1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $ 35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.41 2008/01/04 12:16:19 matthias Exp $ 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/proc.h> 44 #include <sys/jail.h> 45 #include <sys/filedesc.h> 46 #include <sys/tty.h> 47 #include <sys/signalvar.h> 48 #include <sys/spinlock.h> 49 #include <vm/vm.h> 50 #include <sys/lock.h> 51 #include <vm/pmap.h> 52 #include <vm/vm_map.h> 53 #include <sys/user.h> 54 #include <vm/vm_zone.h> 55 #include <machine/smp.h> 56 57 #include <sys/spinlock2.h> 58 59 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 60 MALLOC_DEFINE(M_SESSION, "session", "session header"); 61 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 62 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 63 64 int ps_showallprocs = 1; 65 static int ps_showallthreads = 1; 66 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW, 67 &ps_showallprocs, 0, 68 "Unprivileged processes can see proccesses with different UID/GID"); 69 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW, 70 &ps_showallthreads, 0, 71 "Unprivileged processes can see kernel threads"); 72 73 static void pgdelete(struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static pid_t proc_getnewpid_locked(int random_offset); 76 77 /* 78 * Other process lists 79 */ 80 struct pidhashhead *pidhashtbl; 81 u_long pidhash; 82 struct pgrphashhead *pgrphashtbl; 83 u_long pgrphash; 84 struct proclist allproc; 85 struct proclist zombproc; 86 struct spinlock allproc_spin; 87 vm_zone_t proc_zone; 88 vm_zone_t lwp_zone; 89 vm_zone_t thread_zone; 90 91 /* 92 * Random component to nextpid generation. We mix in a random factor to make 93 * it a little harder to predict. We sanity check the modulus value to avoid 94 * doing it in critical paths. Don't let it be too small or we pointlessly 95 * waste randomness entropy, and don't let it be impossibly large. Using a 96 * modulus that is too big causes a LOT more process table scans and slows 97 * down fork processing as the pidchecked caching is defeated. 98 */ 99 static int randompid = 0; 100 101 static int 102 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 103 { 104 int error, pid; 105 106 pid = randompid; 107 error = sysctl_handle_int(oidp, &pid, 0, req); 108 if (error || !req->newptr) 109 return (error); 110 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 111 pid = PID_MAX - 100; 112 else if (pid < 2) /* NOP */ 113 pid = 0; 114 else if (pid < 100) /* Make it reasonable */ 115 pid = 100; 116 randompid = pid; 117 return (error); 118 } 119 120 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 121 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 122 123 /* 124 * Initialize global process hashing structures. 125 */ 126 void 127 procinit(void) 128 { 129 LIST_INIT(&allproc); 130 LIST_INIT(&zombproc); 131 spin_init(&allproc_spin); 132 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 133 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 134 proc_zone = zinit("PROC", sizeof (struct proc), 0, 0, 5); 135 lwp_zone = zinit("LWP", sizeof (struct lwp), 0, 0, 5); 136 thread_zone = zinit("THREAD", sizeof (struct thread), 0, 0, 5); 137 uihashinit(); 138 } 139 140 /* 141 * Is p an inferior of the current process? 142 */ 143 int 144 inferior(struct proc *p) 145 { 146 for (; p != curproc; p = p->p_pptr) 147 if (p->p_pid == 0) 148 return (0); 149 return (1); 150 } 151 152 /* 153 * Locate a process by number 154 */ 155 struct proc * 156 pfind(pid_t pid) 157 { 158 struct proc *p; 159 160 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 161 if (p->p_pid == pid) 162 return (p); 163 } 164 return (NULL); 165 } 166 167 /* 168 * Locate a process group by number 169 */ 170 struct pgrp * 171 pgfind(pid_t pgid) 172 { 173 struct pgrp *pgrp; 174 175 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 176 if (pgrp->pg_id == pgid) 177 return (pgrp); 178 } 179 return (NULL); 180 } 181 182 /* 183 * Move p to a new or existing process group (and session) 184 */ 185 int 186 enterpgrp(struct proc *p, pid_t pgid, int mksess) 187 { 188 struct pgrp *pgrp = pgfind(pgid); 189 190 KASSERT(pgrp == NULL || !mksess, 191 ("enterpgrp: setsid into non-empty pgrp")); 192 KASSERT(!SESS_LEADER(p), 193 ("enterpgrp: session leader attempted setpgrp")); 194 195 if (pgrp == NULL) { 196 pid_t savepid = p->p_pid; 197 struct proc *np; 198 /* 199 * new process group 200 */ 201 KASSERT(p->p_pid == pgid, 202 ("enterpgrp: new pgrp and pid != pgid")); 203 if ((np = pfind(savepid)) == NULL || np != p) 204 return (ESRCH); 205 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 206 M_WAITOK); 207 if (mksess) { 208 struct session *sess; 209 210 /* 211 * new session 212 */ 213 MALLOC(sess, struct session *, sizeof(struct session), 214 M_SESSION, M_WAITOK); 215 sess->s_leader = p; 216 sess->s_sid = p->p_pid; 217 sess->s_count = 1; 218 sess->s_ttyvp = NULL; 219 sess->s_ttyp = NULL; 220 bcopy(p->p_session->s_login, sess->s_login, 221 sizeof(sess->s_login)); 222 p->p_flag &= ~P_CONTROLT; 223 pgrp->pg_session = sess; 224 KASSERT(p == curproc, 225 ("enterpgrp: mksession and p != curproc")); 226 } else { 227 pgrp->pg_session = p->p_session; 228 sess_hold(pgrp->pg_session); 229 } 230 pgrp->pg_id = pgid; 231 LIST_INIT(&pgrp->pg_members); 232 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 233 pgrp->pg_jobc = 0; 234 SLIST_INIT(&pgrp->pg_sigiolst); 235 lockinit(&pgrp->pg_lock, "pgwt", 0, 0); 236 } else if (pgrp == p->p_pgrp) 237 return (0); 238 239 /* 240 * Adjust eligibility of affected pgrps to participate in job control. 241 * Increment eligibility counts before decrementing, otherwise we 242 * could reach 0 spuriously during the first call. 243 */ 244 fixjobc(p, pgrp, 1); 245 fixjobc(p, p->p_pgrp, 0); 246 247 LIST_REMOVE(p, p_pglist); 248 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 249 pgdelete(p->p_pgrp); 250 p->p_pgrp = pgrp; 251 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 252 return (0); 253 } 254 255 /* 256 * remove process from process group 257 */ 258 int 259 leavepgrp(struct proc *p) 260 { 261 262 LIST_REMOVE(p, p_pglist); 263 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 264 pgdelete(p->p_pgrp); 265 p->p_pgrp = 0; 266 return (0); 267 } 268 269 /* 270 * delete a process group 271 */ 272 static void 273 pgdelete(struct pgrp *pgrp) 274 { 275 276 /* 277 * Reset any sigio structures pointing to us as a result of 278 * F_SETOWN with our pgid. 279 */ 280 funsetownlst(&pgrp->pg_sigiolst); 281 282 if (pgrp->pg_session->s_ttyp != NULL && 283 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 284 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 285 LIST_REMOVE(pgrp, pg_hash); 286 sess_rele(pgrp->pg_session); 287 kfree(pgrp, M_PGRP); 288 } 289 290 /* 291 * Adjust the ref count on a session structure. When the ref count falls to 292 * zero the tty is disassociated from the session and the session structure 293 * is freed. Note that tty assocation is not itself ref-counted. 294 */ 295 void 296 sess_hold(struct session *sp) 297 { 298 ++sp->s_count; 299 } 300 301 void 302 sess_rele(struct session *sp) 303 { 304 KKASSERT(sp->s_count > 0); 305 if (--sp->s_count == 0) { 306 if (sp->s_ttyp && sp->s_ttyp->t_session) { 307 #ifdef TTY_DO_FULL_CLOSE 308 /* FULL CLOSE, see ttyclearsession() */ 309 KKASSERT(sp->s_ttyp->t_session == sp); 310 sp->s_ttyp->t_session = NULL; 311 #else 312 /* HALF CLOSE, see ttyclearsession() */ 313 if (sp->s_ttyp->t_session == sp) 314 sp->s_ttyp->t_session = NULL; 315 #endif 316 } 317 kfree(sp, M_SESSION); 318 } 319 } 320 321 /* 322 * Adjust pgrp jobc counters when specified process changes process group. 