1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD: src/sys/kern/kern_proc.c,v 1.63.2.9 2003/05/08 07:47:16 kbyanc Exp $ 35 * $DragonFly: src/sys/kern/kern_proc.c,v 1.45 2008/06/12 23:25:02 dillon Exp $ 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/sysctl.h> 42 #include <sys/malloc.h> 43 #include <sys/proc.h> 44 #include <sys/jail.h> 45 #include <sys/filedesc.h> 46 #include <sys/tty.h> 47 #include <sys/dsched.h> 48 #include <sys/signalvar.h> 49 #include <sys/spinlock.h> 50 #include <vm/vm.h> 51 #include <sys/lock.h> 52 #include <vm/pmap.h> 53 #include <vm/vm_map.h> 54 #include <sys/user.h> 55 #include <machine/smp.h> 56 57 #include <sys/spinlock2.h> 58 #include <sys/mplock2.h> 59 60 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 61 MALLOC_DEFINE(M_SESSION, "session", "session header"); 62 MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 63 MALLOC_DEFINE(M_LWP, "lwp", "lwp structures"); 64 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 65 66 int ps_showallprocs = 1; 67 static int ps_showallthreads = 1; 68 SYSCTL_INT(_security, OID_AUTO, ps_showallprocs, CTLFLAG_RW, 69 &ps_showallprocs, 0, 70 "Unprivileged processes can see proccesses with different UID/GID"); 71 SYSCTL_INT(_security, OID_AUTO, ps_showallthreads, CTLFLAG_RW, 72 &ps_showallthreads, 0, 73 "Unprivileged processes can see kernel threads"); 74 75 static void pgdelete(struct pgrp *); 76 static void orphanpg(struct pgrp *pg); 77 static pid_t proc_getnewpid_locked(int random_offset); 78 79 /* 80 * Other process lists 81 */ 82 struct pidhashhead *pidhashtbl; 83 u_long pidhash; 84 struct pgrphashhead *pgrphashtbl; 85 u_long pgrphash; 86 struct proclist allproc; 87 struct proclist zombproc; 88 struct spinlock allproc_spin; 89 90 /* 91 * Random component to nextpid generation. We mix in a random factor to make 92 * it a little harder to predict. We sanity check the modulus value to avoid 93 * doing it in critical paths. Don't let it be too small or we pointlessly 94 * waste randomness entropy, and don't let it be impossibly large. Using a 95 * modulus that is too big causes a LOT more process table scans and slows 96 * down fork processing as the pidchecked caching is defeated. 97 */ 98 static int randompid = 0; 99 100 static int 101 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 102 { 103 int error, pid; 104 105 pid = randompid; 106 error = sysctl_handle_int(oidp, &pid, 0, req); 107 if (error || !req->newptr) 108 return (error); 109 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 110 pid = PID_MAX - 100; 111 else if (pid < 2) /* NOP */ 112 pid = 0; 113 else if (pid < 100) /* Make it reasonable */ 114 pid = 100; 115 randompid = pid; 116 return (error); 117 } 118 119 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 120 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 121 122 /* 123 * Initialize global process hashing structures. 124 */ 125 void 126 procinit(void) 127 { 128 LIST_INIT(&allproc); 129 LIST_INIT(&zombproc); 130 spin_init(&allproc_spin); 131 lwkt_init(); 132 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 133 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 134 uihashinit(); 135 } 136 137 /* 138 * Is p an inferior of the current process? 