xref: /dflybsd-src/sys/kern/kern_ntptime.c (revision 90ea502b8c5d21f908cedff6680ee2bc9e74ce74)
1 /***********************************************************************
2  *								       *
3  * Copyright (c) David L. Mills 1993-2001			       *
4  *								       *
5  * Permission to use, copy, modify, and distribute this software and   *
6  * its documentation for any purpose and without fee is hereby	       *
7  * granted, provided that the above copyright notice appears in all    *
8  * copies and that both the copyright notice and this permission       *
9  * notice appear in supporting documentation, and that the name	       *
10  * University of Delaware not be used in advertising or publicity      *
11  * pertaining to distribution of the software without specific,	       *
12  * written prior permission. The University of Delaware makes no       *
13  * representations about the suitability this software for any	       *
14  * purpose. It is provided "as is" without express or implied	       *
15  * warranty.							       *
16  *								       *
17  **********************************************************************/
18 
19 /*
20  * Adapted from the original sources for FreeBSD and timecounters by:
21  * Poul-Henning Kamp <phk@FreeBSD.org>.
22  *
23  * The 32bit version of the "LP" macros seems a bit past its "sell by"
24  * date so I have retained only the 64bit version and included it directly
25  * in this file.
26  *
27  * Only minor changes done to interface with the timecounters over in
28  * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
29  * confusing and/or plain wrong in that context.
30  *
31  * $FreeBSD: src/sys/kern/kern_ntptime.c,v 1.32.2.2 2001/04/22 11:19:46 jhay Exp $
32  * $DragonFly: src/sys/kern/kern_ntptime.c,v 1.13 2007/04/30 07:18:53 dillon Exp $
33  */
34 
35 #include "opt_ntp.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/kernel.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/time.h>
44 #include <sys/timex.h>
45 #include <sys/timepps.h>
46 #include <sys/sysctl.h>
47 #include <sys/thread2.h>
48 
49 /*
50  * Single-precision macros for 64-bit machines
51  */
52 typedef long long l_fp;
53 #define L_ADD(v, u)	((v) += (u))
54 #define L_SUB(v, u)	((v) -= (u))
55 #define L_ADDHI(v, a)	((v) += (long long)(a) << 32)
56 #define L_NEG(v)	((v) = -(v))
57 #define L_RSHIFT(v, n) \
58 	do { \
59 		if ((v) < 0) \
60 			(v) = -(-(v) >> (n)); \
61 		else \
62 			(v) = (v) >> (n); \
63 	} while (0)
64 #define L_MPY(v, a)	((v) *= (a))
65 #define L_CLR(v)	((v) = 0)
66 #define L_ISNEG(v)	((v) < 0)
67 #define L_LINT(v, a)	((v) = (long long)(a) << 32)
68 #define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
69 
70 /*
71  * Generic NTP kernel interface
72  *
73  * These routines constitute the Network Time Protocol (NTP) interfaces
74  * for user and daemon application programs. The ntp_gettime() routine
75  * provides the time, maximum error (synch distance) and estimated error
76  * (dispersion) to client user application programs. The ntp_adjtime()
77  * routine is used by the NTP daemon to adjust the system clock to an
78  * externally derived time. The time offset and related variables set by
79  * this routine are used by other routines in this module to adjust the
80  * phase and frequency of the clock discipline loop which controls the
81  * system clock.
82  *
83  * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
84  * defined), the time at each tick interrupt is derived directly from
85  * the kernel time variable. When the kernel time is reckoned in
86  * microseconds, (NTP_NANO undefined), the time is derived from the
87  * kernel time variable together with a variable representing the
88  * leftover nanoseconds at the last tick interrupt. In either case, the
89  * current nanosecond time is reckoned from these values plus an
90  * interpolated value derived by the clock routines in another
91  * architecture-specific module. The interpolation can use either a
92  * dedicated counter or a processor cycle counter (PCC) implemented in
93  * some architectures.
94  *
95  * Note that all routines must run at priority splclock or higher.
