1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $ 35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.31 2007/01/01 22:51:17 corecode Exp $ 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/proc.h> 44 #include <sys/jail.h> 45 #include <sys/filedesc.h> 46 #include <sys/tty.h> 47 #include <sys/signalvar.h> 48 #include <sys/spinlock.h> 49 #include <vm/vm.h> 50 #include <sys/lock.h> 51 #include <vm/pmap.h> 52 #include <vm/vm_map.h> 53 #include <sys/user.h> 54 #include <vm/vm_zone.h> 55 #include <machine/smp.h> 56 57 #include <sys/spinlock2.h> 58 59 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 60 MALLOC_DEFINE(M_SESSION, "session", "session header"); 61 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 62 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 63 64 int ps_showallprocs = 1; 65 static int ps_showallthreads = 1; 66 SYSCTL_INT(_kern, OID_AUTO, ps_showallprocs, CTLFLAG_RW, 67 &ps_showallprocs, 0, ""); 68 SYSCTL_INT(_kern, OID_AUTO, ps_showallthreads, CTLFLAG_RW, 69 &ps_showallthreads, 0, ""); 70 71 static void pgdelete(struct pgrp *); 72 static void orphanpg(struct pgrp *pg); 73 static pid_t proc_getnewpid_locked(int random_offset); 74 75 /* 76 * Other process lists 77 */ 78 struct pidhashhead *pidhashtbl; 79 u_long pidhash; 80 struct pgrphashhead *pgrphashtbl; 81 u_long pgrphash; 82 struct proclist allproc; 83 struct proclist zombproc; 84 struct spinlock allproc_spin; 85 vm_zone_t proc_zone; 86 vm_zone_t thread_zone; 87 88 /* 89 * Random component to nextpid generation. We mix in a random factor to make 90 * it a little harder to predict. We sanity check the modulus value to avoid 91 * doing it in critical paths. Don't let it be too small or we pointlessly 92 * waste randomness entropy, and don't let it be impossibly large. Using a 93 * modulus that is too big causes a LOT more process table scans and slows 94 * down fork processing as the pidchecked caching is defeated. 95 */ 96 static int randompid = 0; 97 98 static int 99 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 100 { 101 int error, pid; 102 103 pid = randompid; 104 error = sysctl_handle_int(oidp, &pid, 0, req); 105 if (error || !req->newptr) 106 return (error); 107 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 108 pid = PID_MAX - 100; 109 else if (pid < 2) /* NOP */ 110 pid = 0; 111 else if (pid < 100) /* Make it reasonable */ 112 pid = 100; 113 randompid = pid; 114 return (error); 115 } 116 117 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 118 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 119 120 /* 121 * Initialize global process hashing structures. 122 */ 123 void 124 procinit(void) 125 { 126 LIST_INIT(&allproc); 127 LIST_INIT(&zombproc); 128 spin_init(&allproc_spin); 129 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 130 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 131 proc_zone = zinit("PROC", sizeof (struct proc), 0, 0, 5); 132 thread_zone = zinit("THREAD", sizeof (struct thread), 0, 0, 5); 133 uihashinit(); 134 } 135 136 /* 137 * Is p an inferior of the current process? 