139 */ 140 int 141 inferior(struct proc *p) 142 { 143 for (; p != curproc; p = p->p_pptr) 144 if (p->p_pid == 0) 145 return (0); 146 return (1); 147 } 148 149 /* 150 * Locate a process by number 151 */ 152 struct proc * 153 pfind(pid_t pid) 154 { 155 struct proc *p; 156 157 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 158 if (p->p_pid == pid) 159 return (p); 160 } 161 return (NULL); 162 } 163 164 /* 165 * Locate a process group by number 166 */ 167 struct pgrp * 168 pgfind(pid_t pgid) 169 { 170 struct pgrp *pgrp; 171 172 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 173 if (pgrp->pg_id == pgid) 174 return (pgrp); 175 } 176 return (NULL); 177 } 178 179 /* 180 * Move p to a new or existing process group (and session) 181 */ 182 int 183 enterpgrp(struct proc *p, pid_t pgid, int mksess) 184 { 185 struct pgrp *pgrp = pgfind(pgid); 186 187 KASSERT(pgrp == NULL || !mksess, 188 ("enterpgrp: setsid into non-empty pgrp")); 189 KASSERT(!SESS_LEADER(p), 190 ("enterpgrp: session leader attempted setpgrp")); 191 192 if (pgrp == NULL) { 193 pid_t savepid = p->p_pid; 194 struct proc *np; 195 /* 196 * new process group 197 */ 198 KASSERT(p->p_pid == pgid, 199 ("enterpgrp: new pgrp and pid != pgid")); 200 if ((np = pfind(savepid)) == NULL || np != p) 201 return (ESRCH); 202 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 203 M_WAITOK); 204 if (mksess) { 205 struct session *sess; 206 207 /* 208 * new session 209 */ 210 MALLOC(sess, struct session *, sizeof(struct session), 211 M_SESSION, M_WAITOK); 212 sess->s_leader = p; 213 sess->s_sid = p->p_pid; 214 sess->s_count = 1; 215 sess->s_ttyvp = NULL; 216 sess->s_ttyp = NULL; 217 bcopy(p->p_session->s_login, sess->s_login, 218 sizeof(sess->s_login)); 219 p->p_flag &= ~P_CONTROLT; 220 pgrp->pg_session = sess; 221 KASSERT(p == curproc, 222 ("enterpgrp: mksession and p != curproc")); 223 } else { 224 pgrp->pg_session = p->p_session; 225 sess_hold(pgrp->pg_session); 226 } 227 pgrp->pg_id = pgid; 228 LIST_INIT(&pgrp->pg_members); 229 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 230 pgrp->pg_jobc = 0; 231 SLIST_INIT(&pgrp->pg_sigiolst); 232 lockinit(&pgrp->pg_lock, "pgwt", 0, 0); 233 } else if (pgrp == p->p_pgrp) 234 return (0); 235 236 /* 237 * Adjust eligibility of affected pgrps to participate in job control. 238 * Increment eligibility counts before decrementing, otherwise we 239 * could reach 0 spuriously during the first call. 240 */ 241 fixjobc(p, pgrp, 1); 242 fixjobc(p, p->p_pgrp, 0); 243 244 LIST_REMOVE(p, p_pglist); 245 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 246 pgdelete(p->p_pgrp); 247 p->p_pgrp = pgrp; 248 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 249 return (0); 250 } 251 252 /* 253 * remove process from process group 254 */ 255 int 256 leavepgrp(struct proc *p) 257 { 258 259 LIST_REMOVE(p, p_pglist); 260 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 261 pgdelete(p->p_pgrp); 262 p->p_pgrp = 0; 263 return (0); 264 } 265 266 /* 267 * delete a process group 268 */ 269 static void 270 pgdelete(struct pgrp *pgrp) 271 { 272 273 /* 274 * Reset any sigio structures pointing to us as a result of 275 * F_SETOWN with our pgid. 276 */ 277 funsetownlst(&pgrp->pg_sigiolst); 278 279 if (pgrp->pg_session->s_ttyp != NULL && 280 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 281 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 282 LIST_REMOVE(pgrp, pg_hash); 283 sess_rele(pgrp->pg_session); 284 kfree(pgrp, M_PGRP); 285 } 286 287 /* 288 * Adjust the ref count on a session structure. When the ref count falls to 289 * zero the tty is disassociated from the session and the session structure 290 * is freed. Note that tty assocation is not itself ref-counted. 