323 * We count the number of processes in each process group that "qualify" 324 * the group for terminal job control (those with a parent in a different 325 * process group of the same session). If that count reaches zero, the 326 * process group becomes orphaned. Check both the specified process' 327 * process group and that of its children. 328 * entering == 0 => p is leaving specified group. 329 * entering == 1 => p is entering specified group. 330 */ 331 void 332 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 333 { 334 struct pgrp *hispgrp; 335 struct session *mysession = pgrp->pg_session; 336 337 /* 338 * Check p's parent to see whether p qualifies its own process 339 * group; if so, adjust count for p's process group. 340 */ 341 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 342 hispgrp->pg_session == mysession) { 343 if (entering) 344 pgrp->pg_jobc++; 345 else if (--pgrp->pg_jobc == 0) 346 orphanpg(pgrp); 347 } 348 349 /* 350 * Check this process' children to see whether they qualify 351 * their process groups; if so, adjust counts for children's 352 * process groups. 353 */ 354 LIST_FOREACH(p, &p->p_children, p_sibling) 355 if ((hispgrp = p->p_pgrp) != pgrp && 356 hispgrp->pg_session == mysession && 357 p->p_stat != SZOMB) { 358 if (entering) 359 hispgrp->pg_jobc++; 360 else if (--hispgrp->pg_jobc == 0) 361 orphanpg(hispgrp); 362 } 363 } 364 365 /* 366 * A process group has become orphaned; 367 * if there are any stopped processes in the group, 368 * hang-up all process in that group. 369 */ 370 static void 371 orphanpg(struct pgrp *pg) 372 { 373 struct proc *p; 374 375 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 376 if (p->p_stat == SSTOP) { 377 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 378 ksignal(p, SIGHUP); 379 ksignal(p, SIGCONT); 380 } 381 return; 382 } 383 } 384 } 385 386 /* 387 * Add a new process to the allproc list and the PID hash. This 388 * also assigns a pid to the new process. 389 * 390 * MPALMOSTSAFE - acquires mplock for karc4random() call 391 */ 392 void 393 proc_add_allproc(struct proc *p) 394 { 395 int random_offset; 396 397 if ((random_offset = randompid) != 0) { 398 get_mplock(); 399 random_offset = karc4random() % random_offset; 400 rel_mplock(); 401 } 402 403 spin_lock_wr(&allproc_spin); 404 p->p_pid = proc_getnewpid_locked(random_offset); 405 LIST_INSERT_HEAD(&allproc, p, p_list); 406 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash); 407 spin_unlock_wr(&allproc_spin); 408 } 409 410 /* 411 * Calculate a new process pid. This function is integrated into 412 * proc_add_allproc() to guarentee that the new pid is not reused before 413 * the new process can be added to the allproc list. 414 * 415 * MPSAFE - must be called with allproc_spin held. 416 */ 417 static 418 pid_t 419 proc_getnewpid_locked(int random_offset) 420 { 421 static pid_t nextpid; 422 static pid_t pidchecked; 423 struct proc *p; 424 425 /* 426 * Find an unused process ID. We remember a range of unused IDs 427 * ready to use (from nextpid+1 through pidchecked-1). 428 */ 429 nextpid = nextpid + 1 + random_offset; 430 retry: 431 /* 432 * If the process ID prototype has wrapped around, 433 * restart somewhat above 0, as the low-numbered procs 434 * tend to include daemons that don't exit. 435 */ 436 if (nextpid >= PID_MAX) { 437 nextpid = nextpid % PID_MAX; 438 if (nextpid < 100) 439 nextpid += 100; 440 pidchecked = 0; 441 } 442 if (nextpid >= pidchecked) { 443 int doingzomb = 0; 444 445 pidchecked = PID_MAX; 446 /* 447 * Scan the active and zombie procs to check whether this pid 448 * is in use. Remember the lowest pid that's greater 449 * than nextpid, so we can avoid checking for a while. 