96  */
97 /*
98  * Phase/frequency-lock loop (PLL/FLL) definitions
99  *
100  * The nanosecond clock discipline uses two variable types, time
101  * variables and frequency variables. Both types are represented as 64-
102  * bit fixed-point quantities with the decimal point between two 32-bit
103  * halves. On a 32-bit machine, each half is represented as a single
104  * word and mathematical operations are done using multiple-precision
105  * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
106  * used.
107  *
108  * A time variable is a signed 64-bit fixed-point number in ns and
109  * fraction. It represents the remaining time offset to be amortized
110  * over succeeding tick interrupts. The maximum time offset is about
111  * 0.5 s and the resolution is about 2.3e-10 ns.
112  *
113  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
114  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
115  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
116  * |s s s|			 ns				   |
117  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
118  * |			    fraction				   |
119  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120  *
121  * A frequency variable is a signed 64-bit fixed-point number in ns/s
122  * and fraction. It represents the ns and fraction to be added to the
123  * kernel time variable at each second. The maximum frequency offset is
124  * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
125  *
126  *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
127  *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
128  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
129  * |s s s s s s s s s s s s s|	          ns/s			   |
130  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
131  * |			    fraction				   |
132  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133  */
134 /*
135  * The following variables establish the state of the PLL/FLL and the
136  * residual time and frequency offset of the local clock.
137  */
138 #define SHIFT_PLL	4		/* PLL loop gain (shift) */
139 #define SHIFT_FLL	2		/* FLL loop gain (shift) */
140 
141 static int time_state = TIME_OK;	/* clock state */
142 static int time_status = STA_UNSYNC;	/* clock status bits */
143 static long time_tai;			/* TAI offset (s) */
144 static long time_monitor;		/* last time offset scaled (ns) */
145 static long time_constant;		/* poll interval (shift) (s) */
146 static long time_precision = 1;		/* clock precision (ns) */
147 static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
148 static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
149 static long time_reftime;		/* time at last adjustment (s) */
150 static long time_tick;			/* nanoseconds per tick (ns) */
151 static l_fp time_offset;		/* time offset (ns) */
152 static l_fp time_freq;			/* frequency offset (ns/s) */
153 static l_fp time_adj;			/* tick adjust (ns/s) */
154 
155 #ifdef PPS_SYNC
156 /*
157  * The following variables are used when a pulse-per-second (PPS) signal
158  * is available and connected via a modem control lead. They establish
159  * the engineering parameters of the clock discipline loop when
160  * controlled by the PPS signal.
161  */
162 #define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
163 #define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
164 #define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
165 #define PPS_PAVG	4		/* phase avg interval (s) (shift) */
166 #define PPS_VALID	120		/* PPS signal watchdog max (s) */
167 #define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
168 #define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
169 
170 static struct timespec pps_tf[3];	/* phase median filter */
171 static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
172 static long pps_fcount;			/* frequency accumulator */
173 static long pps_jitter;			/* nominal jitter (ns) */
174 static long pps_stabil;			/* nominal stability (scaled ns/s) */
175 static long pps_lastsec;		/* time at last calibration (s) */
176 static int pps_valid;			/* signal watchdog counter */
177 static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
178 static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
179 static int pps_intcnt;			/* wander counter */
180 
181 /*
182  * PPS signal quality monitors
183  */
184 static long pps_calcnt;			/* calibration intervals */
185 static long pps_jitcnt;			/* jitter limit exceeded */
186 static long pps_stbcnt;			/* stability limit exceeded */
187 static long pps_errcnt;			/* calibration errors */
188 #endif /* PPS_SYNC */
189 /*
190  * End of phase/frequency-lock loop (PLL/FLL) definitions
191  */
192 
193 static void ntp_init(void);
194 static void hardupdate(long offset);
195 
196 /*
197  * ntp_gettime() - NTP user application interface
198  *
199  * See the timex.h header file for synopsis and API description. Note
200  * that the TAI offset is returned in the ntvtimeval.tai structure
201  * member.