291 */ 292 void 293 sess_hold(struct session *sp) 294 { 295 ++sp->s_count; 296 } 297 298 void 299 sess_rele(struct session *sp) 300 { 301 KKASSERT(sp->s_count > 0); 302 if (--sp->s_count == 0) { 303 if (sp->s_ttyp && sp->s_ttyp->t_session) { 304 #ifdef TTY_DO_FULL_CLOSE 305 /* FULL CLOSE, see ttyclearsession() */ 306 KKASSERT(sp->s_ttyp->t_session == sp); 307 sp->s_ttyp->t_session = NULL; 308 #else 309 /* HALF CLOSE, see ttyclearsession() */ 310 if (sp->s_ttyp->t_session == sp) 311 sp->s_ttyp->t_session = NULL; 312 #endif 313 } 314 kfree(sp, M_SESSION); 315 } 316 } 317 318 /* 319 * Adjust pgrp jobc counters when specified process changes process group. 320 * We count the number of processes in each process group that "qualify" 321 * the group for terminal job control (those with a parent in a different 322 * process group of the same session). If that count reaches zero, the 323 * process group becomes orphaned. Check both the specified process' 324 * process group and that of its children. 325 * entering == 0 => p is leaving specified group. 326 * entering == 1 => p is entering specified group. 327 */ 328 void 329 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 330 { 331 struct pgrp *hispgrp; 332 struct session *mysession = pgrp->pg_session; 333 334 /* 335 * Check p's parent to see whether p qualifies its own process 336 * group; if so, adjust count for p's process group. 337 */ 338 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 339 hispgrp->pg_session == mysession) { 340 if (entering) 341 pgrp->pg_jobc++; 342 else if (--pgrp->pg_jobc == 0) 343 orphanpg(pgrp); 344 } 345 346 /* 347 * Check this process' children to see whether they qualify 348 * their process groups; if so, adjust counts for children's 349 * process groups. 350 */ 351 LIST_FOREACH(p, &p->p_children, p_sibling) 352 if ((hispgrp = p->p_pgrp) != pgrp && 353 hispgrp->pg_session == mysession && 354 p->p_stat != SZOMB) { 355 if (entering) 356 hispgrp->pg_jobc++; 357 else if (--hispgrp->pg_jobc == 0) 358 orphanpg(hispgrp); 359 } 360 } 361 362 /* 363 * A process group has become orphaned; 364 * if there are any stopped processes in the group, 365 * hang-up all process in that group. 366 */ 367 static void 368 orphanpg(struct pgrp *pg) 369 { 370 struct proc *p; 371 372 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 373 if (p->p_stat == SSTOP) { 374 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 375 ksignal(p, SIGHUP); 376 ksignal(p, SIGCONT); 377 } 378 return; 379 } 380 } 381 } 382 383 /* 384 * Add a new process to the allproc list and the PID hash. This 385 * also assigns a pid to the new process. 