450 */ 451 p = LIST_FIRST(&allproc); 452 again: 453 for (; p != 0; p = LIST_NEXT(p, p_list)) { 454 while (p->p_pid == nextpid || 455 p->p_pgrp->pg_id == nextpid || 456 p->p_session->s_sid == nextpid) { 457 nextpid++; 458 if (nextpid >= pidchecked) 459 goto retry; 460 } 461 if (p->p_pid > nextpid && pidchecked > p->p_pid) 462 pidchecked = p->p_pid; 463 if (p->p_pgrp->pg_id > nextpid && 464 pidchecked > p->p_pgrp->pg_id) 465 pidchecked = p->p_pgrp->pg_id; 466 if (p->p_session->s_sid > nextpid && 467 pidchecked > p->p_session->s_sid) 468 pidchecked = p->p_session->s_sid; 469 } 470 if (!doingzomb) { 471 doingzomb = 1; 472 p = LIST_FIRST(&zombproc); 473 goto again; 474 } 475 } 476 return(nextpid); 477 } 478 479 /* 480 * Called from exit1 to remove a process from the allproc 481 * list and move it to the zombie list. 482 * 483 * MPSAFE 484 */ 485 void 486 proc_move_allproc_zombie(struct proc *p) 487 { 488 spin_lock_wr(&allproc_spin); 489 while (p->p_lock) { 490 spin_unlock_wr(&allproc_spin); 491 tsleep(p, 0, "reap1", hz / 10); 492 spin_lock_wr(&allproc_spin); 493 } 494 LIST_REMOVE(p, p_list); 495 LIST_INSERT_HEAD(&zombproc, p, p_list); 496 LIST_REMOVE(p, p_hash); 497 p->p_stat = SZOMB; 498 spin_unlock_wr(&allproc_spin); 499 } 500 501 /* 502 * This routine is called from kern_wait() and will remove the process 503 * from the zombie list and the sibling list. This routine will block 504 * if someone has a lock on the proces (p_lock). 505 * 506 * MPSAFE 507 */ 508 void 509 proc_remove_zombie(struct proc *p) 510 { 511 spin_lock_wr(&allproc_spin); 512 while (p->p_lock) { 513 spin_unlock_wr(&allproc_spin); 514 tsleep(p, 0, "reap1", hz / 10); 515 spin_lock_wr(&allproc_spin); 516 } 517 LIST_REMOVE(p, p_list); /* off zombproc */ 518 LIST_REMOVE(p, p_sibling); 519 spin_unlock_wr(&allproc_spin); 520 } 521 522 /* 523 * Scan all processes on the allproc list. The process is automatically 524 * held for the callback. A return value of -1 terminates the loop. 525 * 526 * MPSAFE 527 */ 528 void 529 allproc_scan(int (*callback)(struct proc *, void *), void *data) 530 { 531 struct proc *p; 532 int r; 533 534 spin_lock_rd(&allproc_spin); 535 LIST_FOREACH(p, &allproc, p_list) { 536 PHOLD(p); 537 spin_unlock_rd(&allproc_spin); 538 r = callback(p, data); 539 spin_lock_rd(&allproc_spin); 540 PRELE(p); 541 if (r < 0) 542 break; 543 } 544 spin_unlock_rd(&allproc_spin); 545 } 546 547 /* 548 * Scan all lwps of processes on the allproc list. The lwp is automatically 549 * held for the callback. A return value of -1 terminates the loop. 550 * 551 * possibly not MPSAFE, needs to access foreingn proc structures 552 */ 553 void 554 alllwp_scan(int (*callback)(struct lwp *, void *), void *data) 555 { 556 struct proc *p; 557 struct lwp *lp; 558 int r = 0; 559 560 spin_lock_rd(&allproc_spin); 561 LIST_FOREACH(p, &allproc, p_list) { 562 PHOLD(p); 563 spin_unlock_rd(&allproc_spin); 564 FOREACH_LWP_IN_PROC(lp, p) { 565 LWPHOLD(lp); 566 r = callback(lp, data); 567 LWPRELE(lp); 568 } 569 spin_lock_rd(&allproc_spin); 570 PRELE(p); 571 if (r < 0) 572 break; 573 } 574 spin_unlock_rd(&allproc_spin); 575 } 576 577 /* 578 * Scan all processes on the zombproc list. The process is automatically 579 * held for the callback. A return value of -1 terminates the loop. 580 * 581 * MPSAFE 582 */ 583 void 584 zombproc_scan(int (*callback)(struct proc *, void *), void *data) 585 { 586 struct proc *p; 587 int r; 588 589 spin_lock_rd(&allproc_spin); 590 LIST_FOREACH(p, &zombproc, p_list) { 591 PHOLD(p); 592 spin_unlock_rd(&allproc_spin); 593 r = callback(p, data); 594 spin_lock_rd(&allproc_spin); 595 PRELE(p); 596 if (r < 0) 597 break; 598 } 599 spin_unlock_rd(&allproc_spin); 600 } 601 602 #include "opt_ddb.h" 603 #ifdef DDB 604 #include <ddb/ddb.h> 605 606 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 607 { 608 struct pgrp *pgrp; 609 struct proc *p; 610 int i; 611 612 for (i = 0; i <= pgrphash; i++) { 613 if (!LIST_EMPTY(&pgrphashtbl[i])) { 614 kprintf("\tindx %d\n", i); 615 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 616 kprintf( 617 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 618 (void *)pgrp, (long)pgrp->pg_id, 619 (void *)pgrp->pg_session, 620 pgrp->pg_session->s_count, 621 (void *)LIST_FIRST(&pgrp->pg_members)); 622 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 623 kprintf("\t\tpid %ld addr %p pgrp %p\n", 624 (long)p->p_pid, (void *)p, 625 (void *)p->p_pgrp); 626 } 627 } 628 } 629 } 630 } 631 #endif /* DDB */ 632 633 /* 634 * Locate a process on the zombie list. Return a held process or NULL. 635 */ 636 struct proc * 637 zpfind(pid_t pid) 638 { 639 struct proc *p; 640 641 LIST_FOREACH(p, &zombproc, p_list) 642 if (p->p_pid == pid) 643 return (p); 644 return (NULL); 645 } 646 647 static int 648 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 649 { 650 struct kinfo_proc ki; 651 struct lwp *lp; 652 int skp = 0, had_output = 0; 653 int error; 654 655 fill_kinfo_proc(p, &ki); 656 if ((flags & KERN_PROC_FLAG_LWP) == 0) 657 skp = 1; 658 FOREACH_LWP_IN_PROC(lp, p) { 659 fill_kinfo_lwp(lp, &ki.kp_lwp); 660 output: 661 had_output = 1; 662 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 663 if (error) 664 return error; 665 if (skp) 666 break; 667 } 668 /* We need to output at least the proc, even if there is no lwp. */ 669 if (!had_output) 670 goto output; 671 #if 0 672 if (!doingzomb && pid && (pfind(pid) != p)) 673 return EAGAIN; 674 if (doingzomb && zpfind(pid) != p) 675 return EAGAIN; 676 #endif 677 return (0); 678 } 679 680 static int 681 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req, int flags) 682 { 683 struct kinfo_proc ki; 684 int error; 685 686 fill_kinfo_proc_kthread(td, &ki); 687 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 688 if (error) 689 return error; 690 return(0); 691 } 692 693 static int 694 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 695 { 696 int *name = (int*) arg1; 697 int oid = oidp->oid_number; 698 u_int namelen = arg2; 699 struct proc *p, *np; 700 struct proclist *plist; 701 struct thread *td; 702 int doingzomb, flags = 0; 703 int error = 0; 704 int n; 705 int origcpu; 706 struct ucred *cr1 = curproc->p_ucred; 707 708 flags = oid & KERN_PROC_FLAGMASK; 709 oid &= ~KERN_PROC_FLAGMASK; 710 711 if ((oid == KERN_PROC_ALL && namelen != 0) || 712 (oid != KERN_PROC_ALL && namelen != 1)) 713 return (EINVAL); 714 715 if (oid == KERN_PROC_PID) { 716 p = pfind((pid_t)name[0]); 717 if (!p) 718 return (0); 719 if (!PRISON_CHECK(cr1, p->p_ucred)) 720 return (0); 721 PHOLD(p); 722 error = sysctl_out_proc(p, req, flags); 723 PRELE(p); 724 return (error); 725 } 726 727 if (!req->oldptr) { 728 /* overestimate by 5 procs */ 729 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 730 if (error) 731 return (error); 732 } 733 for (doingzomb = 0; doingzomb <= 1; doingzomb++) { 734 if (doingzomb) 735 plist = &zombproc; 736 else 737 plist = &allproc; 738 LIST_FOREACH_MUTABLE(p, plist, p_list, np) { 739 /* 740 * Show a user only their processes. 741 */ 742 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred)) 743 continue; 744 /* 745 * Skip embryonic processes. 746 */ 747 if (p->p_stat == SIDL) 748 continue; 749 /* 750 * TODO - make more efficient (see notes below). 751 * do by session. 752 */ 753 switch (oid) { 754 case KERN_PROC_PGRP: 755 /* could do this by traversing pgrp */ 756 if (p->p_pgrp == NULL || 757 p->p_pgrp->pg_id != (pid_t)name[0]) 758 continue; 759 break; 760 761 case KERN_PROC_TTY: 762 if ((p->p_flag & P_CONTROLT) == 0 || 763 p->p_session == NULL || 764 p->p_session->s_ttyp == NULL || 765 dev2udev(p->p_session->s_ttyp->t_dev) != 766 (udev_t)name[0]) 767 continue; 768 break; 769 770 case KERN_PROC_UID: 771 if (p->p_ucred == NULL || 772 p->p_ucred->cr_uid != (uid_t)name[0]) 773 continue; 774 break; 775 776 case KERN_PROC_RUID: 777 if (p->p_ucred == NULL || 778 p->p_ucred->cr_ruid != (uid_t)name[0]) 779 continue; 780 break; 781 } 782 783 if (!PRISON_CHECK(cr1, p->p_ucred)) 784 continue; 785 PHOLD(p); 786 error = sysctl_out_proc(p, req, flags); 787 PRELE(p); 788 if (error) 789 return (error); 790 } 791 } 792 793 /* 794 * Iterate over all