202  */
203 static int
204 ntp_sysctl(SYSCTL_HANDLER_ARGS)
205 {
206 	struct ntptimeval ntv;	/* temporary structure */
207 	struct timespec atv;	/* nanosecond time */
208 
209 	nanotime(&atv);
210 	ntv.time.tv_sec = atv.tv_sec;
211 	ntv.time.tv_nsec = atv.tv_nsec;
212 	ntv.maxerror = time_maxerror;
213 	ntv.esterror = time_esterror;
214 	ntv.tai = time_tai;
215 	ntv.time_state = time_state;
216 
217 	/*
218 	 * Status word error decode. If any of these conditions occur,
219 	 * an error is returned, instead of the status word. Most
220 	 * applications will care only about the fact the system clock
221 	 * may not be trusted, not about the details.
222 	 *
223 	 * Hardware or software error
224 	 */
225 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
226 
227 	/*
228 	 * PPS signal lost when either time or frequency synchronization
229 	 * requested
230 	 */
231 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
232 	    !(time_status & STA_PPSSIGNAL)) ||
233 
234 	/*
235 	 * PPS jitter exceeded when time synchronization requested
236 	 */
237 	    (time_status & STA_PPSTIME &&
238 	    time_status & STA_PPSJITTER) ||
239 
240 	/*
241 	 * PPS wander exceeded or calibration error when frequency
242 	 * synchronization requested
243 	 */
244 	    (time_status & STA_PPSFREQ &&
245 	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
246 		ntv.time_state = TIME_ERROR;
247 	return (sysctl_handle_opaque(oidp, &ntv, sizeof ntv, req));
248 }
249 
250 SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
251 SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
252 	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
253 
254 #ifdef PPS_SYNC
255 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
256 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
257 SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
258 
259 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
260 SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
261 #endif
262 /*
263  * ntp_adjtime() - NTP daemon application interface
264  *
265  * See the timex.h header file for synopsis and API description. Note
266  * that the timex.constant structure member has a dual purpose to set
267  * the time constant and to set the TAI offset.
268  *
269  * MPALMOSTSAFE
270  */
271 int
272 sys_ntp_adjtime(struct ntp_adjtime_args *uap)
273 {
274 	struct thread *td = curthread;
275 	struct timex ntv;	/* temporary structure */
276 	long freq;		/* frequency ns/s) */
277 	int modes;		/* mode bits from structure */
278 	int error;
279 
280 	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
281 	if (error)
282 		return(error);
283 
284 	/*
285 	 * Update selected clock variables - only the superuser can
286 	 * change anything. Note that there is no error checking here on
287 	 * the assumption the superuser should know what it is doing.
288 	 * Note that either the time constant or TAI offset are loaded
289 	 * from the ntv.constant member, depending on the mode bits. If
290 	 * the STA_PLL bit in the status word is cleared, the state and
291 	 * status words are reset to the initial values at boot.
