
865 static struct lwp *
866 find_lwp_for_signal(struct proc *p, int sig)
867 {
868 	struct lwp *lp;
869 	struct lwp *run, *sleep, *stop;
870 
871 	/*
872 	 * If the running/preempted thread belongs to the proc to which
873 	 * the signal is being delivered and this thread does not block
874 	 * the signal, then we can avoid a context switch by delivering
875 	 * the signal to this thread, because it will return to userland
876 	 * soon anyways.
877 	 */
878 	lp = lwkt_preempted_proc();
879 	if (lp != NULL && lp->lwp_proc == p && !SIGISMEMBER(lp->lwp_sigmask, sig))
880 		return (lp);
881 
882 	run = sleep = stop = NULL;
883 	FOREACH_LWP_IN_PROC(lp, p) {
884 		/*
885 		 * If the signal is being blocked by the lwp, then this
886 		 * lwp is not eligible for receiving the signal.
887 		 */
888 		if (SIGISMEMBER(lp->lwp_sigmask, sig))
889 			continue;
890 
891 		switch (lp->lwp_stat) {
892 		case LSRUN:
893 			run = lp;
894 			break;
895 
896 		case LSSTOP:
897 			stop = lp;
898 			break;
899 
900 		case LSSLEEP:
901 			if (lp->lwp_flag & LWP_SINTR)
902 				sleep = lp;
903 			break;
904 		}
905 	}
906 
907 	if (run != NULL)
908 		return (run);
909 	else if (sleep != NULL)
910 		return (sleep);
911 	else
912 		return (stop);
913 }
914 
915 /*
916  * Send the signal to the process.  If the signal has an action, the action
917  * is usually performed by the target process rather than the caller; we add
918  * the signal to the set of pending signals for the process.
919  *
920  * Exceptions:
921  *   o When a stop signal is sent to a sleeping process that takes the
922  *     default action, the process is stopped without awakening it.
923  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
924  *     regardless of the signal action (eg, blocked or ignored).
925  *
926  * Other ignored signals are discarded immediately.
927  */
928 void
929 ksignal(struct proc *p, int sig)
930 {
931 	lwpsignal(p, NULL, sig);
932 }
933 
934 /*
935  * The core for ksignal.  lp may be NULL, then a suitable thread
936  * will be chosen.  If not, lp MUST be a member of p.
937  */
938 void
939 lwpsignal(struct proc *p, struct lwp *lp, int sig)
940 {
941 	int prop;
942 	sig_t action;
943 
944 	if (sig > _SIG_MAXSIG || sig <= 0) {
945 		kprintf("lwpsignal: signal %d\n", sig);
946 		panic("lwpsignal signal number");
947 	}
948 
949 	KKASSERT(lp == NULL || lp->lwp_proc == p);
950 
951 	crit_enter();
952 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
953 	crit_exit();
954 
955 	prop = sigprop(sig);
956 
957 	/*
958 	 * If proc is traced, always give parent a chance;
959 	 * if signal event is tracked by procfs, give *that*
960 	 * a chance, as well.
961 	 */
962 	if ((p->p_flag & P_TRACED) || (p->p_stops & S_SIG)) {
963 		action = SIG_DFL;
964 	} else {
965 		/*
966 		 * If the signal is being ignored,
967 		 * then we forget about it immediately.
968 		 * (Note: we don't set SIGCONT in p_sigignore,
969 		 * and if it is set to SIG_IGN,
970 		 * action will be SIG_DFL here.)
971 		 */
972 		if (SIGISMEMBER(p->p_sigignore, sig) || (p->p_flag & P_WEXIT))
973 			return;
974 		if (SIGISMEMBER(p->p_sigcatch, sig))
975 			action = SIG_CATCH;
976 		else
977 			action = SIG_DFL;
978 	}
979 
980 	/*
981 	 * If continuing, clear any pending STOP signals.
982 	 */
983 	if (prop & SA_CONT)
984 		SIG_STOPSIGMASK(p->p_siglist);
985 
986 	if (prop & SA_STOP) {
987 		/*
988 		 * If sending a tty stop signal to a member of an orphaned
989 		 * process group, discard the signal here if the action
990 		 * is default; don't stop the process below if sleeping,
991 		 * and don't clear any pending SIGCONT.
992 		 */
993 		if (prop & SA_TTYSTOP && p->p_pgrp->pg_jobc == 0 &&
994 		    action == SIG_DFL) {
995 		        return;
996 		}
997 		SIG_CONTSIGMASK(p->p_siglist);
998 	}
999 
1000 	crit_enter();
1001 
1002 	if (p->p_stat == SSTOP) {
1003 		/*
1004 		 * Nobody can handle this signal, so add it to the process
1005 		 * pending list.
1006 		 */
1007 		SIGADDSET(p->p_siglist, sig);
1008 
1009 		/*
1010 		 * If the process is stopped and is being traced, then no
1011 		 * further action is necessary.
1012 		 */
1013 		if (p->p_flag & P_TRACED)
1014 			goto out;
1015 
1016 		/*
1017 		 * If the process is stopped and receives a KILL signal,
1018 		 * make the process runnable.
1019 		 */
1020 		if (sig == SIGKILL) {
1021 			proc_unstop(p);
1022 			goto active_process;
1023 		}
1024 
1025 		/*
1026 		 * If the process is stopped and receives a CONT signal,
1027 		 * then try to make the process runnable again.
1028 		 */
1029 		if (prop & SA_CONT) {
1030 			/*
1031 			 * If SIGCONT is default (or ignored), we continue the
1032 			 * process but don't leave the signal in p_siglist, as
1033 			 * it has no further action.  If SIGCONT is held, we
1034 			 * continue the process and leave the signal in
1035 			 * p_siglist.  If the process catches SIGCONT, let it
1036 			 * handle the signal itself.