active cpus and scan their thread list. Start 795 * with the next logical cpu and end with our original cpu. We 796 * migrate our own thread to each target cpu in order to safely scan 797 * its thread list. In the last loop we migrate back to our original 798 * cpu. 799 */ 800 origcpu = mycpu->gd_cpuid; 801 if (!ps_showallthreads || jailed(cr1)) 802 goto post_threads; 803 for (n = 1; n <= ncpus; ++n) { 804 globaldata_t rgd; 805 int nid; 806 807 nid = (origcpu + n) % ncpus; 808 if ((smp_active_mask & (1 << nid)) == 0) 809 continue; 810 rgd = globaldata_find(nid); 811 lwkt_setcpu_self(rgd); 812 813 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) { 814 if (td->td_proc) 815 continue; 816 switch (oid) { 817 case KERN_PROC_PGRP: 818 case KERN_PROC_TTY: 819 case KERN_PROC_UID: 820 case KERN_PROC_RUID: 821 continue; 822 default: 823 break; 824 } 825 lwkt_hold(td); 826 error = sysctl_out_proc_kthread(td, req, doingzomb); 827 lwkt_rele(td); 828 if (error) 829 return (error); 830 } 831 } 832 post_threads: 833 return (0); 834 } 835 836 /* 837 * This sysctl allows a process to retrieve the argument list or process 838 * title for another process without groping around in the address space 839 * of the other process. It also allow a process to set its own "process 840 * title to a string of its own choice. 841 */ 842 static int 843 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 844 { 845 int *name = (int*) arg1; 846 u_int namelen = arg2; 847 struct proc *p; 848 struct pargs *pa; 849 int error = 0; 850 struct ucred *cr1 = curproc->p_ucred; 851 852 if (namelen != 1) 853 return (EINVAL); 854 855 p = pfind((pid_t)name[0]); 856 if (!p) 857 return (0); 858 859 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred)) 860 return (0); 861 862 if (req->newptr && curproc != p) 863 return (EPERM); 864 865 if (req->oldptr && p->p_args != NULL) 866 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length); 867 if (req->newptr == NULL) 868 return (error); 869 870 if (p->p_args && --p->p_args->ar_ref == 0) 871 FREE(p->p_args, M_PARGS); 872 p->p_args = NULL; 873 874 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 875 return (error); 876 877 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen, 878 M_PARGS, M_WAITOK); 879 pa->ar_ref = 1; 880 pa->ar_length = req->newlen; 881 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 882 if (!error) 883 p->p_args = pa; 884 else 885 FREE(pa, M_PARGS); 886 return (error); 887 } 888 889 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 890 891 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 892 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 893 894 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 895 sysctl_kern_proc, "Process table"); 896 897 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 898 sysctl_kern_proc, "Process table"); 899 900 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 901 sysctl_kern_proc, "Process table"); 902 903 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 904 sysctl_kern_proc, "Process table"); 905 906 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 907 sysctl_kern_proc, "Process table"); 908 909 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD, 910 sysctl_kern_proc, "Process table"); 911 912 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD, 913 sysctl_kern_proc, "Process table"); 914 915 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD, 916 sysctl_kern_proc, "Process table"); 917 918 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD, 919 sysctl_kern_proc, "Process table"); 920 921 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD, 922 sysctl_kern_proc, "Process table"); 923 924 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD, 925 sysctl_kern_proc, "Process table"); 926 927 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 928 sysctl_kern_proc_args, "Process argument list"); 929