xref: /dflybsd-src/sys/kern/kern_memio.c (revision d9bb5dfdc3905237fb704584b71c9e0a9627656c)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
36  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
37  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
38  */
39 
40 /*
41  * Memory special file
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/buf.h>
47 #include <sys/conf.h>
48 #include <sys/fcntl.h>
49 #include <sys/filio.h>
50 #include <sys/interrupt.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/memrange.h>
54 #include <sys/proc.h>
55 #include <sys/priv.h>
56 #include <sys/queue.h>
57 #include <sys/random.h>
58 #include <sys/signalvar.h>
59 #include <sys/uio.h>
60 #include <sys/vnode.h>
61 #include <sys/sysctl.h>
62 
63 #include <sys/signal2.h>
64 #include <sys/spinlock2.h>
65 
66 #include <vm/vm.h>
67 #include <vm/pmap.h>
68 #include <vm/vm_map.h>
69 #include <vm/vm_extern.h>
70 
71 
72 static	d_open_t	mmopen;
73 static	d_close_t	mmclose;
74 static	d_read_t	mmread;
75 static	d_write_t	mmwrite;
76 static	d_ioctl_t	mmioctl;
77 #if 0
78 static	d_mmap_t	memmmap;
79 #endif
80 static	d_kqfilter_t	mmkqfilter;
81 static int memuksmap(vm_map_backing_t ba, int op, cdev_t dev, vm_page_t fake);
82 
83 #define CDEV_MAJOR 2
84 static struct dev_ops mem_ops = {
85 	{ "mem", 0, D_MPSAFE | D_QUICK },
86 	.d_open =	mmopen,
87 	.d_close =	mmclose,
88 	.d_read =	mmread,
89 	.d_write =	mmwrite,
90 	.d_ioctl =	mmioctl,
91 	.d_kqfilter =	mmkqfilter,
92 #if 0
93 	.d_mmap =	memmmap,
94 #endif
95 	.d_uksmap =	memuksmap
96 };
97 
98 static struct dev_ops mem_ops_mem = {
99 	{ "mem", 0, D_MEM | D_MPSAFE | D_QUICK },
100 	.d_open =	mmopen,
101 	.d_close =	mmclose,
102 	.d_read =	mmread,
103 	.d_write =	mmwrite,
104 	.d_ioctl =	mmioctl,
105 	.d_kqfilter =	mmkqfilter,
106 #if 0
107 	.d_mmap =	memmmap,
108 #endif
109 	.d_uksmap =	memuksmap
110 };
111 
112 static struct dev_ops mem_ops_noq = {
113 	{ "mem", 0, D_MPSAFE },
114 	.d_open =	mmopen,
115 	.d_close =	mmclose,
116 	.d_read =	mmread,
117 	.d_write =	mmwrite,
118 	.d_ioctl =	mmioctl,
119 	.d_kqfilter =	mmkqfilter,
120 #if 0
121 	.d_mmap =	memmmap,
122 #endif
123 	.d_uksmap =	memuksmap
124 };
125 
126 static int rand_bolt;
127 static caddr_t	zbuf;
128 static cdev_t	zerodev = NULL;
129 static struct lock mem_lock = LOCK_INITIALIZER("memlk", 0, 0);
130 
131 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
132 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
133 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
134 
135 struct mem_range_softc mem_range_softc;
136 
137 static int seedenable;
138 SYSCTL_INT(_kern, OID_AUTO, seedenable, CTLFLAG_RW, &seedenable, 0, "");
139 
140 static int
141 mmopen(struct dev_open_args *ap)
142 {
143 	cdev_t dev = ap->a_head.a_dev;
144 	int error;
145 
146 	switch (minor(dev)) {
147 	case 0:
148 	case 1:
149 		/*
150 		 * /dev/mem and /dev/kmem
151 		 */
152 		if (ap->a_oflags & FWRITE) {
153 			if (securelevel > 0 || kernel_mem_readonly)
154 				return (EPERM);
155 		}
156 		error = 0;
157 		break;
158 	case 6:
159 		/*
160 		 * /dev/kpmap can only be opened for reading.
