1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $ 35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.18 2005/02/01 02:25:45 joerg Exp $ 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/proc.h> 44 #include <sys/jail.h> 45 #include <sys/filedesc.h> 46 #include <sys/tty.h> 47 #include <sys/signalvar.h> 48 #include <vm/vm.h> 49 #include <sys/lock.h> 50 #include <vm/pmap.h> 51 #include <vm/vm_map.h> 52 #include <sys/user.h> 53 #include <vm/vm_zone.h> 54 #include <machine/smp.h> 55 56 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 57 MALLOC_DEFINE(M_SESSION, "session", "session header"); 58 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 59 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 60 61 int ps_showallprocs = 1; 62 static int ps_showallthreads = 1; 63 SYSCTL_INT(_kern, OID_AUTO, ps_showallprocs, CTLFLAG_RW, 64 &ps_showallprocs, 0, ""); 65 SYSCTL_INT(_kern, OID_AUTO, ps_showallthreads, CTLFLAG_RW, 66 &ps_showallthreads, 0, ""); 67 68 static void pgdelete (struct pgrp *); 69 70 static void orphanpg (struct pgrp *pg); 71 72 /* 73 * Other process lists 74 */ 75 struct pidhashhead *pidhashtbl; 76 u_long pidhash; 77 struct pgrphashhead *pgrphashtbl; 78 u_long pgrphash; 79 struct proclist allproc; 80 struct proclist zombproc; 81 vm_zone_t proc_zone; 82 vm_zone_t thread_zone; 83 84 /* 85 * Initialize global process hashing structures. 86 */ 87 void 88 procinit() 89 { 90 91 LIST_INIT(&allproc); 92 LIST_INIT(&zombproc); 93 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 94 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 95 proc_zone = zinit("PROC", sizeof (struct proc), 0, 0, 5); 96 thread_zone = zinit("THREAD", sizeof (struct thread), 0, 0, 5); 97 uihashinit(); 98 } 99 100 /* 101 * Is p an inferior of the current process? 102 */ 103 int 104 inferior(p) 105 struct proc *p; 106 { 107 108 for (; p != curproc; p = p->p_pptr) 109 if (p->p_pid == 0) 110 return (0); 111 return (1); 112 } 113 114 /* 115 * Locate a process by number 116 */ 117 struct proc * 118 pfind(pid) 119 pid_t pid; 120 { 121 struct proc *p; 122 123 LIST_FOREACH(p, PIDHASH(pid), p_hash) 124 if (p->p_pid == pid) 125 return (p); 126 return (NULL); 127 } 128 129 /* 130 * Locate a process group by number 131 */ 132 struct pgrp * 133 pgfind(pgid) 134 pid_t pgid; 135 { 136 struct pgrp *pgrp; 137 138 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) 139 if (pgrp->pg_id == pgid) 140 return (pgrp); 141 return (NULL); 142 } 143 144 /* 145 * Move p to a new or existing process group (and session) 146 */ 147 int 148 enterpgrp(p, pgid, mksess) 149 struct proc *p; 150 pid_t pgid; 151 int mksess; 152 { 153 struct pgrp *pgrp = pgfind(pgid); 154 155 KASSERT(pgrp == NULL || !mksess, 156 ("enterpgrp: setsid into non-empty pgrp")); 157 KASSERT(!SESS_LEADER(p), 158 ("enterpgrp: session leader attempted setpgrp")); 159 160 if (pgrp == NULL) { 161 pid_t savepid = p->p_pid; 162 struct proc *np; 163 /* 164 * new process group 165 */ 166 KASSERT(p->p_pid == pgid, 167 ("enterpgrp: new pgrp and pid != pgid")); 168 if ((np = pfind(savepid)) == NULL || np != p) 169 return (ESRCH); 170 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 171 M_WAITOK); 172 if (mksess) { 173 struct session *sess; 174 175 /* 176 * new session 177 */ 178 MALLOC(sess, struct session *, sizeof(struct session), 179 M_SESSION, M_WAITOK); 180 sess->s_leader = p; 181 sess->s_sid = p->p_pid; 182 sess->s_count = 1; 183 sess->s_ttyvp = NULL; 184 sess->s_ttyp = NULL; 185 bcopy(p->p_session->s_login, sess->s_login, 186 sizeof(sess->s_login)); 187 p->p_flag &= ~P_CONTROLT; 188 pgrp->pg_session = sess; 189 KASSERT(p == curproc, 190 ("enterpgrp: mksession and p != curproc")); 191 } else { 192 pgrp->pg_session = p->p_session; 193 sess_hold(pgrp->pg_session); 194 } 195 pgrp->pg_id = pgid; 196 LIST_INIT(&pgrp->pg_members); 197 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 198 pgrp->pg_jobc = 0; 199 SLIST_INIT(&pgrp->pg_sigiolst); 200 } else if (pgrp == p->p_pgrp) 201 return (0); 202 203 /* 204 * Adjust eligibility of affected pgrps to participate in job control. 