1037 			 */
1038 			/* XXX what if the signal is being held blocked? */
1039 			if (action == SIG_DFL)
1040 				SIGDELSET(p->p_siglist, sig);
1041 			proc_unstop(p);
1042 			if (action == SIG_CATCH)
1043 				goto active_process;
1044 			goto out;
1045 		}
1046 
1047 		/*
1048 		 * If the process is stopped and receives another STOP
1049 		 * signal, we do not need to stop it again.  If we did
1050 		 * the shell could get confused.
1051 		 *
1052 		 * However, if the current/preempted lwp is part of the
1053 		 * process receiving the signal, we need to keep it,
1054 		 * so that this lwp can stop in issignal() later, as
1055 		 * we don't want to wait until it reaches userret!
1056 		 */
1057 		if (prop & SA_STOP) {
1058 			if (lwkt_preempted_proc() == NULL ||
1059 			    lwkt_preempted_proc()->lwp_proc != p)
1060 				SIGDELSET(p->p_siglist, sig);
1061 		}
1062 
1063 		/*
1064 		 * Otherwise the process is stopped and it received some
1065 		 * signal, which does not change its stopped state.
1066 		 *
1067 		 * We have to select one thread to set LWP_BREAKTSLEEP,
1068 		 * so that the current signal will break the sleep
1069 		 * as soon as a SA_CONT signal will unstop the process.
1070 		 */
1071 		if (lp == NULL)
1072 			lp = find_lwp_for_signal(p, sig);
1073 		if (lp != NULL &&
1074 		    (lp->lwp_stat == LSSLEEP || lp->lwp_stat == LSSTOP))
1075 			lp->lwp_flag |= LWP_BREAKTSLEEP;
1076 		goto out;
1077 
1078 		/* NOTREACHED */
1079 	}
1080 	/* else not stopped */
1081 active_process:
1082 
1083 	if (lp == NULL)
1084 		lp = find_lwp_for_signal(p, sig);
1085 
1086 	/*
1087 	 * If lp == NULL, there is no thread available which does
1088 	 * not block the signal.  If lp is set, it might be a thread
1089 	 * specific signal, so we have to check for the thread ignoring
1090 	 * the signal.
1091 	 *
1092 	 * If so, defer further processing for this signal.
1093 	 * Add the signal to the process pending list.
1094 	 */
1095 	if (lp == NULL || SIGISMEMBER(lp->lwp_sigmask, sig)) {
1096 		SIGADDSET(p->p_siglist, sig);
1097 		goto out;
1098 	}
1099 	/* else we have a lwp to deliver the signal to */
1100 
1101 	if (p->p_nice > NZERO && action == SIG_DFL && (prop & SA_KILL) &&
1102 	    (p->p_flag & P_TRACED) == 0) {
1103 		p->p_nice = NZERO;
1104 	}
1105 
1106 	/*
1107 	 * If the process receives a STOP signal which indeed needs to
1108 	 * stop the process, do so.  If the process chose to catch the
1109 	 * signal, it will be treated like any other signal.
1110 	 */
1111 	if ((prop & SA_STOP) && action == SIG_DFL) {
1112 		/*
1113 		 * If a child holding parent blocked, stopping
1114 		 * could cause deadlock.  Take no action at this
1115 		 * time.
1116 		 */
1117 		if (p->p_flag & P_PPWAIT) {
1118 			SIGADDSET(p->p_siglist, sig);
1119 			goto out;
1120 		}
1121 
1122 		/*
1123 		 * Do not actually try to manipulate the process, but simply
1124 		 * stop it.  Lwps will stop as soon as they safely can.
1125 		 */
1126 		p->p_xstat = sig;
1127 		proc_stop(p);
1128 		goto out;
1129 	}
1130 
1131 	/*
1132 	 * If it is a CONT signal with default action, just ignore it.
1133 	 */
1134 	if ((prop & SA_CONT) && action == SIG_DFL)
1135 		goto out;
1136 
1137 	/*
1138 	 * Mark signal pending at this specific thread.
1139 	 */
1140 	SIGADDSET(lp->lwp_siglist, sig);
1141 
1142 	lwp_signotify(lp);
1143 
1144 out:
1145 	crit_exit();
1146 }
1147 
1148 void
1149 lwp_signotify(struct lwp *lp)
1150 {
1151 	crit_enter();
1152 	if (lp->lwp_stat == LSSLEEP || lp->lwp_stat == LSSTOP) {
1153 		/*
1154 		 * Thread is in tsleep.
1155 		 */
1156 
1157 		/*
1158 		 * If the thread is sleeping uninterruptibly
1159 		 * we can't interrupt the sleep... the signal will
1160 		 * be noticed when the lwp returns through
1161 		 * trap() or syscall().
1162 		 *
1163 		 * Otherwise the signal can interrupt the sleep.
1164 		 *
1165 		 * If the process is traced, the lwp will handle the
1166 		 * tracing in issignal() when it returns to userland.
1167 		 */
1168 		if (lp->lwp_flag & LWP_SINTR) {
1169 			/*
1170 			 * Make runnable and break out of any tsleep as well.
1171 			 */
1172 			lp->lwp_flag |= LWP_BREAKTSLEEP;
1173 			setrunnable(lp);
1174 		}
1175 	} else {
1176 		/*
1177 		 * Otherwise the thread is running
1178 		 *
1179 		 * LSRUN does nothing with the signal, other than kicking
1180 		 * ourselves if we are running.
1181 		 * SZOMB and SIDL mean that it will either never be noticed,
1182 		 * or noticed very soon.