138 */ 139 int 140 inferior(struct proc *p) 141 { 142 for (; p != curproc; p = p->p_pptr) 143 if (p->p_pid == 0) 144 return (0); 145 return (1); 146 } 147 148 /* 149 * Locate a process by number 150 */ 151 struct proc * 152 pfind(pid_t pid) 153 { 154 struct proc *p; 155 156 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 157 if (p->p_pid == pid) 158 return (p); 159 } 160 return (NULL); 161 } 162 163 /* 164 * Locate a process group by number 165 */ 166 struct pgrp * 167 pgfind(pid_t pgid) 168 { 169 struct pgrp *pgrp; 170 171 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 172 if (pgrp->pg_id == pgid) 173 return (pgrp); 174 } 175 return (NULL); 176 } 177 178 /* 179 * Move p to a new or existing process group (and session) 180 */ 181 int 182 enterpgrp(struct proc *p, pid_t pgid, int mksess) 183 { 184 struct pgrp *pgrp = pgfind(pgid); 185 186 KASSERT(pgrp == NULL || !mksess, 187 ("enterpgrp: setsid into non-empty pgrp")); 188 KASSERT(!SESS_LEADER(p), 189 ("enterpgrp: session leader attempted setpgrp")); 190 191 if (pgrp == NULL) { 192 pid_t savepid = p->p_pid; 193 struct proc *np; 194 /* 195 * new process group 196 */ 197 KASSERT(p->p_pid == pgid, 198 ("enterpgrp: new pgrp and pid != pgid")); 199 if ((np = pfind(savepid)) == NULL || np != p) 200 return (ESRCH); 201 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 202 M_WAITOK); 203 if (mksess) { 204 struct session *sess; 205 206 /* 207 * new session 208 */ 209 MALLOC(sess, struct session *, sizeof(struct session), 210 M_SESSION, M_WAITOK); 211 sess->s_leader = p; 212 sess->s_sid = p->p_pid; 213 sess->s_count = 1; 214 sess->s_ttyvp = NULL; 215 sess->s_ttyp = NULL; 216 bcopy(p->p_session->s_login, sess->s_login, 217 sizeof(sess->s_login)); 218 p->p_flag &= ~P_CONTROLT; 219 pgrp->pg_session = sess; 220 KASSERT(p == curproc, 221 ("enterpgrp: mksession and p != curproc")); 222 } else { 223 pgrp->pg_session = p->p_session; 224 sess_hold(pgrp->pg_session); 225 } 226 pgrp->pg_id = pgid; 227 LIST_INIT(&pgrp->pg_members); 228 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 229 pgrp->pg_jobc = 0; 230 SLIST_INIT(&pgrp->pg_sigiolst); 231 lockinit(&pgrp->pg_lock, "pgwt", 0, 0); 232 } else if (pgrp == p->p_pgrp) 233 return (0); 234 235 /* 236 * Adjust eligibility of affected pgrps to participate in job control. 237 * Increment eligibility counts before decrementing, otherwise we 238 * could reach 0 spuriously during the first call. 239 */ 240 fixjobc(p, pgrp, 1); 241 fixjobc(p, p->p_pgrp, 0); 242 243 LIST_REMOVE(p, p_pglist); 244 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 245 pgdelete(p->p_pgrp); 246 p->p_pgrp = pgrp; 247 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 248 return (0); 249 } 250 251 /* 252 * remove process from process group 253 */ 254 int 255 leavepgrp(struct proc *p) 256 { 257 258 LIST_REMOVE(p, p_pglist); 259 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 260 pgdelete(p->p_pgrp); 261 p->p_pgrp = 0; 262 return (0); 263 } 264 265 /* 266 * delete a process group 267 */ 268 static void 269 pgdelete(struct pgrp *pgrp) 270 { 271 272 /* 273 * Reset any sigio structures pointing to us as a result of 274 * F_SETOWN with our pgid. 275 */ 276 funsetownlst(&pgrp->pg_sigiolst); 277 278 if (pgrp->pg_session->s_ttyp != NULL && 279 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 280 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 281 LIST_REMOVE(pgrp, pg_hash); 282 sess_rele(pgrp->pg_session); 283 kfree(pgrp, M_PGRP); 284 } 285 286 /* 287 * Adjust the ref count on a session structure. When the ref count falls to 288 * zero the tty is disassociated from the session and the session structure 289 * is freed. Note that tty assocation is not itself ref-counted. 