161 		 */
162 		if (ap->a_oflags & FWRITE)
163 			return (EPERM);
164 		error = 0;
165 		break;
166 	case 14:
167 		error = priv_check_cred(ap->a_cred, PRIV_ROOT, 0);
168 		if (error != 0)
169 			break;
170 		if (securelevel > 0 || kernel_mem_readonly) {
171 			error = EPERM;
172 			break;
173 		}
174 		error = cpu_set_iopl();
175 		break;
176 	default:
177 		error = 0;
178 		break;
179 	}
180 	return (error);
181 }
182 
183 static int
184 mmclose(struct dev_close_args *ap)
185 {
186 	cdev_t dev = ap->a_head.a_dev;
187 	int error;
188 
189 	switch (minor(dev)) {
190 	case 14:
191 		error = cpu_clr_iopl();
192 		break;
193 	default:
194 		error = 0;
195 		break;
196 	}
197 	return (error);
198 }
199 
200 
201 static int
202 mmrw(cdev_t dev, struct uio *uio, int flags)
203 {
204 	int o;
205 	u_int c;
206 	u_int poolsize;
207 	u_long v;
208 	struct iovec *iov;
209 	int error = 0;
210 	caddr_t buf = NULL;
211 
212 	while (uio->uio_resid > 0 && error == 0) {
213 		iov = uio->uio_iov;
214 		if (iov->iov_len == 0) {
215 			uio->uio_iov++;
216 			uio->uio_iovcnt--;
217 			if (uio->uio_iovcnt < 0)
218 				panic("mmrw");
219 			continue;
220 		}
221 		switch (minor(dev)) {
222 		case 0:
223 			/*
224 			 * minor device 0 is physical memory, /dev/mem
225 			 */
226 			v = uio->uio_offset;
227 			v &= ~(long)PAGE_MASK;
228 			pmap_kenter((vm_offset_t)ptvmmap, v);
229 			o = (int)uio->uio_offset & PAGE_MASK;
230 			c = (u_int)(PAGE_SIZE - ((uintptr_t)iov->iov_base & PAGE_MASK));
231 			c = min(c, (u_int)(PAGE_SIZE - o));
232 			c = min(c, (u_int)iov->iov_len);
233 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
234 			pmap_kremove((vm_offset_t)ptvmmap);
235 			continue;
236 
237 		case 1: {
238 			/*
239 			 * minor device 1 is kernel memory, /dev/kmem
240 			 */
241 			vm_offset_t saddr, eaddr;
242 			int prot;
243 
244 			c = iov->iov_len;
245 
246 			/*
247 			 * Make sure that all of the pages are currently
248 			 * resident so that we don't create any zero-fill
249 			 * pages.
250 			 */
251 			saddr = trunc_page(uio->uio_offset);
252 			eaddr = round_page(uio->uio_offset + c);
253 			if (saddr > eaddr)
254 				return EFAULT;
255 
256 			/*
257 			 * Make sure the kernel addresses are mapped.
258 			 * platform_direct_mapped() can be used to bypass
259 			 * default mapping via the page table (virtual kernels
260 			 * contain a lot of out-of-band data).
261 			 */
262 			prot = VM_PROT_READ;
263 			if (uio->uio_rw != UIO_READ)
264 				prot |= VM_PROT_WRITE;
265 			error = kvm_access_check(saddr, eaddr, prot);
266 			if (error)
267 				return (error);
268 			error = uiomove((caddr_t)(vm_offset_t)uio->uio_offset,
269 					(int)c, uio);
270 			continue;
271 		}
272 		case 2:
273 			/*
274 			 * minor device 2 (/dev/null) is EOF/RATHOLE
275 			 */
276 			if (uio->uio_rw == UIO_READ)
277 				return (0);
278 			c = iov->iov_len;
279 			break;
280 		case 3:
281 			/*
282 			 * minor device 3 (/dev/random) is source of filth
283 			 * on read, seeder on write
284 			 */
285 			if (buf == NULL)
286 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
287 			c = min(iov->iov_len, PAGE_SIZE);
288 			if (uio->uio_rw == UIO_WRITE) {
289 				error = uiomove(buf, (int)c, uio);
290 				if (error == 0 &&
291 				    seedenable &&
292 				    securelevel <= 0) {
293 					error = add_buffer_randomness_src(buf, c, RAND_SRC_SEEDING);
294 				} else if (error == 0) {
295 					error = EPERM;
296 				}
297 			} else {
298 				poolsize = read_random(buf, c);
299 				if (poolsize == 0) {
300 					if (buf)
301 						kfree(buf, M_TEMP);
302 					if ((flags & IO_NDELAY) != 0)
303 						return (EWOULDBLOCK);
304 					return (0);
305 				}
306 				c = min(c, poolsize);
307 				error = uiomove(buf, (int)c, uio);
308 			}
309 			continue;
310 		case 4:
311 			/*
312 			 * minor device 4 (/dev/urandom) is source of muck
313 			 * on read, writes are disallowed.