292 	 */
293 	modes = ntv.modes;
294 	if (modes)
295 		error = priv_check(td, PRIV_NTP_ADJTIME);
296 	if (error)
297 		return (error);
298 
299 	get_mplock();
300 	crit_enter();
301 	if (modes & MOD_MAXERROR)
302 		time_maxerror = ntv.maxerror;
303 	if (modes & MOD_ESTERROR)
304 		time_esterror = ntv.esterror;
305 	if (modes & MOD_STATUS) {
306 		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
307 			time_state = TIME_OK;
308 			time_status = STA_UNSYNC;
309 #ifdef PPS_SYNC
310 			pps_shift = PPS_FAVG;
311 #endif /* PPS_SYNC */
312 		}
313 		time_status &= STA_RONLY;
314 		time_status |= ntv.status & ~STA_RONLY;
315 	}
316 	if (modes & MOD_TIMECONST) {
317 		if (ntv.constant < 0)
318 			time_constant = 0;
319 		else if (ntv.constant > MAXTC)
320 			time_constant = MAXTC;
321 		else
322 			time_constant = ntv.constant;
323 	}
324 	if (modes & MOD_TAI) {
325 		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
326 			time_tai = ntv.constant;
327 	}
328 #ifdef PPS_SYNC
329 	if (modes & MOD_PPSMAX) {
330 		if (ntv.shift < PPS_FAVG)
331 			pps_shiftmax = PPS_FAVG;
332 		else if (ntv.shift > PPS_FAVGMAX)
333 			pps_shiftmax = PPS_FAVGMAX;
334 		else
335 			pps_shiftmax = ntv.shift;
336 	}
337 #endif /* PPS_SYNC */
338 	if (modes & MOD_NANO)
339 		time_status |= STA_NANO;
340 	if (modes & MOD_MICRO)
341 		time_status &= ~STA_NANO;
342 	if (modes & MOD_CLKB)
343 		time_status |= STA_CLK;
344 	if (modes & MOD_CLKA)
345 		time_status &= ~STA_CLK;
346 	if (modes & MOD_OFFSET) {
347 		if (time_status & STA_NANO)
348 			hardupdate(ntv.offset);
349 		else
350 			hardupdate(ntv.offset * 1000);
351 	}
352 	/*
353 	 * Note: the userland specified frequency is in seconds per second
354 	 * times 65536e+6.  Multiply by a thousand and divide by 65336 to
355 	 * get nanoseconds.
356 	 */
357 	if (modes & MOD_FREQUENCY) {
358 		freq = (ntv.freq * 1000LL) >> 16;
359 		if (freq > MAXFREQ)
360 			L_LINT(time_freq, MAXFREQ);
361 		else if (freq < -MAXFREQ)
362 			L_LINT(time_freq, -MAXFREQ);
363 		else
364 			L_LINT(time_freq, freq);
365 #ifdef PPS_SYNC
366 		pps_freq = time_freq;
367 #endif /* PPS_SYNC */
368 	}
369 
370 	/*
371 	 * Retrieve all clock variables. Note that the TAI offset is
372 	 * returned only by ntp_gettime();
373 	 */
374 	if (time_status & STA_NANO)
375 		ntv.offset = time_monitor;
376 	else
377 		ntv.offset = time_monitor / 1000; /* XXX rounding ? */
378 	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
379 	ntv.maxerror = time_maxerror;
380 	ntv.esterror = time_esterror;
381 	ntv.status = time_status;
382 	ntv.constant = time_constant;
383 	if (time_status & STA_NANO)
384 		ntv.precision = time_precision;
385 	else
386 		ntv.precision = time_precision / 1000;
387 	ntv.tolerance = MAXFREQ * SCALE_PPM;
388 #ifdef PPS_SYNC
389 	ntv.shift = pps_shift;
390 	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
391 	if (time_status & STA_NANO)
392 		ntv.jitter = pps_jitter;
393 	else
394 		ntv.jitter = pps_jitter / 1000;
395 	ntv.stabil = pps_stabil;
396 	ntv.calcnt = pps_calcnt;
397 	ntv.errcnt = pps_errcnt;
398 	ntv.jitcnt = pps_jitcnt;
399 	ntv.stbcnt = pps_stbcnt;
400 #endif /* PPS_SYNC */
401 	crit_exit();
402 	rel_mplock();
403 
404 	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
405 	if (error)
406 		return (error);
407 
408 	/*
409 	 * Status word error decode. See comments in
410 	 * ntp_gettime() routine.
411 	 */
412 	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
413 	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
414 	    !(time_status & STA_PPSSIGNAL)) ||
415 	    (time_status & STA_PPSTIME &&
416 	    time_status & STA_PPSJITTER) ||
417 	    (time_status & STA_PPSFREQ &&
418 	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
419 		uap->sysmsg_result = TIME_ERROR;
420 	} else {
421 		uap->sysmsg_result = time_state;
422 	}
423 	return (error);
424 }
425 
426 /*
427  * second_overflow() - called after ntp_tick_adjust()
428  *
429  * This routine is ordinarily called from hardclock() whenever the seconds
430  * hand rolls over.  It returns leap seconds to add or drop, and sets nsec_adj
431  * to the total adjustment to make over the next second in (ns << 32).