1183 		 *
1184 		 * Note that lwp_thread may be NULL or may not be completely
1185 		 * initialized if the process is in the SIDL or SZOMB state.
1186 		 *
1187 		 * For SMP we may have to forward the request to another cpu.
1188 		 * YYY the MP lock prevents the target process from moving
1189 		 * to another cpu, see kern/kern_switch.c
1190 		 *
1191 		 * If the target thread is waiting on its message port,
1192 		 * wakeup the target thread so it can check (or ignore)
1193 		 * the new signal.  YYY needs cleanup.
1194 		 */
1195 		if (lp == lwkt_preempted_proc()) {
1196 			signotify();
1197 		} else if (lp->lwp_stat == LSRUN) {
1198 			struct thread *td = lp->lwp_thread;
1199 			struct proc *p = lp->lwp_proc;
1200 
1201 			KASSERT(td != NULL,
1202 			    ("pid %d/%d NULL lwp_thread stat %d flags %08x/%08x",
1203 			    p->p_pid, lp->lwp_tid, lp->lwp_stat,
1204 			    p->p_flag, lp->lwp_flag));
1205 
1206 #ifdef SMP
1207 			if (td->td_gd != mycpu)
1208 				lwkt_send_ipiq(td->td_gd, signotify_remote, lp);
1209 			else
1210 #endif
1211 			if (td->td_msgport.mp_flags & MSGPORTF_WAITING)
1212 				lwkt_schedule(td);
1213 		}
1214 	}
1215 	crit_exit();
1216 }
1217 
1218 #ifdef SMP
1219 
1220 /*
1221  * This function is called via an IPI.  We will be in a critical section but
1222  * the MP lock will NOT be held.  Also note that by the time the ipi message
1223  * gets to us the process 'p' (arg) may no longer be scheduled or even valid.
1224  */
1225 static void
1226 signotify_remote(void *arg)
1227 {
1228 	struct lwp *lp = arg;
1229 
1230 	if (lp == lwkt_preempted_proc()) {
1231 		signotify();
1232 	} else {
1233 		struct thread *td = lp->lwp_thread;
1234 		if (td->td_msgport.mp_flags & MSGPORTF_WAITING)
1235 			lwkt_schedule(td);
1236 	}
1237 }
1238 
1239 #endif
1240 
1241 void
1242 proc_stop(struct proc *p)
1243 {
1244 	struct lwp *lp;
1245 
1246 	/* If somebody raced us, be happy with it */
1247 	if (p->p_stat == SSTOP)
1248 		return;
1249 
1250 	crit_enter();
1251 	p->p_stat = SSTOP;
1252 
1253 	FOREACH_LWP_IN_PROC(lp, p) {
1254 		switch (lp->lwp_stat) {
1255 		case LSSTOP:
1256 			/*
1257 			 * Do nothing, we are already counted in
1258 			 * p_nstopped.
1259 			 */
1260 			break;
1261 
1262 		case LSSLEEP:
1263 			/*
1264 			 * We're sleeping, but we will stop before
1265 			 * returning to userspace, so count us
1266 			 * as stopped as well.  We set LWP_WSTOP
1267 			 * to signal the lwp that it should not
1268 			 * increase p_nstopped when reaching tstop().
1269 			 */
1270 			if ((lp->lwp_flag & LWP_WSTOP) == 0) {
1271 				lp->lwp_flag |= LWP_WSTOP;
1272 				++p->p_nstopped;
1273 			}
1274 			break;
1275 
1276 		case LSRUN:
1277 			/*
1278 			 * We might notify ourself, but that's not
1279 			 * a problem.
1280 			 */
1281 			lwp_signotify(lp);
1282 			break;
1283 		}
1284 	}
1285 
1286 	if (p->p_nstopped == p->p_nthreads) {
1287 		p->p_flag &= ~P_WAITED;
1288 		wakeup(p->p_pptr);
1289 		if ((p->p_pptr->p_sigacts->ps_flag & PS_NOCLDSTOP) == 0)
1290 			ksignal(p->p_pptr, SIGCHLD);
1291 	}
1292 	crit_exit();
1293 }
1294 
1295 void
1296 proc_unstop(struct proc *p)
1297 {
1298 	struct lwp *lp;
1299 
1300 	if (p->p_stat != SSTOP)
1301 		return;
1302 
1303 	crit_enter();
1304 	p->p_stat = SACTIVE;
1305 
1306 	FOREACH_LWP_IN_PROC(lp, p) {
1307 		switch (lp->lwp_stat) {
1308 		case LSRUN:
1309 			/*
1310 			 * Uh?  Not stopped?  Well, I guess that's okay.
1311 			 */
1312 			if (bootverbose)
1313 				kprintf("proc_unstop: lwp %d/%d not sleeping\n",
1314 					p->p_pid, lp->lwp_tid);
1315 			break;
1316 
1317 		case LSSLEEP:
1318 			/*
1319 			 * Still sleeping.  Don't bother waking it up.
1320 			 * However, if this thread was counted as
1321 			 * stopped, undo this.
1322 			 *
1323 			 * Nevertheless we call setrunnable() so that it
1324 			 * will wake up in case a signal or timeout arrived
1325 			 * in the meantime.