290 */ 291 void 292 sess_hold(struct session *sp) 293 { 294 ++sp->s_count; 295 } 296 297 void 298 sess_rele(struct session *sp) 299 { 300 KKASSERT(sp->s_count > 0); 301 if (--sp->s_count == 0) { 302 if (sp->s_ttyp && sp->s_ttyp->t_session) { 303 #ifdef TTY_DO_FULL_CLOSE 304 /* FULL CLOSE, see ttyclearsession() */ 305 KKASSERT(sp->s_ttyp->t_session == sp); 306 sp->s_ttyp->t_session = NULL; 307 #else 308 /* HALF CLOSE, see ttyclearsession() */ 309 if (sp->s_ttyp->t_session == sp) 310 sp->s_ttyp->t_session = NULL; 311 #endif 312 } 313 kfree(sp, M_SESSION); 314 } 315 } 316 317 /* 318 * Adjust pgrp jobc counters when specified process changes process group. 319 * We count the number of processes in each process group that "qualify" 320 * the group for terminal job control (those with a parent in a different 321 * process group of the same session). If that count reaches zero, the 322 * process group becomes orphaned. Check both the specified process' 323 * process group and that of its children. 324 * entering == 0 => p is leaving specified group. 325 * entering == 1 => p is entering specified group. 326 */ 327 void 328 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 329 { 330 struct pgrp *hispgrp; 331 struct session *mysession = pgrp->pg_session; 332 333 /* 334 * Check p's parent to see whether p qualifies its own process 335 * group; if so, adjust count for p's process group. 336 */ 337 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 338 hispgrp->pg_session == mysession) { 339 if (entering) 340 pgrp->pg_jobc++; 341 else if (--pgrp->pg_jobc == 0) 342 orphanpg(pgrp); 343 } 344 345 /* 346 * Check this process' children to see whether they qualify 347 * their process groups; if so, adjust counts for children's 348 * process groups. 349 */ 350 LIST_FOREACH(p, &p->p_children, p_sibling) 351 if ((hispgrp = p->p_pgrp) != pgrp && 352 hispgrp->pg_session == mysession && 353 (p->p_flag & P_ZOMBIE) == 0) { 354 if (entering) 355 hispgrp->pg_jobc++; 356 else if (--hispgrp->pg_jobc == 0) 357 orphanpg(hispgrp); 358 } 359 } 360 361 /* 362 * A process group has become orphaned; 363 * if there are any stopped processes in the group, 364 * hang-up all process in that group. 365 */ 366 static void 367 orphanpg(struct pgrp *pg) 368 { 369 struct proc *p; 370 371 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 372 if (p->p_flag & P_STOPPED) { 373 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 374 ksignal(p, SIGHUP); 375 ksignal(p, SIGCONT); 376 } 377 return; 378 } 379 } 380 } 381 382 /* 383 * Add a new process to the allproc list and the PID hash. This 384 * also assigns a pid to the new process. 385 * 386 * MPALMOSTSAFE - acquires mplock for karc4random() call 387 */ 388 void 389 proc_add_allproc(struct proc *p) 390 { 391 int random_offset; 392 393 if ((random_offset = randompid) != 0) { 394 get_mplock(); 395 random_offset = karc4random() % random_offset; 396 rel_mplock(); 397 } 398 399 spin_lock_wr(&allproc_spin); 400 p->p_pid = proc_getnewpid_locked(random_offset); 401 LIST_INSERT_HEAD(&allproc, p, p_list); 402 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash); 403 spin_unlock_wr(&allproc_spin); 404 } 405 406 /* 407 * Calculate a new process pid. This function is integrated into 408 * proc_add_allproc() to guarentee that the new pid is not reused before 409 * the new process can be added to the allproc list. 410 * 411 * MPSAFE - must be called with allproc_spin held. 412 */ 413 static 414 pid_t 415 proc_getnewpid_locked(int random_offset) 416 { 417 static pid_t nextpid; 418 static pid_t pidchecked; 419 struct proc *p; 420 421 /* 422 * Find an unused process ID. We remember a range of unused IDs 423 * ready to use (from nextpid+1 through pidchecked-1). 