205 * Increment eligibility counts before decrementing, otherwise we 206 * could reach 0 spuriously during the first call. 207 */ 208 fixjobc(p, pgrp, 1); 209 fixjobc(p, p->p_pgrp, 0); 210 211 LIST_REMOVE(p, p_pglist); 212 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 213 pgdelete(p->p_pgrp); 214 p->p_pgrp = pgrp; 215 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 216 return (0); 217 } 218 219 /* 220 * remove process from process group 221 */ 222 int 223 leavepgrp(p) 224 struct proc *p; 225 { 226 227 LIST_REMOVE(p, p_pglist); 228 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 229 pgdelete(p->p_pgrp); 230 p->p_pgrp = 0; 231 return (0); 232 } 233 234 /* 235 * delete a process group 236 */ 237 static void 238 pgdelete(pgrp) 239 struct pgrp *pgrp; 240 { 241 242 /* 243 * Reset any sigio structures pointing to us as a result of 244 * F_SETOWN with our pgid. 245 */ 246 funsetownlst(&pgrp->pg_sigiolst); 247 248 if (pgrp->pg_session->s_ttyp != NULL && 249 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 250 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 251 LIST_REMOVE(pgrp, pg_hash); 252 sess_rele(pgrp->pg_session); 253 free(pgrp, M_PGRP); 254 } 255 256 /* 257 * Adjust the ref count on a session structure. When the ref count falls to 258 * zero the tty is disassociated from the session and the session structure 259 * is freed. Note that tty assocation is not itself ref-counted. 260 */ 261 void 262 sess_hold(struct session *sp) 263 { 264 ++sp->s_count; 265 } 266 267 void 268 sess_rele(struct session *sp) 269 { 270 KKASSERT(sp->s_count > 0); 271 if (--sp->s_count == 0) { 272 if (sp->s_ttyp && sp->s_ttyp->t_session) { 273 #ifdef TTY_DO_FULL_CLOSE 274 /* FULL CLOSE, see ttyclearsession() */ 275 KKASSERT(sp->s_ttyp->t_session == sp); 276 sp->s_ttyp->t_session = NULL; 277 #else 278 /* HALF CLOSE, see ttyclearsession() */ 279 if (sp->s_ttyp->t_session == sp) 280 sp->s_ttyp->t_session = NULL; 281 #endif 282 } 283 free(sp, M_SESSION); 284 } 285 } 286 287 /* 288 * Adjust pgrp jobc counters when specified process changes process group. 289 * We count the number of processes in each process group that "qualify" 290 * the group for terminal job control (those with a parent in a different 291 * process group of the same session). If that count reaches zero, the 292 * process group becomes orphaned. Check both the specified process' 293 * process group and that of its children. 294 * entering == 0 => p is leaving specified group. 295 * entering == 1 => p is entering specified group. 296 */ 297 void 298 fixjobc(p, pgrp, entering) 299 struct proc *p; 300 struct pgrp *pgrp; 301 int entering; 302 { 303 struct pgrp *hispgrp; 304 struct session *mysession = pgrp->pg_session; 305 306 /* 307 * Check p's parent to see whether p qualifies its own process 308 * group; if so, adjust count for p's process group. 309 */ 310 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 311 hispgrp->pg_session == mysession) { 312 if (entering) 313 pgrp->pg_jobc++; 314 else if (--pgrp->pg_jobc == 0) 315 orphanpg(pgrp); 316 } 317 318 /* 319 * Check this process' children to see whether they qualify 320 * their process groups; if so, adjust counts for children's 321 * process groups. 