1326 			 */
1327 			if (lp->lwp_flag & LWP_WSTOP) {
1328 				--p->p_nstopped;
1329 			} else {
1330 				if (bootverbose)
1331 					kprintf("proc_unstop: lwp %d/%d sleeping, not stopped\n",
1332 						p->p_pid, lp->lwp_tid);
1333 			}
1334 			/* FALLTHROUGH */
1335 
1336 		case LSSTOP:
1337 			setrunnable(lp);
1338 			break;
1339 
1340 		}
1341 		lp->lwp_flag &= ~LWP_WSTOP;
1342 	}
1343 	crit_exit();
1344 }
1345 
1346 static int
1347 kern_sigtimedwait(sigset_t waitset, siginfo_t *info, struct timespec *timeout)
1348 {
1349 	sigset_t savedmask, set;
1350 	struct proc *p = curproc;
1351 	struct lwp *lp = curthread->td_lwp;
1352 	int error, sig, hz, timevalid = 0;
1353 	struct timespec rts, ets, ts;
1354 	struct timeval tv;
1355 
1356 	error = 0;
1357 	sig = 0;
1358 	SIG_CANTMASK(waitset);
1359 	savedmask = lp->lwp_sigmask;
1360 
1361 	if (timeout) {
1362 		if (timeout->tv_sec >= 0 && timeout->tv_nsec >= 0 &&
1363 		    timeout->tv_nsec < 1000000000) {
1364 			timevalid = 1;
1365 			getnanouptime(&rts);
1366 		 	ets = rts;
1367 			timespecadd(&ets, timeout);
1368 		}
1369 	}
1370 
1371 	for (;;) {
1372 		set = lwp_sigpend(lp);
1373 		SIGSETAND(set, waitset);
1374 		if ((sig = sig_ffs(&set)) != 0) {
1375 			SIGFILLSET(lp->lwp_sigmask);
1376 			SIGDELSET(lp->lwp_sigmask, sig);
1377 			SIG_CANTMASK(lp->lwp_sigmask);
1378 			sig = issignal(lp);
1379 			/*
1380 			 * It may be a STOP signal, in the case, issignal
1381 			 * returns 0, because we may stop there, and new
1382 			 * signal can come in, we should restart if we got
1383 			 * nothing.
1384 			 */
1385 			if (sig == 0)
1386 				continue;
1387 			else
1388 				break;
1389 		}
1390 
1391 		/*
1392 		 * Previous checking got nothing, and we retried but still
1393 		 * got nothing, we should return the error status.
1394 		 */
1395 		if (error)
1396 			break;
1397 
1398 		/*
1399 		 * POSIX says this must be checked after looking for pending
1400 		 * signals.
1401 		 */
1402 		if (timeout) {
1403 			if (!timevalid) {
1404 				error = EINVAL;
1405 				break;
1406 			}
1407 			getnanouptime(&rts);
1408 			if (timespeccmp(&rts, &ets, >=)) {
1409 				error = EAGAIN;
1410 				break;
1411 			}
1412 			ts = ets;
1413 			timespecsub(&ts, &rts);
1414 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1415 			hz = tvtohz_high(&tv);
1416 		} else
1417 			hz = 0;
1418 
1419 		lp->lwp_sigmask = savedmask;
1420 		SIGSETNAND(lp->lwp_sigmask, waitset);
1421 		/*
1422 		 * We won't ever be woken up.  Instead, our sleep will
1423 		 * be broken in lwpsignal().
1424 		 */
1425 		error = tsleep(&p->p_sigacts, PCATCH, "sigwt", hz);
1426 		if (timeout) {
1427 			if (error == ERESTART) {
1428 				/* can not restart a timeout wait. */
1429 				error = EINTR;
1430 			} else if (error == EAGAIN) {
1431 				/* will calculate timeout by ourself. */
1432 				error = 0;
1433 			}
1434 		}
1435 		/* Retry ... */
1436 	}
1437 
1438 	lp->lwp_sigmask = savedmask;
1439 	if (sig) {
1440 		error = 0;
1441 		bzero(info, sizeof(*info));
1442 		info->si_signo = sig;
1443 		lwp_delsig(lp, sig);	/* take the signal! */
1444 
1445 		if (sig == SIGKILL)
1446 			sigexit(p, sig);
1447 	}
1448 	return (error);
1449 }
1450 
1451 int
1452 sys_sigtimedwait(struct sigtimedwait_args *uap)
1453 {
1454 	struct timespec ts;
1455 	struct timespec *timeout;
1456 	sigset_t set;
1457 	siginfo_t info;
1458 	int error;
1459 
1460 	if (uap->timeout) {
1461 		error = copyin(uap->timeout, &ts, sizeof(ts));
1462 		if (error)
1463 			return (error);
1464 		timeout = &ts;
1465 	} else {
1466 		timeout = NULL;
1467 	}
1468 	error = copyin(uap->set, &set, sizeof(set));
1469 	if (error)
1470 		return (error);
1471 	error = kern_sigtimedwait(set, &info, timeout);
1472 	if (error)
1473 		return (error);
1474  	if (uap->info)
1475 		error = copyout(&info, uap->info, sizeof(info));
1476 	/* Repost if we got an error. */
1477 	/*
1478 	 * XXX lwp
1479 	 *
1480 	 * This could transform a thread-specific signal to another
1481 	 * thread / process pending signal.
1482 	 */
1483 	if (error)
1484 		ksignal(curproc, info.si_signo);
1485 	else
1486 		uap->sysmsg_result = info.si_signo;
1487 	return (error);
1488 }
1489 
1490 int
1491 sys_sigwaitinfo(struct sigwaitinfo_args *uap)
1492 {
1493 	siginfo_t info;
1494 	sigset_t set;
1495 	int error;
1496 
1497 	error = copyin(uap->set, &set, sizeof(set));
1498 	if (error)
1499 		return (error);
1500 	error = kern_sigtimedwait(set, &info, NULL);
1501 	if (error)
1502 		return (error);
1503 	if (uap->info)
1504 		error = copyout(&info, uap->info, sizeof(info));
1505 	/* Repost if we got an error. */
1506 	/*
1507 	 * XXX lwp
1508 	 *
1509 	 * This could transform a thread-specific signal to another
1510 	 * thread / process pending signal.