424 */ 425 nextpid = nextpid + 1 + random_offset; 426 retry: 427 /* 428 * If the process ID prototype has wrapped around, 429 * restart somewhat above 0, as the low-numbered procs 430 * tend to include daemons that don't exit. 431 */ 432 if (nextpid >= PID_MAX) { 433 nextpid = nextpid % PID_MAX; 434 if (nextpid < 100) 435 nextpid += 100; 436 pidchecked = 0; 437 } 438 if (nextpid >= pidchecked) { 439 int doingzomb = 0; 440 441 pidchecked = PID_MAX; 442 /* 443 * Scan the active and zombie procs to check whether this pid 444 * is in use. Remember the lowest pid that's greater 445 * than nextpid, so we can avoid checking for a while. 446 */ 447 p = LIST_FIRST(&allproc); 448 again: 449 for (; p != 0; p = LIST_NEXT(p, p_list)) { 450 while (p->p_pid == nextpid || 451 p->p_pgrp->pg_id == nextpid || 452 p->p_session->s_sid == nextpid) { 453 nextpid++; 454 if (nextpid >= pidchecked) 455 goto retry; 456 } 457 if (p->p_pid > nextpid && pidchecked > p->p_pid) 458 pidchecked = p->p_pid; 459 if (p->p_pgrp->pg_id > nextpid && 460 pidchecked > p->p_pgrp->pg_id) 461 pidchecked = p->p_pgrp->pg_id; 462 if (p->p_session->s_sid > nextpid && 463 pidchecked > p->p_session->s_sid) 464 pidchecked = p->p_session->s_sid; 465 } 466 if (!doingzomb) { 467 doingzomb = 1; 468 p = LIST_FIRST(&zombproc); 469 goto again; 470 } 471 } 472 return(nextpid); 473 } 474 475 /* 476 * Called from exit1 to remove a process from the allproc 477 * list and move it to the zombie list. 478 * 479 * MPSAFE 480 */ 481 void 482 proc_move_allproc_zombie(struct proc *p) 483 { 484 spin_lock_wr(&allproc_spin); 485 while (p->p_lock) { 486 spin_unlock_wr(&allproc_spin); 487 tsleep(p, 0, "reap1", hz / 10); 488 spin_lock_wr(&allproc_spin); 489 } 490 LIST_REMOVE(p, p_list); 491 LIST_INSERT_HEAD(&zombproc, p, p_list); 492 LIST_REMOVE(p, p_hash); 493 p->p_flag |= P_ZOMBIE; 494 spin_unlock_wr(&allproc_spin); 495 } 496 497 /* 498 * This routine is called from kern_wait() and will remove the process 499 * from the zombie list and the sibling list. This routine will block 500 * if someone has a lock on the proces (p_lock). 501 * 502 * MPSAFE 503 */ 504 void 505 proc_remove_zombie(struct proc *p) 506 { 507 spin_lock_wr(&allproc_spin); 508 while (p->p_lock) { 509 spin_unlock_wr(&allproc_spin); 510 tsleep(p, 0, "reap1", hz / 10); 511 spin_lock_wr(&allproc_spin); 512 } 513 LIST_REMOVE(p, p_list); /* off zombproc */ 514 LIST_REMOVE(p, p_sibling); 515 spin_unlock_wr(&allproc_spin); 516 } 517 518 /* 519 * Scan all processes on the allproc list. The process is automatically 520 * held for the callback. A return value of -1 terminates the loop. 521 * 522 * MPSAFE 523 */ 524 void 525 allproc_scan(int (*callback)(struct proc *, void *), void *data) 526 { 527 struct proc *p; 528 int r; 529 530 spin_lock_rd(&allproc_spin); 531 LIST_FOREACH(p, &allproc, p_list) { 532 PHOLD(p); 533 spin_unlock_rd(&allproc_spin); 534 r = callback(p, data); 535 spin_lock_rd(&allproc_spin); 536 PRELE(p); 537 if (r < 0) 538 break; 539 } 540 spin_unlock_rd(&allproc_spin); 541 } 542 543 /* 544 * Scan all processes on the zombproc list. The process is automatically 545 * held for the callback. A return value of -1 terminates the loop. 546 * 547 * MPSAFE 548 */ 549 void 550 zombproc_scan(int (*callback)(struct proc *, void *), void *data) 551 { 552 struct proc *p; 553 int r; 554 555 spin_lock_rd(&allproc_spin); 556 LIST_FOREACH(p, &zombproc, p_list) { 557 