314 			 */
315 			c = min(iov->iov_len, PAGE_SIZE);
316 			if (uio->uio_rw == UIO_WRITE) {
317 				error = EPERM;
318 				break;
319 			}
320 			if (CURSIG(curthread->td_lwp) != 0) {
321 				/*
322 				 * Use tsleep() to get the error code right.
323 				 * It should return immediately.
324 				 */
325 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
326 				if (error != 0 && error != EWOULDBLOCK)
327 					continue;
328 			}
329 			if (buf == NULL)
330 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
331 			poolsize = read_random_unlimited(buf, c);
332 			c = min(c, poolsize);
333 			error = uiomove(buf, (int)c, uio);
334 			continue;
335 		/* case 5: read/write not supported, mmap only */
336 		/* case 6: read/write not supported, mmap only */
337 		case 12:
338 			/*
339 			 * minor device 12 (/dev/zero) is source of nulls
340 			 * on read, write are disallowed.
341 			 */
342 			if (uio->uio_rw == UIO_WRITE) {
343 				c = iov->iov_len;
344 				break;
345 			}
346 			if (zbuf == NULL) {
347 				zbuf = (caddr_t)kmalloc(PAGE_SIZE, M_TEMP,
348 				    M_WAITOK | M_ZERO);
349 			}
350 			c = min(iov->iov_len, PAGE_SIZE);
351 			error = uiomove(zbuf, (int)c, uio);
352 			continue;
353 		default:
354 			return (ENODEV);
355 		}
356 		if (error)
357 			break;
358 		iov->iov_base = (char *)iov->iov_base + c;
359 		iov->iov_len -= c;
360 		uio->uio_offset += c;
361 		uio->uio_resid -= c;
362 	}
363 	if (buf)
364 		kfree(buf, M_TEMP);
365 	return (error);
366 }
367 
368 static int
369 mmread(struct dev_read_args *ap)
370 {
371 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
372 }
373 
374 static int
375 mmwrite(struct dev_write_args *ap)
376 {
377 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
378 }
379 
380 /*******************************************************\
381 * allow user processes to MMAP some memory sections	*
382 * instead of going through read/write			*
383 \*******************************************************/
384 
385 static int user_kernel_mapping(vm_map_backing_t ba, int num,
386 			vm_ooffset_t offset, vm_ooffset_t *resultp);
387 
388 static int
389 memuksmap(vm_map_backing_t ba, int op, cdev_t dev, vm_page_t fake)
390 {
391 	vm_ooffset_t result;
392 	int error;
393 	struct proc *p;
394 	struct lwp *lp;
395 
396 	error = 0;
397 
398 	switch(op) {
399 	case UKSMAPOP_ADD:
400 		/*
401 		 * /dev/lpmap only (minor 7)
402 		 *
403 		 * Don't do anything until the page is faulted in.  Clear
404 		 * our flags on this possibly replicated ba.  vm_map_entry
405 		 * replication can occur before the new process/lwp is
406 		 * created, so there's nothing to link into.
407 		 */
408 		if (minor(dev) != 7)
409 			break;
410 		atomic_clear_int(&ba->flags, VM_MAP_LWP_LINKED);
411 		break;
412 	case UKSMAPOP_REM:
413 		/*
414 		 * /dev/lpmap only (minor 7)
415 		 *
416 		 * The mapping is only on the lwp list after it has been
417 		 * faulted in.