1511 	 */
1512 	if (error)
1513 		ksignal(curproc, info.si_signo);
1514 	else
1515 		uap->sysmsg_result = info.si_signo;
1516 	return (error);
1517 }
1518 
1519 /*
1520  * If the current process has received a signal that would interrupt a
1521  * system call, return EINTR or ERESTART as appropriate.
1522  */
1523 int
1524 iscaught(struct lwp *lp)
1525 {
1526 	struct proc *p = lp->lwp_proc;
1527 	int sig;
1528 
1529 	if (p) {
1530 		if ((sig = CURSIG(lp)) != 0) {
1531 			if (SIGISMEMBER(p->p_sigacts->ps_sigintr, sig))
1532 				return (EINTR);
1533 			return (ERESTART);
1534 		}
1535 	}
1536 	return(EWOULDBLOCK);
1537 }
1538 
1539 /*
1540  * If the current process has received a signal (should be caught or cause
1541  * termination, should interrupt current syscall), return the signal number.
1542  * Stop signals with default action are processed immediately, then cleared;
1543  * they aren't returned.  This is checked after each entry to the system for
1544  * a syscall or trap (though this can usually be done without calling issignal
1545  * by checking the pending signal masks in the CURSIG macro.) The normal call
1546  * sequence is
1547  *
1548  * This routine is called via CURSIG/__cursig and the MP lock might not be
1549  * held.  Obtain the MP lock for the duration of the operation.
1550  *
1551  *	while (sig = CURSIG(curproc))
1552  *		postsig(sig);
1553  */
1554 int
1555 issignal(struct lwp *lp)
1556 {
1557 	struct proc *p = lp->lwp_proc;
1558 	sigset_t mask;
1559 	int sig, prop;
1560 
1561 	get_mplock();
1562 	for (;;) {
1563 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
1564 
1565 		mask = lwp_sigpend(lp);
1566 		SIGSETNAND(mask, lp->lwp_sigmask);
1567 		if (p->p_flag & P_PPWAIT)
1568 			SIG_STOPSIGMASK(mask);
1569 		if (SIGISEMPTY(mask)) {		/* no signal to send */
1570 			rel_mplock();
1571 			return (0);
1572 		}
1573 		sig = sig_ffs(&mask);
1574 
1575 		STOPEVENT(p, S_SIG, sig);
1576 
1577 		/*
1578 		 * We should see pending but ignored signals
1579 		 * only if P_TRACED was on when they were posted.
1580 		 */
1581 		if (SIGISMEMBER(p->p_sigignore, sig) && (traced == 0)) {
1582 			lwp_delsig(lp, sig);
1583 			continue;
1584 		}
1585 		if ((p->p_flag & P_TRACED) && (p->p_flag & P_PPWAIT) == 0) {
1586 			/*
1587 			 * If traced, always stop, and stay stopped until
1588 			 * released by the parent.
1589 			 *
1590 			 * NOTE: SSTOP may get cleared during the loop,
1591 			 * but we do not re-notify the parent if we have
1592 			 * to loop several times waiting for the parent
1593 			 * to let us continue.
1594 			 *
1595 			 * XXX not sure if this is still true
1596 			 */
1597 			p->p_xstat = sig;
1598 			proc_stop(p);
1599 			do {
1600 				tstop();
1601 			} while (!trace_req(p) && (p->p_flag & P_TRACED));
1602 
1603 			/*
1604 			 * If parent wants us to take the signal,
1605 			 * then it will leave it in p->p_xstat;
1606 			 * otherwise we just look for signals again.
1607 			 */
1608 			lwp_delsig(lp, sig);	/* clear old signal */
1609 			sig = p->p_xstat;
1610 			if (sig == 0)
1611 				continue;
1612 
1613 			/*
1614 			 * Put the new signal into p_siglist.  If the
1615 			 * signal is being masked, look for other signals.
1616 			 *
1617 			 * XXX lwp might need a call to ksignal()
1618 			 */
1619 			SIGADDSET(p->p_siglist, sig);
1620 			if (SIGISMEMBER(lp->lwp_sigmask, sig))
1621 				continue;
1622 
1623 			/*
1624 			 * If the traced bit got turned off, go back up
1625 			 * to the top to rescan signals.  This ensures
1626 			 * that p_sig* and ps_sigact are consistent.
1627 			 */
1628 			if ((p->p_flag & P_TRACED) == 0)
1629 				continue;
1630 		}
1631 
1632 		prop = sigprop(sig);
1633 
1634 		/*
1635 		 * Decide whether the signal should be returned.
1636 		 * Return the signal's number, or fall through
1637 		 * to clear it from the pending mask.
1638 		 */
1639 		switch ((int)(intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
1640 		case (int)SIG_DFL:
1641 			/*
1642 			 * Don't take default actions on system processes.
1643 			 */
1644 			if (p->p_pid <= 1) {
1645 #ifdef DIAGNOSTIC
1646 				/*
1647 				 * Are you sure you want to ignore SIGSEGV
1648 				 * in init? XXX
1649 				 */
1650 				kprintf("Process (pid %lu) got signal %d\n",
1651 					(u_long)p->p_pid, sig);
1652 #endif
1653 				break;		/* == ignore */
1654 			}
1655 
1656 			/*
1657 			 * Handle the in-kernel checkpoint action
1658 			 */
1659 			if (prop & SA_CKPT) {
1660 				checkpoint_signal_handler(lp);
1661 				break;
1662 			}
1663 
1664 			/*
1665 			 * If there is a pending stop signal to process
1666 			 * with default action, stop here,
1667 			 * then clear the signal.  However,
1668 			 * if process is member of an orphaned
1669 			 * process group, ignore tty stop signals.