PHOLD(p); 558 spin_unlock_rd(&allproc_spin); 559 r = callback(p, data); 560 spin_lock_rd(&allproc_spin); 561 PRELE(p); 562 if (r < 0) 563 break; 564 } 565 spin_unlock_rd(&allproc_spin); 566 } 567 568 #include "opt_ddb.h" 569 #ifdef DDB 570 #include <ddb/ddb.h> 571 572 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 573 { 574 struct pgrp *pgrp; 575 struct proc *p; 576 int i; 577 578 for (i = 0; i <= pgrphash; i++) { 579 if (!LIST_EMPTY(&pgrphashtbl[i])) { 580 kprintf("\tindx %d\n", i); 581 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 582 kprintf( 583 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 584 (void *)pgrp, (long)pgrp->pg_id, 585 (void *)pgrp->pg_session, 586 pgrp->pg_session->s_count, 587 (void *)LIST_FIRST(&pgrp->pg_members)); 588 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 589 kprintf("\t\tpid %ld addr %p pgrp %p\n", 590 (long)p->p_pid, (void *)p, 591 (void *)p->p_pgrp); 592 } 593 } 594 } 595 } 596 } 597 #endif /* DDB */ 598 599 /* 600 * Fill in an eproc structure for the specified thread. 601 */ 602 void 603 fill_eproc_td(thread_t td, struct eproc *ep, struct proc *xp) 604 { 605 bzero(ep, sizeof(*ep)); 606 607 ep->e_uticks = td->td_uticks; 608 ep->e_sticks = td->td_sticks; 609 ep->e_iticks = td->td_iticks; 610 ep->e_tdev = NOUDEV; 611 ep->e_cpuid = td->td_gd->gd_cpuid; 612 if (td->td_wmesg) { 613 strncpy(ep->e_wmesg, td->td_wmesg, WMESGLEN); 614 ep->e_wmesg[WMESGLEN] = 0; 615 } 616 617 /* 618 * Fake up portions of the proc structure copied out by the sysctl 619 * to return useful information. Note that using td_pri directly 620 * is messy because it includes critial section data so we fake 621 * up an rtprio.prio for threads. 622 */ 623 if (xp) { 624 *xp = *initproc; 625 xp->p_rtprio.type = RTP_PRIO_THREAD; 626 xp->p_rtprio.prio = td->td_pri & TDPRI_MASK; 627 xp->p_pid = -1; 628 } 629 } 630 631 /* 632 * Fill in an eproc structure for the specified process. 633 */ 634 void 635 fill_eproc(struct proc *p, struct eproc *ep) 636 { 637 struct tty *tp; 638 639 fill_eproc_td(p->p_thread, ep, NULL); 640 641 ep->e_paddr = p; 642 if (p->p_ucred) { 643 ep->e_ucred = *p->p_ucred; 644 } 645 if (p->p_procsig) { 646 ep->e_procsig = *p->p_procsig; 647 } 648 if (p->p_stat != SIDL && (p->p_flag & P_ZOMBIE) == 0 && 649 p->p_vmspace != NULL) { 650 struct vmspace *vm = p->p_vmspace; 651 ep->e_vm = *vm; 652 ep->e_vm.vm_rssize = vmspace_resident_count(vm); /*XXX*/ 653 } 654 if (p->p_pptr) 655 ep->e_ppid = p->p_pptr->p_pid; 656 if (p->p_pgrp) { 657 ep->e_pgid = p->p_pgrp->pg_id; 658 ep->e_jobc = p->p_pgrp->pg_jobc; 659 ep->e_sess = p->p_pgrp->pg_session; 660 661 if (ep->e_sess) { 662 bcopy(ep->e_sess->s_login, ep->e_login, sizeof(ep->e_login)); 663 if (ep->e_sess->s_ttyvp) 664 ep->e_flag = EPROC_CTTY; 665 if (p->p_session && SESS_LEADER(p)) 666 ep->e_flag |= EPROC_SLEADER; 667 } 668 } 669 if ((p->p_flag & P_CONTROLT) && 670 (ep->e_sess != NULL) && 671 ((tp = ep->e_sess->s_ttyp) != NULL)) { 672 ep->e_tdev = dev2udev(tp->t_dev); 673 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 674 ep->e_tsess = tp->t_session; 675 } else { 676 ep->e_tdev = NOUDEV; 677 } 678 if (p->p_ucred->cr_prison) 679 ep->e_jailid = p->p_ucred->cr_prison->pr_id; 680 } 681 682 /* 683 * Locate a process on the zombie list. Return a held process or NULL. 684 */ 685 struct proc * 686 zpfind(pid_t pid) 687 { 688 struct proc *p; 689 690 LIST_FOREACH(p, &zombproc, p_list) 691 if (p->p_pid == pid) 692 return (p); 693 return (NULL); 694 } 695 696 static int 697 sysctl_out_proc(struct proc *p, struct thread *td, struct sysctl_req *req, int doingzomb) 698 { 699 struct eproc eproc; 700 struct proc xproc; 701 int error; 702 #if 0 703 pid_t pid = p->p_pid; 704 #endif 705 706 if (p) { 707 td = p->p_thread; 708 fill_eproc(p, &eproc); 709 xproc = *p; 710 711 /* 712 * Aggregate rusage information 713 */ 714 calcru_proc(p, &xproc.p_ru); 715 716 /* 717 * p_stat fixup. If we are in a thread sleep mark p_stat 718 * as sleeping if the thread is blocked. 