386 * 387 * MPALMOSTSAFE - acquires mplock for karc4random() call 388 */ 389 void 390 proc_add_allproc(struct proc *p) 391 { 392 int random_offset; 393 394 if ((random_offset = randompid) != 0) { 395 get_mplock(); 396 random_offset = karc4random() % random_offset; 397 rel_mplock(); 398 } 399 400 spin_lock_wr(&allproc_spin); 401 p->p_pid = proc_getnewpid_locked(random_offset); 402 LIST_INSERT_HEAD(&allproc, p, p_list); 403 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash); 404 spin_unlock_wr(&allproc_spin); 405 } 406 407 /* 408 * Calculate a new process pid. This function is integrated into 409 * proc_add_allproc() to guarentee that the new pid is not reused before 410 * the new process can be added to the allproc list. 411 * 412 * MPSAFE - must be called with allproc_spin held. 413 */ 414 static 415 pid_t 416 proc_getnewpid_locked(int random_offset) 417 { 418 static pid_t nextpid; 419 static pid_t pidchecked; 420 struct proc *p; 421 422 /* 423 * Find an unused process ID. We remember a range of unused IDs 424 * ready to use (from nextpid+1 through pidchecked-1). 425 */ 426 nextpid = nextpid + 1 + random_offset; 427 retry: 428 /* 429 * If the process ID prototype has wrapped around, 430 * restart somewhat above 0, as the low-numbered procs 431 * tend to include daemons that don't exit. 432 */ 433 if (nextpid >= PID_MAX) { 434 nextpid = nextpid % PID_MAX; 435 if (nextpid < 100) 436 nextpid += 100; 437 pidchecked = 0; 438 } 439 if (nextpid >= pidchecked) { 440 int doingzomb = 0; 441 442 pidchecked = PID_MAX; 443 /* 444 * Scan the active and zombie procs to check whether this pid 445 * is in use. Remember the lowest pid that's greater 446 * than nextpid, so we can avoid checking for a while. 447 */ 448 p = LIST_FIRST(&allproc); 449 again: 450 for (; p != 0; p = LIST_NEXT(p, p_list)) { 451 while (p->p_pid == nextpid || 452 p->p_pgrp->pg_id == nextpid || 453 p->p_session->s_sid == nextpid) { 454 nextpid++; 455 if (nextpid >= pidchecked) 456 goto retry; 457 } 458 if (p->p_pid > nextpid && pidchecked > p->p_pid) 459 pidchecked = p->p_pid; 460 if (p->p_pgrp->pg_id > nextpid && 461 pidchecked > p->p_pgrp->pg_id) 462 pidchecked = p->p_pgrp->pg_id; 463 if (p->p_session->s_sid > nextpid && 464 pidchecked > p->p_session->s_sid) 465 pidchecked = p->p_session->s_sid; 466 } 467 if (!doingzomb) { 468 doingzomb = 1; 469 p = LIST_FIRST(&zombproc); 470 goto again; 471 } 472 } 473 return(nextpid); 474 } 475 476 /* 477 * Called from exit1 to remove a process from the allproc 478 * list and move it to the zombie list. 479 * 480 * MPSAFE 481 */ 482 void 483 proc_move_allproc_zombie(struct proc *p) 484 { 485 spin_lock_wr(&allproc_spin); 486 while (p->p_lock) { 487 spin_unlock_wr(&allproc_spin); 488 tsleep(p, 0, "reap1", hz / 10); 489 spin_lock_wr(&allproc_spin); 490 } 491 LIST_REMOVE(p, p_list); 492 LIST_INSERT_HEAD(&zombproc, p, p_list); 493 LIST_REMOVE(p, p_hash); 494 p->p_stat = SZOMB; 495 spin_unlock_wr(&allproc_spin); 496 dsched_exit_proc(p); 497 } 498 499 /* 500 * This routine is called from kern_wait() and will remove the process 501 * from the zombie list and the sibling list. This routine will block 502 * if someone has a lock on the proces (p_lock). 503 * 504 * MPSAFE 505 */ 506 void 507 proc_remove_zombie(struct proc *p) 508 { 509 spin_lock_wr(&allproc_spin); 510 while (p->p_lock) { 511 spin_unlock_wr(&allproc_spin); 512 tsleep(p, 0, "reap1", hz / 10); 513 spin_lock_wr(&allproc_spin); 514 } 515 LIST_REMOVE(p, p_list); /* off zombproc */ 516 LIST_REMOVE(p, p_sibling); 517 spin_unlock_wr(&allproc_spin); 518 } 519 520 /* 521 * Scan all processes on the allproc list. The process is automatically 522 * held for the callback. A return value of -1 terminates the loop. 523 * 524 * MPSAFE 525 */ 526 void 527 allproc_scan(int (*callback)(struct proc *, void *), void *data) 