1670 			 */
1671 			if (prop & SA_STOP) {
1672 				if (p->p_flag & P_TRACED ||
1673 		    		    (p->p_pgrp->pg_jobc == 0 &&
1674 				    prop & SA_TTYSTOP))
1675 					break;	/* == ignore */
1676 				p->p_xstat = sig;
1677 				proc_stop(p);
1678 				while (p->p_stat == SSTOP) {
1679 					tstop();
1680 				}
1681 				break;
1682 			} else if (prop & SA_IGNORE) {
1683 				/*
1684 				 * Except for SIGCONT, shouldn't get here.
1685 				 * Default action is to ignore; drop it.
1686 				 */
1687 				break;		/* == ignore */
1688 			} else {
1689 				rel_mplock();
1690 				return (sig);
1691 			}
1692 
1693 			/*NOTREACHED*/
1694 
1695 		case (int)SIG_IGN:
1696 			/*
1697 			 * Masking above should prevent us ever trying
1698 			 * to take action on an ignored signal other
1699 			 * than SIGCONT, unless process is traced.
1700 			 */
1701 			if ((prop & SA_CONT) == 0 &&
1702 			    (p->p_flag & P_TRACED) == 0)
1703 				kprintf("issignal\n");
1704 			break;		/* == ignore */
1705 
1706 		default:
1707 			/*
1708 			 * This signal has an action, let
1709 			 * postsig() process it.
1710 			 */
1711 			rel_mplock();
1712 			return (sig);
1713 		}
1714 		lwp_delsig(lp, sig);		/* take the signal! */
1715 	}
1716 	/* NOTREACHED */
1717 }
1718 
1719 /*
1720  * Take the action for the specified signal
1721  * from the current set of pending signals.
1722  */
1723 void
1724 postsig(int sig)
1725 {
1726 	struct lwp *lp = curthread->td_lwp;
1727 	struct proc *p = lp->lwp_proc;
1728 	struct sigacts *ps = p->p_sigacts;
1729 	sig_t action;
1730 	sigset_t returnmask;
1731 	int code;
1732 
1733 	KASSERT(sig != 0, ("postsig"));
1734 
1735 	/*
1736 	 * If we are a virtual kernel running an emulated user process
1737 	 * context, switch back to the virtual kernel context before
1738 	 * trying to post the signal.
1739 	 */
1740 	if (p->p_vkernel && p->p_vkernel->vk_current) {
1741 		struct trapframe *tf = curthread->td_lwp->lwp_md.md_regs;
1742 		tf->tf_trapno = 0;
1743 		vkernel_trap(p, tf);
1744 	}
1745 
1746 	lwp_delsig(lp, sig);
1747 	action = ps->ps_sigact[_SIG_IDX(sig)];
1748 #ifdef KTRACE
1749 	if (KTRPOINT(lp->lwp_thread, KTR_PSIG))
1750 		ktrpsig(p, sig, action, lp->lwp_flag & LWP_OLDMASK ?
1751 			&lp->lwp_oldsigmask : &lp->lwp_sigmask, 0);
1752 #endif
1753 	STOPEVENT(p, S_SIG, sig);
1754 
1755 	if (action == SIG_DFL) {
1756 		/*
1757 		 * Default action, where the default is to kill
1758 		 * the process.  (Other cases were ignored above.)
1759 		 */
1760 		sigexit(p, sig);
1761 		/* NOTREACHED */
1762 	} else {
1763 		/*
1764 		 * If we get here, the signal must be caught.
1765 		 */
1766 		KASSERT(action != SIG_IGN && !SIGISMEMBER(lp->lwp_sigmask, sig),
1767 		    ("postsig action"));
1768 
1769 		crit_enter();
1770 
1771 		/*
1772 		 * Reset the signal handler if asked to
1773 		 */
1774 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1775 			/*
1776 			 * See kern_sigaction() for origin of this code.
1777 			 */
1778 			SIGDELSET(p->p_sigcatch, sig);
1779 			if (sig != SIGCONT &&
1780 			    sigprop(sig) & SA_IGNORE)
1781 				SIGADDSET(p->p_sigignore, sig);
1782 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1783 		}
1784 
1785 		/*
1786 		 * Handle the mailbox case.  Copyout to the appropriate
1787 		 * location but do not generate a signal frame.  The system
1788 		 * call simply returns EINTR and the user is responsible for
1789 		 * polling the mailbox.
1790 		 */
1791 		if (SIGISMEMBER(ps->ps_sigmailbox, sig)) {
1792 			int sig_copy = sig;
1793 			copyout(&sig_copy, (void *)action, sizeof(int));
1794 			curproc->p_flag |= P_MAILBOX;
1795 			crit_exit();
1796 			goto done;
1797 		}
1798 
1799 		/*
1800 		 * Set the signal mask and calculate the mask to restore
1801 		 * when the signal function returns.
1802 		 *
1803 		 * Special case: user has done a sigsuspend.  Here the
1804 		 * current mask is not of interest, but rather the
1805 		 * mask from before the sigsuspend is what we want
1806 		 * restored after the signal processing is completed.