719 */ 720 if (p->p_stat == SRUN && td && (td->td_flags & TDF_BLOCKED)) { 721 xproc.p_stat = SSLEEP; 722 } 723 /* 724 * If the process is being stopped but is in a normal tsleep, 725 * mark it as being SSTOP. 726 */ 727 if (p->p_stat == SSLEEP && (p->p_flag & P_STOPPED)) 728 xproc.p_stat = SSTOP; 729 if (p->p_flag & P_ZOMBIE) 730 xproc.p_stat = SZOMB; 731 } else if (td) { 732 fill_eproc_td(td, &eproc, &xproc); 733 } 734 error = SYSCTL_OUT(req,(caddr_t)&xproc, sizeof(struct proc)); 735 if (error) 736 return (error); 737 error = SYSCTL_OUT(req,(caddr_t)&eproc, sizeof(eproc)); 738 if (error) 739 return (error); 740 error = SYSCTL_OUT(req,(caddr_t)td, sizeof(struct thread)); 741 if (error) 742 return (error); 743 #if 0 744 if (!doingzomb && pid && (pfind(pid) != p)) 745 return EAGAIN; 746 if (doingzomb && zpfind(pid) != p) 747 return EAGAIN; 748 #endif 749 return (0); 750 } 751 752 static int 753 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 754 { 755 int *name = (int*) arg1; 756 u_int namelen = arg2; 757 struct proc *p; 758 struct thread *td; 759 int doingzomb; 760 int error = 0; 761 int n; 762 int origcpu; 763 struct ucred *cr1 = curproc->p_ucred; 764 765 if (oidp->oid_number == KERN_PROC_PID) { 766 if (namelen != 1) 767 return (EINVAL); 768 p = pfind((pid_t)name[0]); 769 if (!p) 770 return (0); 771 if (!PRISON_CHECK(cr1, p->p_ucred)) 772 return (0); 773 error = sysctl_out_proc(p, NULL, req, 0); 774 return (error); 775 } 776 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 777 ; 778 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 779 ; 780 else 781 return (EINVAL); 782 783 if (!req->oldptr) { 784 /* overestimate by 5 procs */ 785 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 786 if (error) 787 return (error); 788 } 789 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 790 if (!doingzomb) 791 p = LIST_FIRST(&allproc); 792 else 793 p = LIST_FIRST(&zombproc); 794 for (; p != 0; p = LIST_NEXT(p, p_list)) { 795 /* 796 * Show a user only their processes. 797 */ 798 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred)) 799 continue; 800 /* 801 * Skip embryonic processes. 802 */ 803 if (p->p_stat == SIDL) 804 continue; 805 /* 806 * TODO - make more efficient (see notes below). 807 * do by session. 808 */ 809 switch (oidp->oid_number) { 810 case KERN_PROC_PGRP: 811 /* could do this by traversing pgrp */ 812 if (p->p_pgrp == NULL || 813 p->p_pgrp->pg_id != (pid_t)name[0]) 814 continue; 815 break; 816 817 case KERN_PROC_TTY: 818 if ((p->p_flag & P_CONTROLT) == 0 || 819 p->p_session == NULL || 820 p->p_session->s_ttyp == NULL || 821 dev2udev(p->p_session->s_ttyp->t_dev) != 822 (udev_t)name[0]) 823 continue; 824 break; 825 826 case KERN_PROC_UID: 827 if (p->p_ucred == NULL || 828 p->p_ucred->cr_uid != (uid_t)name[0]) 829 continue; 830 break; 831 832 case KERN_PROC_RUID: 833 if (p->p_ucred == NULL || 834 p->p_ucred->cr_ruid != (uid_t)name[0]) 835 continue; 836 break; 837 } 838 839 if (!PRISON_CHECK(cr1, p->p_ucred)) 840 continue; 841 PHOLD(p); 842 error = sysctl_out_proc(p, NULL, req, doingzomb); 843 PRELE(p); 844 if (error) 845 return (error); 846 } 847 } 848 849 /* 850 * Iterate over all active cpus and scan their thread list. Start 851 * with the next logical cpu and end with our original cpu. We 852 * migrate our own thread to each target cpu in order to safely scan 853 * its thread list. In the last loop we migrate back to our original 854 * cpu. 855 */ 856 origcpu = mycpu->gd_cpuid; 857 if (!ps_showallthreads || jailed(cr1)) 858 goto post_threads; 859 for (n = 1; n <= ncpus; ++n) { 860 globaldata_t rgd; 861 int nid; 862 863 nid = (origcpu + n) % ncpus; 864 if ((smp_active_mask & (1 << nid)) == 0) 865 continue; 866 rgd = globaldata_find(nid); 867 lwkt_setcpu_self(rgd); 868 869 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) { 870 if (td->td_proc) 871 continue; 872 switch (oidp->oid_number) { 873 case KERN_PROC_PGRP: 874 case KERN_PROC_TTY: 875 case KERN_PROC_UID: 876 case KERN_PROC_RUID: 877 continue; 878 default: 879 break; 880 } 881 lwkt_hold(td); 882 error = sysctl_out_proc(NULL, td, req, doingzomb); 883 lwkt_rele(td); 884 if (error) 885 return (error); 886 } 887 } 888 post_threads: 889 return (0); 890 } 891 892 /* 893 * This sysctl allows a process to retrieve the argument list or process 894 * title for another process without groping around in the address space 895 * of the other process. It also allow a process to set its own "process 896 * title to a string of its own choice. 897 */ 898 static int 899 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 900 { 901 int *name = (int*) arg1; 902 u_int namelen = arg2; 903 struct proc *p; 904 struct pargs *pa; 905 int error = 0; 906 struct ucred *cr1 = curproc->p_ucred; 907 908 if (namelen != 1) 909 return (EINVAL); 910 911 p = pfind((pid_t)name[0]); 912 if (!p) 913 return (0); 914 915 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred)) 916 return (0); 917 918 if (req->newptr && curproc != p) 919 return (EPERM); 920 921 if (req->oldptr && p->p_args != NULL) 922 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length); 923 if (req->newptr == NULL) 924 return (error); 925 926 if (p->p_args && --p->p_args->ar_ref == 0) 927 FREE(p->p_args, M_PARGS); 928 p->p_args = NULL; 929 930 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 931 return (error); 932 933 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen, 934 M_PARGS, M_WAITOK); 935 pa->ar_ref = 1; 936 pa->ar_length = req->newlen; 937 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 938 if (!error) 939 p->p_args = pa; 940 else 941 FREE(pa, M_PARGS); 942 return (error); 943 } 944 945 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 946 947 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 948 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 949 950 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 951 sysctl_kern_proc, "Process table"); 952 953 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 954 sysctl_kern_proc, "Process table"); 955 956 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 957 sysctl_kern_proc, "Process table"); 958 959 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 960 sysctl_kern_proc, "Process table"); 961 962 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 963 sysctl_kern_proc, "Process table"); 964 965 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 966 sysctl_kern_proc_args, "Process argument list"); 967