528 { 529 struct proc *p; 530 int r; 531 532 spin_lock_rd(&allproc_spin); 533 LIST_FOREACH(p, &allproc, p_list) { 534 PHOLD(p); 535 spin_unlock_rd(&allproc_spin); 536 r = callback(p, data); 537 spin_lock_rd(&allproc_spin); 538 PRELE(p); 539 if (r < 0) 540 break; 541 } 542 spin_unlock_rd(&allproc_spin); 543 } 544 545 /* 546 * Scan all lwps of processes on the allproc list. The lwp is automatically 547 * held for the callback. A return value of -1 terminates the loop. 548 * 549 * possibly not MPSAFE, needs to access foreingn proc structures 550 */ 551 void 552 alllwp_scan(int (*callback)(struct lwp *, void *), void *data) 553 { 554 struct proc *p; 555 struct lwp *lp; 556 int r = 0; 557 558 spin_lock_rd(&allproc_spin); 559 LIST_FOREACH(p, &allproc, p_list) { 560 PHOLD(p); 561 spin_unlock_rd(&allproc_spin); 562 FOREACH_LWP_IN_PROC(lp, p) { 563 LWPHOLD(lp); 564 r = callback(lp, data); 565 LWPRELE(lp); 566 } 567 spin_lock_rd(&allproc_spin); 568 PRELE(p); 569 if (r < 0) 570 break; 571 } 572 spin_unlock_rd(&allproc_spin); 573 } 574 575 /* 576 * Scan all processes on the zombproc list. The process is automatically 577 * held for the callback. A return value of -1 terminates the loop. 578 * 579 * MPSAFE 580 */ 581 void 582 zombproc_scan(int (*callback)(struct proc *, void *), void *data) 583 { 584 struct proc *p; 585 int r; 586 587 spin_lock_rd(&allproc_spin); 588 LIST_FOREACH(p, &zombproc, p_list) { 589 PHOLD(p); 590 spin_unlock_rd(&allproc_spin); 591 r = callback(p, data); 592 spin_lock_rd(&allproc_spin); 593 PRELE(p); 594 if (r < 0) 595 break; 596 } 597 spin_unlock_rd(&allproc_spin); 598 } 599 600 #include "opt_ddb.h" 601 #ifdef DDB 602 #include <ddb/ddb.h> 603 604 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 605 { 606 struct pgrp *pgrp; 607 struct proc *p; 608 int i; 609 610 for (i = 0; i <= pgrphash; i++) { 611 if (!LIST_EMPTY(&pgrphashtbl[i])) { 612 kprintf("\tindx %d\n", i); 613 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 614 kprintf( 615 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 616 (void *)pgrp, (long)pgrp->pg_id, 617 (void *)pgrp->pg_session, 618 pgrp->pg_session->s_count, 619 (void *)LIST_FIRST(&pgrp->pg_members)); 620 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 621 kprintf("\t\tpid %ld addr %p pgrp %p\n", 622 (long)p->p_pid, (void *)p, 623 (void *)p->p_pgrp); 624 } 625 } 626 } 627 } 628 } 629 #endif /* DDB */ 630 631 /* 632 * Locate a process on the zombie list. Return a held process or NULL. 633 */ 634 struct proc * 635 zpfind(pid_t pid) 636 { 637 struct proc *p; 638 639 LIST_FOREACH(p, &zombproc, p_list) 640 if (p->p_pid == pid) 641 return (p); 642 return (NULL); 643 } 644 645 static int 646 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 647 { 648 struct kinfo_proc ki; 649 struct lwp *lp; 650 int skp = 0, had_output = 0; 651 int error; 652 653 bzero(&ki, sizeof(ki)); 654 fill_kinfo_proc(p, &ki); 655 if ((flags & KERN_PROC_FLAG_LWP) == 0) 656 skp = 1; 657 error = 0; 658 FOREACH_LWP_IN_PROC(lp, p) { 659 LWPHOLD(lp); 660 fill_kinfo_lwp(lp, &ki.kp_lwp); 661 had_output = 1; 662 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 663 LWPRELE(lp); 664 if (error) 665 break; 666 if (skp) 667 break; 668 } 669 /* We need to output at least the proc, even if there is no lwp. */ 670 if (had_output == 0) { 671 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 