1807 		 */
1808 		if (lp->lwp_flag & LWP_OLDMASK) {
1809 			returnmask = lp->lwp_oldsigmask;
1810 			lp->lwp_flag &= ~LWP_OLDMASK;
1811 		} else {
1812 			returnmask = lp->lwp_sigmask;
1813 		}
1814 
1815 		SIGSETOR(lp->lwp_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1816 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1817 			SIGADDSET(lp->lwp_sigmask, sig);
1818 
1819 		crit_exit();
1820 		lp->lwp_ru.ru_nsignals++;
1821 		if (lp->lwp_sig != sig) {
1822 			code = 0;
1823 		} else {
1824 			code = lp->lwp_code;
1825 			lp->lwp_code = 0;
1826 			lp->lwp_sig = 0;
1827 		}
1828 		(*p->p_sysent->sv_sendsig)(action, sig, &returnmask, code);
1829 	}
1830 done:
1831 	;
1832 }
1833 
1834 /*
1835  * Kill the current process for stated reason.
1836  */
1837 void
1838 killproc(struct proc *p, char *why)
1839 {
1840 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n",
1841 		p->p_pid, p->p_comm,
1842 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
1843 	ksignal(p, SIGKILL);
1844 }
1845 
1846 /*
1847  * Force the current process to exit with the specified signal, dumping core
1848  * if appropriate.  We bypass the normal tests for masked and caught signals,
1849  * allowing unrecoverable failures to terminate the process without changing
1850  * signal state.  Mark the accounting record with the signal termination.
1851  * If dumping core, save the signal number for the debugger.  Calls exit and
1852  * does not return.
1853  */
1854 void
1855 sigexit(struct proc *p, int sig)
1856 {
1857 	struct lwp *lp = FIRST_LWP_IN_PROC(p);	/* XXX lwp */
1858 
1859 	p->p_acflag |= AXSIG;
1860 	if (sigprop(sig) & SA_CORE) {
1861 		lp->lwp_sig = sig;
1862 		/*
1863 		 * Log signals which would cause core dumps
1864 		 * (Log as LOG_INFO to appease those who don't want
1865 		 * these messages.)
1866 		 * XXX : Todo, as well as euid, write out ruid too
1867 		 */
1868 		if (coredump(lp, sig) == 0)
1869 			sig |= WCOREFLAG;
1870 		if (kern_logsigexit)
1871 			log(LOG_INFO,
1872 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
1873 			    p->p_pid, p->p_comm,
1874 			    p->p_ucred ? p->p_ucred->cr_uid : -1,
1875 			    sig &~ WCOREFLAG,
1876 			    sig & WCOREFLAG ? " (core dumped)" : "");
1877 	}
1878 	exit1(W_EXITCODE(0, sig));
1879 	/* NOTREACHED */
1880 }
1881 
1882 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
1883 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
1884 	      sizeof(corefilename), "process corefile name format string");
1885 
1886 /*
1887  * expand_name(name, uid, pid)
1888  * Expand the name described in corefilename, using name, uid, and pid.
1889  * corefilename is a kprintf-like string, with three format specifiers:
1890  *	%N	name of process ("name")
1891  *	%P	process id (pid)
1892  *	%U	user id (uid)
1893  * For example, "%N.core" is the default; they can be disabled completely
1894  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
1895  * This is controlled by the sysctl variable kern.corefile (see above).
1896  */
1897 
1898 static char *
1899 expand_name(const char *name, uid_t uid, pid_t pid)
1900 {
1901 	char *temp;
1902 	char buf[11];		/* Buffer for pid/uid -- max 4B */
1903 	int i, n;
1904 	char *format = corefilename;
1905 	size_t namelen;
1906 
1907 	temp = kmalloc(MAXPATHLEN + 1, M_TEMP, M_NOWAIT);
1908 	if (temp == NULL)
1909 		return NULL;
1910 	namelen = strlen(name);
1911 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
1912 		int l;
1913 		switch (format[i]) {
1914 		case '%':	/* Format character */
1915 			i++;
1916 			switch (format[i]) {
1917 			case '%':
1918 				temp[n++] = '%';
1919 				break;
1920 			case 'N':	/* process name */
1921 				if ((n + namelen) > MAXPATHLEN) {
1922 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
1923 					    pid, name, uid, temp, name);
1924 					kfree(temp, M_TEMP);
1925 					return NULL;
1926 				}
1927 				memcpy(temp+n, name, namelen);
1928 				n += namelen;
1929 				break;
1930 			case 'P':	/* process id */
1931 				l = ksprintf(buf, "%u", pid);
1932 				if ((n + l) > MAXPATHLEN) {
1933 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
1934 					    pid, name, uid, temp, name);
1935 					kfree(temp, M_TEMP);
1936 					return NULL;
1937 				}
1938 				memcpy(temp+n, buf, l);
1939 				n += l;
1940 				break;
1941 			case 'U':	/* user id */
1942 				l = ksprintf(buf, "%u", uid);
1943 				if ((n + l) > MAXPATHLEN) {
1944 					log(LOG_ERR, "pid %d (%s), uid (%u):  Path `%s%s' is too long\n",
1945 					    pid, name, uid, temp, name);
1946 					kfree(temp, M_TEMP);
1947 					return NULL;
1948 				}
1949 				memcpy(temp+n, buf, l);
1950 				n += l;
1951 				break;
1952 			default:
1953 			  	log(LOG_ERR, "Unknown format character %c in `%s'\n", format[i], format);
1954 			}
1955 			break;
1956 		default:
1957 			temp[n++] = format[i];
1958 		}
1959 	}
1960 	temp[n] = '\0';
1961 	return temp;
1962 }
1963 
1964 /*
1965  * Dump a process' core.  The main routine does some
1966  * policy checking, and creates the name of the coredump;
1967  * then it passes on a vnode and a size limit to the process-specific
1968  * coredump routine if there is one; if there _is not_ one, it returns
1969  * ENOSYS; otherwise it returns the error from the process-specific routine.