418 		 */
419 		if (minor(dev) != 7)
420 			break;
421 		if ((ba->flags & VM_MAP_LWP_LINKED) == 0)
422 			break;
423 
424 		p = curproc;
425 		lwkt_gettoken_shared(&p->p_token);
426 		lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree,
427 					   (int)(intptr_t)ba->aux_info);
428 		if (lp) {
429 			LWPHOLD(lp);
430 			lwkt_reltoken(&p->p_token);
431 			spin_lock(&lp->lwp_spin);
432 			TAILQ_REMOVE(&lp->lwp_lpmap_backing_list, ba, entry);
433 			atomic_clear_int(&ba->flags, VM_MAP_LWP_LINKED);
434 			spin_unlock(&lp->lwp_spin);
435 			LWPRELE(lp);
436 		} else {
437 			lwkt_reltoken(&p->p_token);
438 		}
439 		break;
440 	case UKSMAPOP_FAULT:
441 		switch (minor(dev)) {
442 		case 0:
443 			/*
444 			 * minor device 0 is physical memory
445 			 */
446 			fake->phys_addr = ptoa(fake->pindex);
447 			break;
448 		case 1:
449 			/*
450 			 * minor device 1 is kernel memory
451 			 */
452 			fake->phys_addr = vtophys(ptoa(fake->pindex));
453 			break;
454 		case 5:
455 		case 6:
456 		case 7:
457 			/*
458 			 * minor device 5 is /dev/upmap (see sys/upmap.h)
459 			 * minor device 6 is /dev/kpmap (see sys/upmap.h)
460 			 * minor device 7 is /dev/lpmap (see sys/upmap.h)
461 			 */
462 			result = 0;
463 			error = user_kernel_mapping(ba,
464 						    minor(dev),
465 						    ptoa(fake->pindex),
466 						    &result);
467 			fake->phys_addr = result;
468 			break;
469 		default:
470 			error = EINVAL;
471 			break;
472 		}
473 		break;
474 	default:
475 		error = EINVAL;
476 		break;
477 	}
478 	return error;
479 }
480 
481 static int
482 mmioctl(struct dev_ioctl_args *ap)
483 {
484 	cdev_t dev = ap->a_head.a_dev;
485 	int error;
486 
487 	lockmgr(&mem_lock, LK_EXCLUSIVE);
488 
489 	switch (minor(dev)) {
490 	case 0:
491 		error = mem_ioctl(dev, ap->a_cmd, ap->a_data,
492 				  ap->a_fflag, ap->a_cred);
493 		break;
494 	case 3:
495 	case 4:
496 		error = random_ioctl(dev, ap->a_cmd, ap->a_data,
497 				     ap->a_fflag, ap->a_cred);
498 		break;
499 	default:
500 		error = ENODEV;
501 		break;
502 	}
503 
504 	lockmgr(&mem_lock, LK_RELEASE);
505 
506 	return (error);
507 }
508 
509 /*
510  * Operations for changing memory attributes.
511  *
512  * This is basically just an ioctl shim for mem_range_attr_get
513  * and mem_range_attr_set.
514  */
515 static int
516 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
517 {
518 	int nd, error = 0;
519 	struct mem_range_op *mo = (struct mem_range_op *)data;
520 	struct mem_range_desc *md;
521 
522 	/* is this for us? */
523 	if ((cmd != MEMRANGE_GET) &&
524 	    (cmd != MEMRANGE_SET))
525 		return (ENOTTY);
526 
527 	/* any chance we can handle this? */
528 	if (mem_range_softc.mr_op == NULL)
529 		return (EOPNOTSUPP);
530 
531 	/* do we have any descriptors? */
532 	if (mem_range_softc.mr_ndesc == 0)
533 		return (ENXIO);
534 
535 	switch (cmd) {
536 	case MEMRANGE_GET:
537 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
538 		if (nd > 0) {
539 			md = (struct mem_range_desc *)
540 				kmalloc(nd * sizeof(struct mem_range_desc),
541 				       M_MEMDESC, M_WAITOK);
542 			error = mem_range_attr_get(md, &nd);
543 			if (!error)
544 				error = copyout(md, mo->mo_desc,
545 					nd * sizeof(struct mem_range_desc));
546 			kfree(md, M_MEMDESC);
547 		} else {
548 			nd = mem_range_softc.mr_ndesc;
549 		}
550 		mo->mo_arg[0] = nd;
551 		break;
552 
553 	case MEMRANGE_SET:
554 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
555 						    M_MEMDESC, M_WAITOK);
556 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
557 		/* clamp description string */
558 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
559 		if (error == 0)
560 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
561 		kfree(md, M_MEMDESC);
562 		break;
563 	}
564 	return (error);
565 }
566 
567 /*
568  * Implementation-neutral, kernel-callable functions for manipulating
569  * memory range attributes.
