xref: /dflybsd-src/sys/kern/kern_memio.c (revision 6ea70f7669242fe9fd042834f455f06a4adfaadf)
1 /*-
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1986, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department, and code derived from software contributed to
9  * Berkeley by William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	from: Utah $Hdr: mem.c 1.13 89/10/08$
40  *	from: @(#)mem.c	7.2 (Berkeley) 5/9/91
41  * $FreeBSD: src/sys/i386/i386/mem.c,v 1.79.2.9 2003/01/04 22:58:01 njl Exp $
42  * $DragonFly: src/sys/kern/kern_memio.c,v 1.24 2006/12/17 20:07:29 dillon Exp $
43  */
44 
45 /*
46  * Memory special file
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/fcntl.h>
54 #include <sys/filio.h>
55 #include <sys/ioccom.h>
56 #include <sys/kernel.h>
57 #include <sys/malloc.h>
58 #include <sys/memrange.h>
59 #include <sys/proc.h>
60 #include <sys/random.h>
61 #include <sys/signalvar.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_extern.h>
68 
69 
70 static	d_open_t	mmopen;
71 static	d_close_t	mmclose;
72 static	d_read_t	mmread;
73 static	d_write_t	mmwrite;
74 static	d_ioctl_t	mmioctl;
75 static	d_mmap_t	memmmap;
76 static	d_poll_t	mmpoll;
77 
78 #define CDEV_MAJOR 2
79 static struct dev_ops mem_ops = {
80 	{ "mem", CDEV_MAJOR, D_MEM },
81 	.d_open =	mmopen,
82 	.d_close =	mmclose,
83 	.d_read =	mmread,
84 	.d_write =	mmwrite,
85 	.d_ioctl =	mmioctl,
86 	.d_poll =	mmpoll,
87 	.d_mmap =	memmmap,
88 };
89 
90 static int rand_bolt;
91 static caddr_t	zbuf;
92 
93 MALLOC_DEFINE(M_MEMDESC, "memdesc", "memory range descriptors");
94 static int mem_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
95 static int random_ioctl (cdev_t, u_long, caddr_t, int, struct ucred *);
96 
97 struct mem_range_softc mem_range_softc;
98 
99 
100 static int
101 mmopen(struct dev_open_args *ap)
102 {
103 	cdev_t dev = ap->a_head.a_dev;
104 	int error;
105 
106 	switch (minor(dev)) {
107 	case 0:
108 	case 1:
109 		if ((ap->a_oflags & FWRITE) && securelevel > 0)
110 			return (EPERM);
111 		error = 0;
112 		break;
113 	case 14:
114 		error = suser_cred(ap->a_cred, 0);
115 		if (error != 0)
116 			break;
117 		if (securelevel > 0) {
118 			error = EPERM;
119 			break;
120 		}
121 		error = cpu_set_iopl();
122 		break;
123 	default:
124 		error = 0;
125 		break;
126 	}
127 	return (error);
128 }
129 
130 static int
131 mmclose(struct dev_close_args *ap)
132 {
133 	cdev_t dev = ap->a_head.a_dev;
134 	int error;
135 
136 	switch (minor(dev)) {
137 	case 14:
138 		error = cpu_clr_iopl();
139 		break;
140 	default:
141 		error = 0;
142 		break;
143 	}
144 	return (error);
145 }
146 
147 
148 static int
149 mmrw(cdev_t dev, struct uio *uio, int flags)
150 {
151 	int o;
152 	u_int c, v;
153 	u_int poolsize;
154 	struct iovec *iov;
155 	int error = 0;
156 	caddr_t buf = NULL;
157 
158 	while (uio->uio_resid > 0 && error == 0) {
159 		iov = uio->uio_iov;
160 		if (iov->iov_len == 0) {
161 			uio->uio_iov++;
162 			uio->uio_iovcnt--;
163 			if (uio->uio_iovcnt < 0)
164 				panic("mmrw");
165 			continue;
166 		}
167 		switch (minor(dev)) {
168 		case 0:
169 			/*
170 			 * minor device 0 is physical memory, /dev/mem
171 			 */
172 			v = uio->uio_offset;
173 			v &= ~PAGE_MASK;
174 			pmap_kenter((vm_offset_t)ptvmmap, v);
175 			o = (int)uio->uio_offset & PAGE_MASK;
176 			c = (u_int)(PAGE_SIZE - ((int)iov->iov_base & PAGE_MASK));
177 			c = min(c, (u_int)(PAGE_SIZE - o));
178 			c = min(c, (u_int)iov->iov_len);
179 			error = uiomove((caddr_t)&ptvmmap[o], (int)c, uio);
180 			pmap_kremove((vm_offset_t)ptvmmap);
181 			continue;
182 
183 		case 1: {
184 			/*
185 			 * minor device 1 is kernel memory, /dev/kmem
186 			 */
187 			vm_offset_t addr, eaddr;
188 			c = iov->iov_len;
189 
190 			/*
191 			 * Make sure that all of the pages are currently
192 			 * resident so that we don't create any zero-fill
193 			 * pages.