1970  *
1971  * The parameter `lp' is the lwp which triggered the coredump.
1972  */
1973 
1974 static int
1975 coredump(struct lwp *lp, int sig)
1976 {
1977 	struct proc *p = lp->lwp_proc;
1978 	struct vnode *vp;
1979 	struct ucred *cred = p->p_ucred;
1980 	struct flock lf;
1981 	struct nlookupdata nd;
1982 	struct vattr vattr;
1983 	int error, error1;
1984 	char *name;			/* name of corefile */
1985 	off_t limit;
1986 
1987 	STOPEVENT(p, S_CORE, 0);
1988 
1989 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0)
1990 		return (EFAULT);
1991 
1992 	/*
1993 	 * Note that the bulk of limit checking is done after
1994 	 * the corefile is created.  The exception is if the limit
1995 	 * for corefiles is 0, in which case we don't bother
1996 	 * creating the corefile at all.  This layout means that
1997 	 * a corefile is truncated instead of not being created,
1998 	 * if it is larger than the limit.
1999 	 */
2000 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
2001 	if (limit == 0)
2002 		return EFBIG;
2003 
2004 	name = expand_name(p->p_comm, p->p_ucred->cr_uid, p->p_pid);
2005 	if (name == NULL)
2006 		return (EINVAL);
2007 	error = nlookup_init(&nd, name, UIO_SYSSPACE, NLC_LOCKVP);
2008 	if (error == 0)
2009 		error = vn_open(&nd, NULL, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
2010 	kfree(name, M_TEMP);
2011 	if (error) {
2012 		nlookup_done(&nd);
2013 		return (error);
2014 	}
2015 	vp = nd.nl_open_vp;
2016 	nd.nl_open_vp = NULL;
2017 	nlookup_done(&nd);
2018 
2019 	vn_unlock(vp);
2020 	lf.l_whence = SEEK_SET;
2021 	lf.l_start = 0;
2022 	lf.l_len = 0;
2023 	lf.l_type = F_WRLCK;
2024 	error = VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, 0);
2025 	if (error)
2026 		goto out2;
2027 
2028 	/* Don't dump to non-regular files or files with links. */
2029 	if (vp->v_type != VREG ||
2030 	    VOP_GETATTR(vp, &vattr) || vattr.va_nlink != 1) {
2031 		error = EFAULT;
2032 		goto out1;
2033 	}
2034 
2035 	VATTR_NULL(&vattr);
2036 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2037 	vattr.va_size = 0;
2038 	VOP_SETATTR(vp, &vattr, cred);
2039 	p->p_acflag |= ACORE;
2040 	vn_unlock(vp);
2041 
2042 	error = p->p_sysent->sv_coredump ?
2043 		  p->p_sysent->sv_coredump(lp, sig, vp, limit) : ENOSYS;
2044 
2045 out1:
2046 	lf.l_type = F_UNLCK;
2047 	VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, 0);
2048 out2:
2049 	error1 = vn_close(vp, FWRITE);
2050 	if (error == 0)
2051 		error = error1;
2052 	return (error);
2053 }
2054 
2055 /*
2056  * Nonexistent system call-- signal process (may want to handle it).
2057  * Flag error in case process won't see signal immediately (blocked or ignored).
2058  */
2059 /* ARGSUSED */
2060 int
2061 sys_nosys(struct nosys_args *args)
2062 {
2063 	lwpsignal(curproc, curthread->td_lwp, SIGSYS);
2064 	return (EINVAL);
2065 }
2066 
2067 /*
2068  * Send a SIGIO or SIGURG signal to a process or process group using
2069  * stored credentials rather than those of the current process.
2070  */
2071 void
2072 pgsigio(struct sigio *sigio, int sig, int checkctty)
2073 {
2074 	if (sigio == NULL)
2075 		return;
2076 
2077 	if (sigio->sio_pgid > 0) {
2078 		if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred,
2079 		             sigio->sio_proc))
2080 			ksignal(sigio->sio_proc, sig);
2081 	} else if (sigio->sio_pgid < 0) {
2082 		struct proc *p;
2083 
2084 		lockmgr(&sigio->sio_pgrp->pg_lock, LK_EXCLUSIVE);
2085 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
2086 			if (CANSIGIO(sigio->sio_ruid, sigio->sio_ucred, p) &&
2087 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
2088 				ksignal(p, sig);
2089 		}
2090 		lockmgr(&sigio->sio_pgrp->pg_lock, LK_RELEASE);
2091 	}
2092 }
2093 
2094 static int
2095 filt_sigattach(struct knote *kn)
2096 {
2097 	struct proc *p = curproc;
2098 
2099 	kn->kn_ptr.p_proc = p;
2100 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2101 
2102 	/* XXX lock the proc here while adding to the list? */
2103 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2104 
2105 	return (0);
2106 }
2107 
2108 static void
2109 filt_sigdetach(struct knote *kn)
2110 {
2111 	struct proc *p = kn->kn_ptr.p_proc;
2112 
2113 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2114 }
2115 
2116 /*
2117  * signal knotes are shared with proc knotes, so we apply a mask to
2118  * the hint in order to differentiate them from process hints.  This
2119  * could be avoided by using a signal-specific knote list, but probably
2120  * isn't worth the trouble.
2121  */
2122 static int
2123 filt_signal(struct knote *kn, long hint)
2124 {
2125 	if (hint & NOTE_SIGNAL) {
2126 		hint &= ~NOTE_SIGNAL;
2127 
2128 		if (kn->kn_id == hint)
2129 			kn->kn_data++;
2130 	}
2131 	return (kn->kn_data != 0);
2132 }
2133