322 */ 323 LIST_FOREACH(p, &p->p_children, p_sibling) 324 if ((hispgrp = p->p_pgrp) != pgrp && 325 hispgrp->pg_session == mysession && 326 p->p_stat != SZOMB) { 327 if (entering) 328 hispgrp->pg_jobc++; 329 else if (--hispgrp->pg_jobc == 0) 330 orphanpg(hispgrp); 331 } 332 } 333 334 /* 335 * A process group has become orphaned; 336 * if there are any stopped processes in the group, 337 * hang-up all process in that group. 338 */ 339 static void 340 orphanpg(pg) 341 struct pgrp *pg; 342 { 343 struct proc *p; 344 345 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 346 if (p->p_stat == SSTOP) { 347 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 348 psignal(p, SIGHUP); 349 psignal(p, SIGCONT); 350 } 351 return; 352 } 353 } 354 } 355 356 #include "opt_ddb.h" 357 #ifdef DDB 358 #include <ddb/ddb.h> 359 360 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 361 { 362 struct pgrp *pgrp; 363 struct proc *p; 364 int i; 365 366 for (i = 0; i <= pgrphash; i++) { 367 if (!LIST_EMPTY(&pgrphashtbl[i])) { 368 printf("\tindx %d\n", i); 369 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 370 printf( 371 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 372 (void *)pgrp, (long)pgrp->pg_id, 373 (void *)pgrp->pg_session, 374 pgrp->pg_session->s_count, 375 (void *)LIST_FIRST(&pgrp->pg_members)); 376 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 377 printf("\t\tpid %ld addr %p pgrp %p\n", 378 (long)p->p_pid, (void *)p, 379 (void *)p->p_pgrp); 380 } 381 } 382 } 383 } 384 } 385 #endif /* DDB */ 386 387 /* 388 * Fill in an eproc structure for the specified thread. 389 */ 390 void 391 fill_eproc_td(thread_t td, struct eproc *ep, struct proc *xp) 392 { 393 bzero(ep, sizeof(*ep)); 394 395 ep->e_uticks = td->td_uticks; 396 ep->e_sticks = td->td_sticks; 397 ep->e_iticks = td->td_iticks; 398 ep->e_tdev = NOUDEV; 399 ep->e_cpuid = td->td_gd->gd_cpuid; 400 if (td->td_wmesg) { 401 strncpy(ep->e_wmesg, td->td_wmesg, WMESGLEN); 402 ep->e_wmesg[WMESGLEN] = 0; 403 } 404 405 /* 406 * Fake up portions of the proc structure copied out by the sysctl 407 * to return useful information. Note that using td_pri directly 408 * is messy because it includes critial section data so we fake 409 * up an rtprio.prio for threads. 410 */ 411 if (xp) { 412 *xp = *initproc; 413 xp->p_rtprio.type = RTP_PRIO_THREAD; 414 xp->p_rtprio.prio = td->td_pri & TDPRI_MASK; 415 xp->p_pid = -1; 416 } 417 } 418 419 /* 420 * Fill in an eproc structure for the specified process. 421 */ 422 void 423 fill_eproc(struct proc *p, struct eproc *ep) 424 { 425 struct tty *tp; 426 427 fill_eproc_td(p->p_thread, ep, NULL); 428 429 ep->e_paddr = p; 430 if (p->p_ucred) { 431 ep->e_ucred = *p->p_ucred; 432 } 433 if (p->p_procsig) { 434 ep->e_procsig = *p->p_procsig; 435 } 436 if (p->p_stat != SIDL && p->p_stat != SZOMB && p->p_vmspace != NULL) { 437 struct vmspace *vm = p->p_vmspace; 438 ep->e_vm = *vm; 439 ep->e_vm.vm_rssize = vmspace_resident_count(vm); /*XXX*/ 440 } 441 if ((p->p_flag & P_INMEM) && p->p_stats) 442 ep->e_stats = *p->p_stats; 443 if (p->p_pptr) 444 ep->e_ppid = p->p_pptr->p_pid; 445 if (p->p_pgrp) { 446 ep->e_pgid = p->p_pgrp->pg_id; 447 ep->e_jobc = p->p_pgrp->pg_jobc; 448 ep->e_sess = p->p_pgrp->pg_session; 449 450 if (ep->e_sess) { 451 bcopy(ep->e_sess->s_login, ep->e_login, sizeof(ep->e_login)); 452 if (ep->e_sess->s_ttyvp) 453 ep->e_flag = EPROC_CTTY; 454 if (p->p_session && SESS_LEADER(p)) 455 ep->e_flag |= EPROC_SLEADER; 456 } 457 } 458 if ((p->p_flag & P_CONTROLT) && 459 (ep->e_sess != NULL) && 460 ((tp = ep->e_sess->s_ttyp) != NULL)) { 461 ep->e_tdev = dev2udev(tp->t_dev); 462 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 463 ep->e_tsess = tp->t_session; 464 } else { 465 ep->e_tdev = NOUDEV; 466 } 467 } 468 469 struct proc * 470 zpfind(pid_t pid) 471 { 472 struct proc *p; 473 474 LIST_FOREACH(p, &zombproc, p_list) 475 if (p->p_pid == pid) 476 return (p); 477 return (NULL); 478 } 479 480 static int 481 sysctl_out_proc(struct proc *p, struct thread *td, struct sysctl_req *req, int doingzomb) 482 { 483 struct eproc eproc; 484 struct proc xproc; 485 int error; 486 #if 0 487 pid_t pid = p->p_pid; 488 #endif 489 490 if (p) { 491 td = p->p_thread; 492 fill_eproc(p, &eproc); 493 xproc = *p; 494 495 /* 496 * Fixup p_stat from SRUN to SSLEEP if the LWKT thread is 497 * in a thread-blocked state. 498 * 499 * XXX temporary fix which might become permanent (I'd rather 500 * not pollute the thread scheduler with knowlege about 501 * processes). 502 */ 503 if (p->p_stat == SRUN && td && (td->td_flags & TDF_BLOCKED)) { 504 xproc.p_stat = SSLEEP; 505 } 506 } else if (td) { 507 fill_eproc_td(td, &eproc, &xproc); 508 } 509 error = SYSCTL_OUT(req,(caddr_t)&xproc, sizeof(struct proc)); 510 if (error) 511 return (error); 512 error = SYSCTL_OUT(req,(caddr_t)&eproc, sizeof(eproc)); 513 if (error) 514 return (error); 515 error = SYSCTL_OUT(req,(caddr_t)td, sizeof(struct thread)); 516 if (error) 517 return (error); 518 #if 0 519 if (!doingzomb && pid && (pfind(pid) != p)) 520 return EAGAIN; 521 if (doingzomb && zpfind(pid) != p) 522 return EAGAIN; 523 #endif 524 return (0); 525 } 526 527 static int 528 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 529 { 530 int *name = (int*) arg1; 531 u_int namelen = arg2; 532 struct proc *p; 533 struct thread *td; 534 int doingzomb; 535 int error = 0; 536 int n; 537 int origcpu; 538 struct ucred *cr1 = curproc->p_ucred; 539 540 if (oidp->oid_number == KERN_PROC_PID) { 541 if (namelen != 1) 542 return (EINVAL); 543 p = pfind((pid_t)name[0]); 544 if (!p) 545 return (0); 546 if (!PRISON_CHECK(cr1, p->p_ucred)) 547 return (0); 548 error = sysctl_out_proc(p, NULL, req, 0); 549 return (error); 550 } 551 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 552 ; 553 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 554 ; 555 else 556 return (EINVAL); 557 558 if (!req->oldptr) { 559 /* overestimate by 5 procs */ 560 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 561 if (error) 562 return (error); 563 } 564 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 565 if (!doingzomb) 566 p = LIST_FIRST(&allproc); 567 else 568 p = LIST_FIRST(&zombproc); 569 for (; p != 0; p = LIST_NEXT(p, p_list)) { 570 /* 571 * Show a user only their processes. 572 */ 573 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred)) 574 continue; 575 /* 576 * Skip embryonic processes. 577 */ 578 if (p->p_stat == SIDL) 579 continue; 580 /* 581 * TODO - make more efficient (see notes below). 582 * do by session. 583 */ 584 switch (oidp->oid_number) { 585 case KERN_PROC_PGRP: 586 /* could do this by traversing pgrp */ 587 if (p->p_pgrp == NULL || 588 p->p_pgrp->pg_id != (pid_t)name[0]) 589 continue; 590 break; 591 592 case KERN_PROC_TTY: 593 if ((p->p_flag & P_CONTROLT) == 0 || 594 p->p_session == NULL || 595 p->p_session->s_ttyp == NULL || 596 dev2udev(p->p_session->s_ttyp->t_dev) != 597 (udev_t)name[0]) 598 continue; 599 break; 600 601 case KERN_PROC_UID: 602 if (p->p_ucred == NULL || 603 p->p_ucred->cr_uid != (uid_t)name[0]) 604 continue; 605 break; 606 607 case KERN_PROC_RUID: 608 if (p->p_ucred == NULL || 609 