194 			 */
195 			addr = trunc_page(uio->uio_offset);
196 			eaddr = round_page(uio->uio_offset + c);
197 
198 			if (addr < (vm_offset_t)VADDR(PTDPTDI, 0))
199 				return EFAULT;
200 			if (eaddr >= (vm_offset_t)VADDR(APTDPTDI, 0))
201 				return EFAULT;
202 			for (; addr < eaddr; addr += PAGE_SIZE)
203 				if (pmap_extract(kernel_pmap, addr) == 0)
204 					return EFAULT;
205 
206 			if (!kernacc((caddr_t)(int)uio->uio_offset, c,
207 			    uio->uio_rw == UIO_READ ?
208 			    VM_PROT_READ : VM_PROT_WRITE))
209 				return (EFAULT);
210 			error = uiomove((caddr_t)(int)uio->uio_offset, (int)c, uio);
211 			continue;
212 		}
213 		case 2:
214 			/*
215 			 * minor device 2 is EOF/RATHOLE
216 			 */
217 			if (uio->uio_rw == UIO_READ)
218 				return (0);
219 			c = iov->iov_len;
220 			break;
221 		case 3:
222 			/*
223 			 * minor device 3 (/dev/random) is source of filth
224 			 * on read, seeder on write
225 			 */
226 			if (buf == NULL)
227 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
228 			c = min(iov->iov_len, PAGE_SIZE);
229 			if (uio->uio_rw == UIO_WRITE) {
230 				error = uiomove(buf, (int)c, uio);
231 				if (error == 0)
232 					error = add_buffer_randomness(buf, c);
233 			} else {
234 				poolsize = read_random(buf, c);
235 				if (poolsize == 0) {
236 					if (buf)
237 						kfree(buf, M_TEMP);
238 					if ((flags & IO_NDELAY) != 0)
239 						return (EWOULDBLOCK);
240 					return (0);
241 				}
242 				c = min(c, poolsize);
243 				error = uiomove(buf, (int)c, uio);
244 			}
245 			continue;
246 		case 4:
247 			/*
248 			 * minor device 4 (/dev/urandom) is source of muck
249 			 * on read, writes are disallowed.
250 			 */
251 			c = min(iov->iov_len, PAGE_SIZE);
252 			if (uio->uio_rw == UIO_WRITE) {
253 				error = EPERM;
254 				break;
255 			}
256 			if (CURSIG(curproc) != 0) {
257 				/*
258 				 * Use tsleep() to get the error code right.
259 				 * It should return immediately.
260 				 */
261 				error = tsleep(&rand_bolt, PCATCH, "urand", 1);
262 				if (error != 0 && error != EWOULDBLOCK)
263 					continue;
264 			}
265 			if (buf == NULL)
266 				buf = kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
267 			poolsize = read_random_unlimited(buf, c);
268 			c = min(c, poolsize);
269 			error = uiomove(buf, (int)c, uio);
270 			continue;
271 		case 12:
272 			/*
273 			 * minor device 12 (/dev/zero) is source of nulls
274 			 * on read, write are disallowed.