432  *
433  * This routine is only called by cpu #0.
434  */
435 int
436 ntp_update_second(time_t newsec, int64_t *nsec_adj)
437 {
438 	l_fp ftemp;		/* 32/64-bit temporary */
439 	int  adjsec = 0;
440 
441 	/*
442 	 * On rollover of the second both the nanosecond and microsecond
443 	 * clocks are updated and the state machine cranked as
444 	 * necessary. The phase adjustment to be used for the next
445 	 * second is calculated and the maximum error is increased by
446 	 * the tolerance.
447 	 */
448 	time_maxerror += MAXFREQ / 1000;
449 
450 	/*
451 	 * Leap second processing. If in leap-insert state at
452 	 * the end of the day, the system clock is set back one
453 	 * second; if in leap-delete state, the system clock is
454 	 * set ahead one second. The nano_time() routine or
455 	 * external clock driver will insure that reported time
456 	 * is always monotonic.
457 	 */
458 	switch (time_state) {
459 
460 		/*
461 		 * No warning.
462 		 */
463 		case TIME_OK:
464 		if (time_status & STA_INS)
465 			time_state = TIME_INS;
466 		else if (time_status & STA_DEL)
467 			time_state = TIME_DEL;
468 		break;
469 
470 		/*
471 		 * Insert second 23:59:60 following second
472 		 * 23:59:59.
473 		 */
474 		case TIME_INS:
475 		if (!(time_status & STA_INS))
476 			time_state = TIME_OK;
477 		else if ((newsec) % 86400 == 0) {
478 			--adjsec;
479 			time_state = TIME_OOP;
480 		}
481 		break;
482 
483 		/*
484 		 * Delete second 23:59:59.
485 		 */
486 		case TIME_DEL:
487 		if (!(time_status & STA_DEL))
488 			time_state = TIME_OK;
489 		else if (((newsec) + 1) % 86400 == 0) {
490 			++adjsec;
491 			time_tai--;
492 			time_state = TIME_WAIT;
493 		}
494 		break;
495 
496 		/*
497 		 * Insert second in progress.
498 		 */
499 		case TIME_OOP:
500 			time_tai++;
501 			time_state = TIME_WAIT;
502 		break;
503 
504 		/*
505 		 * Wait for status bits to clear.
506 		 */
507 		case TIME_WAIT:
508 		if (!(time_status & (STA_INS | STA_DEL)))
509 			time_state = TIME_OK;
510 	}
511 
512 	/*
513 	 * time_offset represents the total time adjustment we wish to
514 	 * make (over no particular period of time).  time_freq represents
515 	 * the frequency compensation we wish to apply.
516 	 *
517 	 * time_adj represents the total adjustment we wish to make over
518 	 * one full second.  hardclock usually applies this adjustment in
519 	 * time_adj / hz jumps, hz times a second.
520 	 */
521 	ftemp = time_offset;
522 #ifdef PPS_SYNC
523 	/* XXX even if PPS signal dies we should finish adjustment ? */
524 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
525 		L_RSHIFT(ftemp, pps_shift);
526 	else
527 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
528 #else
529 		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
530 #endif /* PPS_SYNC */
531 	time_adj = ftemp;		/* adjustment for part of the offset */
532 	L_SUB(time_offset, ftemp);
533 	L_ADD(time_adj, time_freq);	/* add frequency correction */
534 	*nsec_adj = time_adj;
535 #ifdef PPS_SYNC
536 	if (pps_valid > 0)
537 		pps_valid--;
538 	else
539 		time_status &= ~STA_PPSSIGNAL;
540 #endif /* PPS_SYNC */
541 	return(adjsec);
542 }
543 
544 /*
545  * ntp_init() - initialize variables and structures
546  *
547  * This routine must be called after the kernel variables hz and tick
548  * are set or changed and before the next tick interrupt. In this
549  * particular implementation, these values are assumed set elsewhere in
550  * the kernel. The design allows the clock frequency and tick interval
551  * to be changed while the system is running. So, this routine should
552  * probably be integrated with the code that does that.