672 } 673 return (error); 674 } 675 676 static int 677 sysctl_out_proc_kthread(struct thread *td, struct sysctl_req *req, int flags) 678 { 679 struct kinfo_proc ki; 680 int error; 681 682 fill_kinfo_proc_kthread(td, &ki); 683 error = SYSCTL_OUT(req, &ki, sizeof(ki)); 684 if (error) 685 return error; 686 return(0); 687 } 688 689 static int 690 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 691 { 692 int *name = (int*) arg1; 693 int oid = oidp->oid_number; 694 u_int namelen = arg2; 695 struct proc *p; 696 struct proclist *plist; 697 struct thread *td; 698 int doingzomb, flags = 0; 699 int error = 0; 700 int n; 701 int origcpu; 702 struct ucred *cr1 = curproc->p_ucred; 703 704 flags = oid & KERN_PROC_FLAGMASK; 705 oid &= ~KERN_PROC_FLAGMASK; 706 707 if ((oid == KERN_PROC_ALL && namelen != 0) || 708 (oid != KERN_PROC_ALL && namelen != 1)) 709 return (EINVAL); 710 711 if (oid == KERN_PROC_PID) { 712 p = pfind((pid_t)name[0]); 713 if (!p) 714 return (0); 715 if (!PRISON_CHECK(cr1, p->p_ucred)) 716 return (0); 717 PHOLD(p); 718 error = sysctl_out_proc(p, req, flags); 719 PRELE(p); 720 return (error); 721 } 722 723 if (!req->oldptr) { 724 /* overestimate by 5 procs */ 725 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 726 if (error) 727 return (error); 728 } 729 for (doingzomb = 0; doingzomb <= 1; doingzomb++) { 730 if (doingzomb) 731 plist = &zombproc; 732 else 733 plist = &allproc; 734 LIST_FOREACH(p, plist, p_list) { 735 /* 736 * Show a user only their processes. 737 */ 738 if ((!ps_showallprocs) && p_trespass(cr1, p->p_ucred)) 739 continue; 740 /* 741 * Skip embryonic processes. 742 */ 743 if (p->p_stat == SIDL) 744 continue; 745 /* 746 * TODO - make more efficient (see notes below). 747 * do by session. 748 */ 749 switch (oid) { 750 case KERN_PROC_PGRP: 751 /* could do this by traversing pgrp */ 752 if (p->p_pgrp == NULL || 753 p->p_pgrp->pg_id != (pid_t)name[0]) 754 continue; 755 break; 756 757 case KERN_PROC_TTY: 758 if ((p->p_flag & P_CONTROLT) == 0 || 759 p->p_session == NULL || 760 p->p_session->s_ttyp == NULL || 761 dev2udev(p->p_session->s_ttyp->t_dev) != 762 (udev_t)name[0]) 763 continue; 764 break; 765 766 case KERN_PROC_UID: 767 if (p->p_ucred == NULL || 768 p->p_ucred->cr_uid != (uid_t)name[0]) 769 continue; 770 break; 771 772 case KERN_PROC_RUID: 773 if (p->p_ucred == NULL || 774 p->p_ucred->cr_ruid != (uid_t)name[0]) 775 continue; 776 break; 777 } 778 779 if (!PRISON_CHECK(cr1, p->p_ucred)) 780 continue; 781 PHOLD(p); 782 error = sysctl_out_proc(p, req, flags); 783 PRELE(p); 784 if (error) 785 return (error); 786 } 787 } 788 789 /* 790 * Iterate over all active cpus and scan their thread list. Start 791 * with the next logical cpu and end with our original cpu. We 792 * migrate our own thread to each target cpu in order to safely scan 793 * its thread list. In the last loop we migrate back to our original 794 * cpu. 795 */ 796 origcpu = mycpu->gd_cpuid; 797 if (!ps_showallthreads || jailed(cr1)) 798 goto post_threads; 799 for (n = 1; n <= ncpus; ++n) { 800 globaldata_t rgd; 801 int nid; 802 803 nid = (origcpu + n) % ncpus; 804 if ((smp_active_mask & (1 << nid)) == 0) 805 continue; 806 rgd = globaldata_find(nid); 807 lwkt_setcpu_self(rgd); 808 809 TAILQ_FOREACH(td, &mycpu->gd_tdallq, td_allq) { 810 if (td->td_proc) 811 continue; 812 switch (oid) { 