p->p_ucred->cr_ruid != (uid_t)name[0]) 610 continue; 611 break; 612 } 613 614 if (!PRISON_CHECK(cr1, p->p_ucred)) 615 continue; 616 PHOLD(p); 617 error = sysctl_out_proc(p, NULL, req, doingzomb); 618 PRELE(p); 619 if (error) 620 return (error); 621 } 622 } 623 624 /* 625 * Iterate over all active cpus and scan their thread list. Start 626 * with the next logical cpu and end with our original cpu. We 627 * migrate our own thread to each target cpu in order to safely scan 628 * its thread list. In the last loop we migrate back to our original 629 * cpu. 630 */ 631 origcpu = mycpu->gd_cpuid; 632 if (!ps_showallthreads || jailed(cr1)) 633 goto post_threads; 634 for (n = 1; n <= ncpus; ++n) { 635 globaldata_t rgd; 636 int nid; 637 638 nid = (origcpu + n) % ncpus; 639 if ((smp_active_mask & (1 << nid)) == 0) 640 continue; 641 rgd = globaldata_find(nid); 642 lwkt_setcpu_self(rgd); 643 cpu_mb1(); /* CURRENT CPU HAS CHANGED */ 644 645 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) { 646 if (td->td_proc) 647 continue; 648 switch (oidp->oid_number) { 649 case KERN_PROC_PGRP: 650 case KERN_PROC_TTY: 651 case KERN_PROC_UID: 652 case KERN_PROC_RUID: 653 continue; 654 default: 655 break; 656 } 657 lwkt_hold(td); 658 error = sysctl_out_proc(NULL, td, req, doingzomb); 659 lwkt_rele(td); 660 if (error) 661 return (error); 662 } 663 } 664 post_threads: 665 return (0); 666 } 667 668 /* 669 * This sysctl allows a process to retrieve the argument list or process 670 * title for another process without groping around in the address space 671 * of the other process. It also allow a process to set its own "process 672 * title to a string of its own choice. 673 */ 674 static int 675 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 676 { 677 int *name = (int*) arg1; 678 u_int namelen = arg2; 679 struct proc *p; 680 struct pargs *pa; 681 int error = 0; 682 struct ucred *cr1 = curproc->p_ucred; 683 684 if (namelen != 1) 685 return (EINVAL); 686 687 p = pfind((pid_t)name[0]); 688 if (!p) 689 return (0); 690 691 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred)) 692 return (0); 693 694 if (req->newptr && curproc != p) 695 return (EPERM); 696 697 if (req->oldptr && p->p_args != NULL) 698 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length); 699 if (req->newptr == NULL) 700 return (error); 701 702 if (p->p_args && --p->p_args->ar_ref == 0) 703 FREE(p->p_args, M_PARGS); 704 p->p_args = NULL; 705 706 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 707 return (error); 708 709 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen, 710 M_PARGS, M_WAITOK); 711 pa->ar_ref = 1; 712 pa->ar_length = req->newlen; 713 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 714 if (!error) 715 p->p_args = pa; 716 else 717 FREE(pa, M_PARGS); 718 return (error); 719 } 720 721 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 722 723 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 724 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 725 726 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 727 sysctl_kern_proc, "Process table"); 728 729 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 730 sysctl_kern_proc, "Process table"); 731 732 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 733 sysctl_kern_proc, "Process table"); 734 735 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 736 sysctl_kern_proc, "Process table"); 737 738 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 739 sysctl_kern_proc, "Process table"); 740 741 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 742 sysctl_kern_proc_args, "Process argument list"); 743