553  */
554 static void
555 ntp_init(void)
556 {
557 
558 	/*
559 	 * The following variable must be initialized any time the
560 	 * kernel variable hz is changed.
561 	 */
562 	time_tick = NANOSECOND / hz;
563 
564 	/*
565 	 * The following variables are initialized only at startup. Only
566 	 * those structures not cleared by the compiler need to be
567 	 * initialized, and these only in the simulator. In the actual
568 	 * kernel, any nonzero values here will quickly evaporate.
569 	 */
570 	L_CLR(time_offset);
571 	L_CLR(time_freq);
572 #ifdef PPS_SYNC
573 	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
574 	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
575 	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
576 	pps_fcount = 0;
577 	L_CLR(pps_freq);
578 #endif /* PPS_SYNC */
579 }
580 
581 SYSINIT(ntpclocks, SI_BOOT2_CLOCKS, SI_ORDER_FIRST, ntp_init, NULL)
582 
583 /*
584  * hardupdate() - local clock update
585  *
586  * This routine is called by ntp_adjtime() to update the local clock
587  * phase and frequency. The implementation is of an adaptive-parameter,
588  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
589  * time and frequency offset estimates for each call. If the kernel PPS
590  * discipline code is configured (PPS_SYNC), the PPS signal itself
591  * determines the new time offset, instead of the calling argument.
592  * Presumably, calls to ntp_adjtime() occur only when the caller
593  * believes the local clock is valid within some bound (+-128 ms with
594  * NTP). If the caller's time is far different than the PPS time, an
595  * argument will ensue, and it's not clear who will lose.
596  *
597  * For uncompensated quartz crystal oscillators and nominal update
598  * intervals less than 256 s, operation should be in phase-lock mode,
599  * where the loop is disciplined to phase. For update intervals greater
600  * than 1024 s, operation should be in frequency-lock mode, where the
601  * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
602  * is selected by the STA_MODE status bit.
603  */
604 static void
605 hardupdate(long offset)
606 {
607 	long mtemp;
608 	l_fp ftemp;
609 	globaldata_t gd;
610 
611 	gd = mycpu;
612 
613 	/*
614 	 * Select how the phase is to be controlled and from which
615 	 * source. If the PPS signal is present and enabled to
616 	 * discipline the time, the PPS offset is used; otherwise, the
617 	 * argument offset is used.
618 	 */
619 	if (!(time_status & STA_PLL))
620 		return;
621 	if (!((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))) {
622 		if (offset > MAXPHASE)
623 			time_monitor = MAXPHASE;
624 		else if (offset < -MAXPHASE)
625 			time_monitor = -MAXPHASE;
626 		else
627 			time_monitor = offset;
628 		L_LINT(time_offset, time_monitor);
629 	}
630 
631 	/*
632 	 * Select how the frequency is to be controlled and in which
633 	 * mode (PLL or FLL). If the PPS signal is present and enabled
634 	 * to discipline the frequency, the PPS frequency is used;
635 	 * otherwise, the argument offset is used to compute it.
636 	 *
637 	 * gd_time_seconds is basically an uncompensated uptime.  We use
638 	 * this for consistency.