813 case KERN_PROC_PGRP: 814 case KERN_PROC_TTY: 815 case KERN_PROC_UID: 816 case KERN_PROC_RUID: 817 continue; 818 default: 819 break; 820 } 821 lwkt_hold(td); 822 error = sysctl_out_proc_kthread(td, req, doingzomb); 823 lwkt_rele(td); 824 if (error) 825 return (error); 826 } 827 } 828 post_threads: 829 return (0); 830 } 831 832 /* 833 * This sysctl allows a process to retrieve the argument list or process 834 * title for another process without groping around in the address space 835 * of the other process. It also allow a process to set its own "process 836 * title to a string of its own choice. 837 */ 838 static int 839 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 840 { 841 int *name = (int*) arg1; 842 u_int namelen = arg2; 843 struct proc *p; 844 struct pargs *pa; 845 int error = 0; 846 struct ucred *cr1 = curproc->p_ucred; 847 848 if (namelen != 1) 849 return (EINVAL); 850 851 p = pfind((pid_t)name[0]); 852 if (!p) 853 return (0); 854 855 if ((!ps_argsopen) && p_trespass(cr1, p->p_ucred)) 856 return (0); 857 858 if (req->newptr && curproc != p) 859 return (EPERM); 860 861 if (req->oldptr && p->p_args != NULL) 862 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length); 863 if (req->newptr == NULL) 864 return (error); 865 866 if (p->p_args && --p->p_args->ar_ref == 0) 867 FREE(p->p_args, M_PARGS); 868 p->p_args = NULL; 869 870 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 871 return (error); 872 873 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen, 874 M_PARGS, M_WAITOK); 875 pa->ar_ref = 1; 876 pa->ar_length = req->newlen; 877 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 878 if (!error) 879 p->p_args = pa; 880 else 881 FREE(pa, M_PARGS); 882 return (error); 883 } 884 885 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 886 887 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 888 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 889 890 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 891 sysctl_kern_proc, "Process table"); 892 893 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 894 sysctl_kern_proc, "Process table"); 895 896 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 897 sysctl_kern_proc, "Process table"); 898 899 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 900 sysctl_kern_proc, "Process table"); 901 902 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 903 sysctl_kern_proc, "Process table"); 904 905 SYSCTL_NODE(_kern_proc, (KERN_PROC_ALL | KERN_PROC_FLAG_LWP), all_lwp, CTLFLAG_RD, 906 sysctl_kern_proc, "Process table"); 907 908 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_FLAG_LWP), pgrp_lwp, CTLFLAG_RD, 909 sysctl_kern_proc, "Process table"); 910 911 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_FLAG_LWP), tty_lwp, CTLFLAG_RD, 912 sysctl_kern_proc, "Process table"); 913 914 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_FLAG_LWP), uid_lwp, CTLFLAG_RD, 915 sysctl_kern_proc, "Process table"); 916 917 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_FLAG_LWP), ruid_lwp, CTLFLAG_RD, 918 sysctl_kern_proc, "Process table"); 919 920 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_FLAG_LWP), pid_lwp, CTLFLAG_RD, 921 sysctl_kern_proc, "Process table"); 922 923 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 924 sysctl_kern_proc_args, "Process argument list"); 925