275 			 */
276 			if (uio->uio_rw == UIO_WRITE) {
277 				c = iov->iov_len;
278 				break;
279 			}
280 			if (zbuf == NULL) {
281 				zbuf = (caddr_t)
282 				    kmalloc(PAGE_SIZE, M_TEMP, M_WAITOK);
283 				bzero(zbuf, PAGE_SIZE);
284 			}
285 			c = min(iov->iov_len, PAGE_SIZE);
286 			error = uiomove(zbuf, (int)c, uio);
287 			continue;
288 		default:
289 			return (ENODEV);
290 		}
291 		if (error)
292 			break;
293 		iov->iov_base += c;
294 		iov->iov_len -= c;
295 		uio->uio_offset += c;
296 		uio->uio_resid -= c;
297 	}
298 	if (buf)
299 		kfree(buf, M_TEMP);
300 	return (error);
301 }
302 
303 static int
304 mmread(struct dev_read_args *ap)
305 {
306 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
307 }
308 
309 static int
310 mmwrite(struct dev_write_args *ap)
311 {
312 	return(mmrw(ap->a_head.a_dev, ap->a_uio, ap->a_ioflag));
313 }
314 
315 
316 
317 
318 
319 /*******************************************************\
320 * allow user processes to MMAP some memory sections	*
321 * instead of going through read/write			*
322 \*******************************************************/
323 
324 static int
325 memmmap(struct dev_mmap_args *ap)
326 {
327 	cdev_t dev = ap->a_head.a_dev;
328 
329 	switch (minor(dev)) {
330 	case 0:
331 		/*
332 		 * minor device 0 is physical memory
333 		 */
334         	ap->a_result = i386_btop(ap->a_offset);
335 		return 0;
336 	case 1:
337 		/*
338 		 * minor device 1 is kernel memory
339 		 */
340         	ap->a_result = i386_btop(vtophys(ap->a_offset));
341 		return 0;
342 
343 	default:
344 		return EINVAL;
345 	}
346 }
347 
348 static int
349 mmioctl(struct dev_ioctl_args *ap)
350 {
351 	cdev_t dev = ap->a_head.a_dev;
352 
353 	switch (minor(dev)) {
354 	case 0:
355 		return mem_ioctl(dev, ap->a_cmd, ap->a_data,
356 				 ap->a_fflag, ap->a_cred);
357 	case 3:
358 	case 4:
359 		return random_ioctl(dev, ap->a_cmd, ap->a_data,
360 				    ap->a_fflag, ap->a_cred);
361 	}
362 	return (ENODEV);
363 }
364 
365 /*
366  * Operations for changing memory attributes.
367  *
368  * This is basically just an ioctl shim for mem_range_attr_get
369  * and mem_range_attr_set.
370  */
371 static int
372 mem_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
373 {
374 	int nd, error = 0;
375 	struct mem_range_op *mo = (struct mem_range_op *)data;
376 	struct mem_range_desc *md;
377 
378 	/* is this for us? */
379 	if ((cmd != MEMRANGE_GET) &&
380 	    (cmd != MEMRANGE_SET))
381 		return (ENOTTY);
382 
383 	/* any chance we can handle this? */
384 	if (mem_range_softc.mr_op == NULL)
385 		return (EOPNOTSUPP);
386 
387 	/* do we have any descriptors? */
388 	if (mem_range_softc.mr_ndesc == 0)
389 		return (ENXIO);
390 
391 	switch (cmd) {
392 	case MEMRANGE_GET:
393 		nd = imin(mo->mo_arg[0], mem_range_softc.mr_ndesc);
394 		if (nd > 0) {
395 			md = (struct mem_range_desc *)
396 				kmalloc(nd * sizeof(struct mem_range_desc),
397 				       M_MEMDESC, M_WAITOK);
398 			error = mem_range_attr_get(md, &nd);
399 			if (!error)
400 				error = copyout(md, mo->mo_desc,
401 					nd * sizeof(struct mem_range_desc));
402 			kfree(md, M_MEMDESC);
403 		} else {
404 			nd = mem_range_softc.mr_ndesc;
405 		}
406 		mo->mo_arg[0] = nd;
407 		break;
408 
409 	case MEMRANGE_SET:
410 		md = (struct mem_range_desc *)kmalloc(sizeof(struct mem_range_desc),
411 						    M_MEMDESC, M_WAITOK);
412 		error = copyin(mo->mo_desc, md, sizeof(struct mem_range_desc));
413 		/* clamp description string */
414 		md->mr_owner[sizeof(md->mr_owner) - 1] = 0;
415 		if (error == 0)
416 			error = mem_range_attr_set(md, &mo->mo_arg[0]);
417 		kfree(md, M_MEMDESC);
418 		break;
419 	}
420 	return (error);
421 }
422 
423 /*
424  * Implementation-neutral, kernel-callable functions for manipulating
425  * memory range attributes.