570  */
571 int
572 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
573 {
574 	/* can we handle this? */
575 	if (mem_range_softc.mr_op == NULL)
576 		return (EOPNOTSUPP);
577 
578 	if (*arg == 0) {
579 		*arg = mem_range_softc.mr_ndesc;
580 	} else {
581 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
582 	}
583 	return (0);
584 }
585 
586 int
587 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
588 {
589 	/* can we handle this? */
590 	if (mem_range_softc.mr_op == NULL)
591 		return (EOPNOTSUPP);
592 
593 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
594 }
595 
596 void
597 mem_range_AP_init(void)
598 {
599 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
600 		mem_range_softc.mr_op->initAP(&mem_range_softc);
601 }
602 
603 static int
604 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
605 {
606 	int error;
607 	int intr;
608 
609 	/*
610 	 * Even inspecting the state is privileged, since it gives a hint
611 	 * about how easily the randomness might be guessed.
612 	 */
613 	error = 0;
614 
615 	switch (cmd) {
616 	/* Really handled in upper layer */
617 	case FIOASYNC:
618 		break;
619 	case MEM_SETIRQ:
620 		intr = *(int16_t *)data;
621 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
622 			break;
623 		if (intr < 0 || intr >= MAX_INTS)
624 			return (EINVAL);
625 		register_randintr(intr);
626 		break;
627 	case MEM_CLEARIRQ:
628 		intr = *(int16_t *)data;
629 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
630 			break;
631 		if (intr < 0 || intr >= MAX_INTS)
632 			return (EINVAL);
633 		unregister_randintr(intr);
634 		break;
635 	case MEM_RETURNIRQ:
636 		error = ENOTSUP;
637 		break;
638 	case MEM_FINDIRQ:
639 		intr = *(int16_t *)data;
640 		if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
641 			break;
642 		if (intr < 0 || intr >= MAX_INTS)
643 			return (EINVAL);
644 		intr = next_registered_randintr(intr);
645 		if (intr == MAX_INTS)
646 			return (ENOENT);
647 		*(u_int16_t *)data = intr;
648 		break;
649 	default:
650 		error = ENOTSUP;
651 		break;
652 	}
653 	return (error);
654 }
655 
656 static int
657 mm_filter_read(struct knote *kn, long hint)
658 {
659 	return (1);
660 }
661 
662 static int
663 mm_filter_write(struct knote *kn, long hint)
664 {
665 	return (1);
666 }
667 
668 static void
669 dummy_filter_detach(struct knote *kn) {}
670 
671 /* Implemented in kern_nrandom.c */
672 static struct filterops random_read_filtops =
673         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, random_filter_read };
674 
675 static struct filterops mm_read_filtops =
676         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_read };
677 
678 static struct filterops mm_write_filtops =
679         { FILTEROP_ISFD|FILTEROP_MPSAFE, NULL, dummy_filter_detach, mm_filter_write };
680 
681 static int
682 mmkqfilter(struct dev_kqfilter_args *ap)
683 {
684 	struct knote *kn = ap->a_kn;
685 	cdev_t dev = ap->a_head.a_dev;
686 
687 	ap->a_result = 0;
688 	switch (kn->kn_filter) {
689 	case EVFILT_READ:
690 		switch (minor(dev)) {
691 		case 3:
692 			kn->kn_fop = &random_read_filtops;
693 			break;
694 		default:
695 			kn->kn_fop = &mm_read_filtops;
696 			break;
697 		}
698 		break;
699 	case EVFILT_WRITE:
700 		kn->kn_fop = &mm_write_filtops;
701 		break;
702 	default:
703 		ap->a_result = EOPNOTSUPP;
704 		return (0);
705 	}
706 
707 	return (0);
708 }
709 
710 int
711 iszerodev(cdev_t dev)
712 {
713 	return (zerodev == dev);
714 }
715 
716 /*
717  * /dev/lpmap, /dev/upmap, /dev/kpmap.
718  */
719 static int
720 user_kernel_mapping(vm_map_backing_t ba, int num, vm_ooffset_t offset,
721 		    vm_ooffset_t *resultp)
722 {
723 	struct proc *p;
724 	struct lwp *lp;
725 	int error;
726 	int invfork;
727 
728 	p = curthread->td_proc;
729 	if (p == NULL)
730 		return (EINVAL);
731 	if (offset < 0)
732 		return (EINVAL);
733 
734 	/*
735 	 * If this is a child currently in vfork the pmap is shared with
736 	 * the parent!  We need to actually set-up the parent's p_upmap,
737 	 * not the child's, and we need to set the invfork flag.  Userland
738 	 * will probably adjust its static state so it must be consistent
739 	 * with the parent or userland will be really badly confused.
740 	 *
741 	 * (this situation can happen when user code in vfork() calls
742 	 *  libc's getpid() or some other function which then decides
743 	 *  it wants the upmap).