639 	 */
640 	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
641 		time_reftime = time_second;
642 		return;
643 	}
644 	if (time_status & STA_FREQHOLD || time_reftime == 0)
645 		time_reftime = time_second;
646 	mtemp = time_second - time_reftime;
647 	L_LINT(ftemp, time_monitor);
648 	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
649 	L_MPY(ftemp, mtemp);
650 	L_ADD(time_freq, ftemp);
651 	time_status &= ~STA_MODE;
652 	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
653 		L_LINT(ftemp, (time_monitor << 4) / mtemp);
654 		L_RSHIFT(ftemp, SHIFT_FLL + 4);
655 		L_ADD(time_freq, ftemp);
656 		time_status |= STA_MODE;
657 	}
658 	time_reftime = time_second;
659 	if (L_GINT(time_freq) > MAXFREQ)
660 		L_LINT(time_freq, MAXFREQ);
661 	else if (L_GINT(time_freq) < -MAXFREQ)
662 		L_LINT(time_freq, -MAXFREQ);
663 }
664 
665 #ifdef PPS_SYNC
666 /*
667  * hardpps() - discipline CPU clock oscillator to external PPS signal
668  *
669  * This routine is called at each PPS interrupt in order to discipline
670  * the CPU clock oscillator to the PPS signal. There are two independent
671  * first-order feedback loops, one for the phase, the other for the
672  * frequency. The phase loop measures and grooms the PPS phase offset
673  * and leaves it in a handy spot for the seconds overflow routine. The
674  * frequency loop averages successive PPS phase differences and
675  * calculates the PPS frequency offset, which is also processed by the
676  * seconds overflow routine. The code requires the caller to capture the
677  * time and architecture-dependent hardware counter values in
678  * nanoseconds at the on-time PPS signal transition.
679  *
680  * Note that, on some Unix systems this routine runs at an interrupt
681  * priority level higher than the timer interrupt routine hardclock().
682  * Therefore, the variables used are distinct from the hardclock()
683  * variables, except for the actual time and frequency variables, which
684  * are determined by this routine and updated atomically.
685  */
686 void
687 hardpps(struct timespec *tsp, long nsec)
688 {
689 	long u_sec, u_nsec, v_nsec; /* temps */
690 	l_fp ftemp;
691 
692 	/*
693 	 * The signal is first processed by a range gate and frequency
694 	 * discriminator. The range gate rejects noise spikes outside
695 	 * the range +-500 us. The frequency discriminator rejects input
696 	 * signals with apparent frequency outside the range 1 +-500
697 	 * PPM. If two hits occur in the same second, we ignore the
698 	 * later hit; if not and a hit occurs outside the range gate,
699 	 * keep the later hit for later comparison, but do not process
700 	 * it.
701 	 */
702 	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
703 	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
704 	pps_valid = PPS_VALID;
705 	u_sec = tsp->tv_sec;
706 	u_nsec = tsp->tv_nsec;
707 	if (u_nsec >= (NANOSECOND >> 1)) {
708 		u_nsec -= NANOSECOND;
709 		u_sec++;
710 	}
711 	v_nsec = u_nsec - pps_tf[0].tv_nsec;
712 	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
713 	    MAXFREQ)
714 		return;
715 	pps_tf[2] = pps_tf[1];
716 	pps_tf[1] = pps_tf[0];
717 	pps_tf[0].tv_sec = u_sec;
718 	pps_tf[0].tv_nsec = u_nsec;
719 
720 	/*
721 	 * Compute the difference between the current and previous
722 	 * counter values. If the difference exceeds 0.5 s, assume it
723 	 * has wrapped around, so correct 1.0 s. If the result exceeds
724 	 * the tick interval, the sample point has crossed a tick
725 	 * boundary during the last second, so correct the tick. Very
726 	 * intricate.
727 	 */
728 	u_nsec = nsec;
729 	if (u_nsec > (NANOSECOND >> 1))
730 		u_nsec -= NANOSECOND;
731 	else if (u_nsec < -(NANOSECOND >> 1))
732 		u_nsec += NANOSECOND;
733 	pps_fcount += u_nsec;
734 	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
735 		return;
736 	time_status &= ~STA_PPSJITTER;
737 
738 	/*
739 	 * A three-stage median filter is used to help denoise the PPS
740 	 * time. The median sample becomes the time offset estimate; the
741 	 * difference between the other two samples becomes the time
742 	 * dispersion (jitter) estimate.
743 	 */
744 	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
745 		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
746 			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
747 			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
748 		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
749 			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
750 			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
751 		} else {
752 			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
753 			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
754 		}
755 	} else {
756 		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
757 			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
758 			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
759 		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
760 			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
761 			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
762 		} else {
763 			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
764 			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
765 		}
766 	}
767 
768 	/*
769 	 * Nominal jitter is due to PPS signal noise and interrupt
770 	 * latency. If it exceeds the popcorn threshold, the sample is
771 	 * discarded. otherwise, if so enabled, the time offset is
772 	 * updated. We can tolerate a modest loss of data here without
773 	 * much degrading time accuracy.