426  */
427 int
428 mem_range_attr_get(struct mem_range_desc *mrd, int *arg)
429 {
430 	/* can we handle this? */
431 	if (mem_range_softc.mr_op == NULL)
432 		return (EOPNOTSUPP);
433 
434 	if (*arg == 0) {
435 		*arg = mem_range_softc.mr_ndesc;
436 	} else {
437 		bcopy(mem_range_softc.mr_desc, mrd, (*arg) * sizeof(struct mem_range_desc));
438 	}
439 	return (0);
440 }
441 
442 int
443 mem_range_attr_set(struct mem_range_desc *mrd, int *arg)
444 {
445 	/* can we handle this? */
446 	if (mem_range_softc.mr_op == NULL)
447 		return (EOPNOTSUPP);
448 
449 	return (mem_range_softc.mr_op->set(&mem_range_softc, mrd, arg));
450 }
451 
452 #ifdef SMP
453 void
454 mem_range_AP_init(void)
455 {
456 	if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP)
457 		return (mem_range_softc.mr_op->initAP(&mem_range_softc));
458 }
459 #endif
460 
461 static int
462 random_ioctl(cdev_t dev, u_long cmd, caddr_t data, int flags, struct ucred *cred)
463 {
464 	int error;
465 	int intr;
466 
467 	/*
468 	 * Even inspecting the state is privileged, since it gives a hint
469 	 * about how easily the randomness might be guessed.
470 	 */
471 	error = 0;
472 
473 	switch (cmd) {
474 	/* Really handled in upper layer */
475 	case FIOASYNC:
476 		break;
477 	case MEM_SETIRQ:
478 		intr = *(int16_t *)data;
479 		if ((error = suser_cred(cred, 0)) != 0)
480 			break;
481 		if (intr < 0 || intr >= MAX_INTS)
482 			return (EINVAL);
483 		register_randintr(intr);
484 		break;
485 	case MEM_CLEARIRQ:
486 		intr = *(int16_t *)data;
487 		if ((error = suser_cred(cred, 0)) != 0)
488 			break;
489 		if (intr < 0 || intr >= MAX_INTS)
490 			return (EINVAL);
491 		unregister_randintr(intr);
492 		break;
493 	case MEM_RETURNIRQ:
494 		error = ENOTSUP;
495 		break;
496 	case MEM_FINDIRQ:
497 		intr = *(int16_t *)data;
498 		if ((error = suser_cred(cred, 0)) != 0)
499 			break;
500 		if (intr < 0 || intr >= MAX_INTS)
501 			return (EINVAL);
502 		intr = next_registered_randintr(intr);
503 		if (intr == MAX_INTS)
504 			return (ENOENT);
505 		*(u_int16_t *)data = intr;
506 		break;
507 	default:
508 		error = ENOTSUP;
509 		break;
510 	}
511 	return (error);
512 }
513 
514 int
515 mmpoll(struct dev_poll_args *ap)
516 {
517 	cdev_t dev = ap->a_head.a_dev;
518 	int revents;
519 
520 	switch (minor(dev)) {
521 	case 3:		/* /dev/random */
522 		revents = random_poll(dev, ap->a_events);
523 		break;
524 	case 4:		/* /dev/urandom */
525 	default:
526 		revents = seltrue(dev, ap->a_events);
527 		break;
528 	}
529 	ap->a_events = revents;
530 	return (0);
531 }
532 
533 int
534 iszerodev(cdev_t dev)
535 {
536 	return ((major(dev) == mem_ops.head.maj)
537 	  && minor(dev) == 12);
538 }
539 
540 static void
541 mem_drvinit(void *unused)
542 {
543 
544 	/* Initialise memory range handling */
545 	if (mem_range_softc.mr_op != NULL)
546 		mem_range_softc.mr_op->init(&mem_range_softc);
547 
548 	dev_ops_add(&mem_ops, 0xf0, 0);
549 	make_dev(&mem_ops, 0, UID_ROOT, GID_KMEM, 0640, "mem");
550 	make_dev(&mem_ops, 1, UID_ROOT, GID_KMEM, 0640, "kmem");
551 	make_dev(&mem_ops, 2, UID_ROOT, GID_WHEEL, 0666, "null");
552 	make_dev(&mem_ops, 3, UID_ROOT, GID_WHEEL, 0644, "random");
553 	make_dev(&mem_ops, 4, UID_ROOT, GID_WHEEL, 0644, "urandom");
554 	make_dev(&mem_ops, 12, UID_ROOT, GID_WHEEL, 0666, "zero");
555 	make_dev(&mem_ops, 14, UID_ROOT, GID_WHEEL, 0600, "io");
556 }
557 
558 SYSINIT(memdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,mem_drvinit,NULL)
559 
560