744 	 */
745 	if (p->p_flags & P_PPWAIT) {
746 		p = p->p_pptr;
747 		if (p == NULL)
748 			return (EINVAL);
749 		invfork = 1;
750 	} else {
751 		invfork = 0;
752 	}
753 
754 	error = EINVAL;
755 
756 	switch(num) {
757 	case 5:
758 		/*
759 		 * /dev/upmap - maps RW per-process shared user-kernel area.
760 		 */
761 		if (p->p_upmap == NULL)
762 			proc_usermap(p, invfork);
763 		else if (invfork)
764 			p->p_upmap->invfork = invfork;
765 
766 		if (p->p_upmap &&
767 		    offset < roundup2(sizeof(*p->p_upmap), PAGE_SIZE)) {
768 			/* only good for current process */
769 			*resultp = pmap_kextract((vm_offset_t)p->p_upmap +
770 						 offset);
771 			error = 0;
772 		}
773 		break;
774 	case 6:
775 		/*
776 		 * /dev/kpmap - maps RO shared kernel global page
777 		 */
778 		if (kpmap &&
779 		    offset < roundup2(sizeof(*kpmap), PAGE_SIZE)) {
780 			*resultp = pmap_kextract((vm_offset_t)kpmap +
781 						 offset);
782 			error = 0;
783 		}
784 		break;
785 	case 7:
786 		/*
787 		 * /dev/lpmap - maps RW per-thread shared user-kernel area.
788 		 *
789 		 * Link the vm_map_backing into the lwp so we can delete
790 		 * the mapping when the lwp exits.  Otherwise we would end
791 		 * up with a lingering pmap page and the associated kernel
792 		 * memory disclosure.
793 		 *
794 		 * We do the linking on first-fault since the process and/or
795 		 * lwp might not exist at the time the map is created (i.e.
796 		 * in the case of fork()).
797 		 */
798 		lwkt_gettoken_shared(&p->p_token);
799 		lp = lwp_rb_tree_RB_LOOKUP(&p->p_lwp_tree,
800 					   (int)(intptr_t)ba->aux_info);
801 		if (lp == NULL) {
802 			lwkt_reltoken(&p->p_token);
803 			break;
804 		}
805 		LWPHOLD(lp);
806 		lwkt_reltoken(&p->p_token);
807 
808 		/*
809 		 * Extract address
810 		 */
811 		if (lp->lwp_lpmap == NULL)
812 			lwp_usermap(lp, invfork);
813 
814 		if ((ba->flags & VM_MAP_LWP_LINKED) == 0) {
815 			spin_lock(&lp->lwp_spin);
816 			TAILQ_INSERT_TAIL(&lp->lwp_lpmap_backing_list,
817 					  ba, entry);
818 			atomic_set_int(&ba->flags, VM_MAP_LWP_LINKED);
819 			spin_unlock(&lp->lwp_spin);
820 		}
821 
822 		if (lp->lwp_lpmap &&
823 		    offset < roundup2(sizeof(*lp->lwp_lpmap), PAGE_SIZE)) {
824 			/* only good for current process */
825 			*resultp = pmap_kextract((vm_offset_t)lp->lwp_lpmap +
826 						 offset);
827 			error = 0;
828 		}
829 		LWPRELE(lp);
830 		break;
831 	default:
832 		break;
833 	}
834 	return error;
835 }
836 
837 static void
838 mem_drvinit(void *unused)
839 {
840 
841 	/* Initialise memory range handling */
842 	if (mem_range_softc.mr_op != NULL)
843 		mem_range_softc.mr_op->init(&mem_range_softc);
844 
845 	make_dev(&mem_ops_mem, 0, UID_ROOT, GID_KMEM, 0640, "mem");
846 	make_dev(&mem_ops_mem, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
847 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
848 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
849 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
850 	make_dev(&mem_ops, 5, UID_ROOT, GID_WHEEL, 0666, "upmap");
851 	make_dev(&mem_ops, 6, UID_ROOT, GID_WHEEL, 0444, "kpmap");
852 	make_dev(&mem_ops, 7, UID_ROOT, GID_WHEEL, 0666, "lpmap");
853 	zerodev = make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
854 	make_dev(&mem_ops_noq, 14, UID_ROOT, GID_WHEEL, 0600, "io");
855 }
856 
857 SYSINIT(memdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE + CDEV_MAJOR, mem_drvinit,
858     NULL);
859 
860