774 	 */
775 	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
776 		time_status |= STA_PPSJITTER;
777 		pps_jitcnt++;
778 	} else if (time_status & STA_PPSTIME) {
779 		time_monitor = -v_nsec;
780 		L_LINT(time_offset, time_monitor);
781 	}
782 	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
783 	u_sec = pps_tf[0].tv_sec - pps_lastsec;
784 	if (u_sec < (1 << pps_shift))
785 		return;
786 
787 	/*
788 	 * At the end of the calibration interval the difference between
789 	 * the first and last counter values becomes the scaled
790 	 * frequency. It will later be divided by the length of the
791 	 * interval to determine the frequency update. If the frequency
792 	 * exceeds a sanity threshold, or if the actual calibration
793 	 * interval is not equal to the expected length, the data are
794 	 * discarded. We can tolerate a modest loss of data here without
795 	 * much degrading frequency accuracy.
796 	 */
797 	pps_calcnt++;
798 	v_nsec = -pps_fcount;
799 	pps_lastsec = pps_tf[0].tv_sec;
800 	pps_fcount = 0;
801 	u_nsec = MAXFREQ << pps_shift;
802 	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
803 	    pps_shift)) {
804 		time_status |= STA_PPSERROR;
805 		pps_errcnt++;
806 		return;
807 	}
808 
809 	/*
810 	 * Here the raw frequency offset and wander (stability) is
811 	 * calculated. If the wander is less than the wander threshold
812 	 * for four consecutive averaging intervals, the interval is
813 	 * doubled; if it is greater than the threshold for four
814 	 * consecutive intervals, the interval is halved. The scaled
815 	 * frequency offset is converted to frequency offset. The
816 	 * stability metric is calculated as the average of recent
817 	 * frequency changes, but is used only for performance
818 	 * monitoring.
819 	 */
820 	L_LINT(ftemp, v_nsec);
821 	L_RSHIFT(ftemp, pps_shift);
822 	L_SUB(ftemp, pps_freq);
823 	u_nsec = L_GINT(ftemp);
824 	if (u_nsec > PPS_MAXWANDER) {
825 		L_LINT(ftemp, PPS_MAXWANDER);
826 		pps_intcnt--;
827 		time_status |= STA_PPSWANDER;
828 		pps_stbcnt++;
829 	} else if (u_nsec < -PPS_MAXWANDER) {
830 		L_LINT(ftemp, -PPS_MAXWANDER);
831 		pps_intcnt--;
832 		time_status |= STA_PPSWANDER;
833 		pps_stbcnt++;
834 	} else {
835 		pps_intcnt++;
836 	}
837 	if (pps_intcnt >= 4) {
838 		pps_intcnt = 4;
839 		if (pps_shift < pps_shiftmax) {
840 			pps_shift++;
841 			pps_intcnt = 0;
842 		}
843 	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
844 		pps_intcnt = -4;
845 		if (pps_shift > PPS_FAVG) {
846 			pps_shift--;
847 			pps_intcnt = 0;
848 		}
849 	}
850 	if (u_nsec < 0)
851 		u_nsec = -u_nsec;
852 	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
853 
854 	/*
855 	 * The PPS frequency is recalculated and clamped to the maximum
856 	 * MAXFREQ. If enabled, the system clock frequency is updated as
857 	 * well.
858 	 */
859 	L_ADD(pps_freq, ftemp);
860 	u_nsec = L_GINT(pps_freq);
861 	if (u_nsec > MAXFREQ)
862 		L_LINT(pps_freq, MAXFREQ);
863 	else if (u_nsec < -MAXFREQ)
864 		L_LINT(pps_freq, -MAXFREQ);
865 	if (time_status & STA_PPSFREQ)
866 		time_freq = pps_freq;
867 }
868 #endif /* PPS_SYNC */
869