1 /* 2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved. 3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $ 27 * 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/malloc.h> 33 #include <sys/kernel.h> 34 #include <sys/sysctl.h> 35 #include <sys/thread.h> 36 #include <sys/proc.h> 37 #include <sys/random.h> 38 #include <sys/serialize.h> 39 #include <sys/interrupt.h> 40 #include <sys/bus.h> 41 #include <sys/machintr.h> 42 43 #include <machine/frame.h> 44 45 #include <sys/thread2.h> 46 #include <sys/mplock2.h> 47 48 struct info_info; 49 50 typedef struct intrec { 51 struct intrec *next; 52 struct intr_info *info; 53 inthand2_t *handler; 54 void *argument; 55 char *name; 56 int intr; 57 int intr_flags; 58 struct lwkt_serialize *serializer; 59 } *intrec_t; 60 61 struct intr_info { 62 intrec_t i_reclist; 63 struct thread i_thread; 64 struct random_softc i_random; 65 int i_running; 66 long i_count; /* interrupts dispatched */ 67 int i_mplock_required; 68 int i_fast; 69 int i_slow; 70 int i_state; 71 int i_errorticks; 72 unsigned long i_straycount; 73 } intr_info_ary[MAX_INTS]; 74 75 int max_installed_hard_intr; 76 int max_installed_soft_intr; 77 78 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000 79 80 /* 81 * Assert that callers into interrupt handlers don't return with 82 * dangling tokens, spinlocks, or mp locks. 83 */ 84 #ifdef INVARIANTS 85 86 #define TD_INVARIANTS_DECLARE \ 87 int spincount; \ 88 lwkt_tokref_t curstop 89 90 #define TD_INVARIANTS_GET(td) \ 91 do { \ 92 spincount = (td)->td_gd->gd_spinlocks_wr; \ 93 curstop = (td)->td_toks_stop; \ 94 } while(0) 95 96 #define TD_INVARIANTS_TEST(td, name) \ 97 do { \ 98 KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr, \ 99 ("spincount mismatch after interrupt handler %s", \ 100 name)); \ 101 KASSERT(curstop == (td)->td_toks_stop, \ 102 ("token count mismatch after interrupt handler %s", \ 103 name)); \ 104 } while(0) 105 106 #else 107 108 /* !INVARIANTS */ 109 110 #define TD_INVARIANTS_DECLARE 111 #define TD_INVARIANTS_GET(td) 112 #define TD_INVARIANTS_TEST(td, name) 113 114 #endif /* ndef INVARIANTS */ 115 116 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS); 117 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS); 118 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *); 119 static void ithread_handler(void *arg); 120 static void ithread_emergency(void *arg); 121 static void report_stray_interrupt(int intr, struct intr_info *info); 122 static void int_moveto_destcpu(int *, int); 123 static void int_moveto_origcpu(int, int); 124 125 int intr_info_size = NELEM(intr_info_ary); 126 127 static struct systimer emergency_intr_timer; 128 static struct thread emergency_intr_thread; 129 130 #define ISTATE_NOTHREAD 0 131 #define ISTATE_NORMAL 1 132 #define ISTATE_LIVELOCKED 2 133 134 static int livelock_limit = 40000; 135 static int livelock_lowater = 20000; 136 static int livelock_debug = -1; 137 SYSCTL_INT(_kern, OID_AUTO, livelock_limit, 138 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit"); 139 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater, 140 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore"); 141 SYSCTL_INT(_kern, OID_AUTO, livelock_debug, 142 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#"); 143 144 static int emergency_intr_enable = 0; /* emergency interrupt polling */ 145 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable); 146 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW, 147 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable"); 148 149 static int emergency_intr_freq = 10; /* emergency polling frequency */ 150 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq); 151 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW, 152 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency"); 153 154 /* 155 * Sysctl support routines 156 */ 157 static int 158 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS) 159 { 160 int error, enabled; 161 162 enabled = emergency_intr_enable; 163 error = sysctl_handle_int(oidp, &enabled, 0, req); 164 if (error || req->newptr == NULL) 165 return error; 166 emergency_intr_enable = enabled; 167 if (emergency_intr_enable) { 168 systimer_adjust_periodic(&emergency_intr_timer, 169 emergency_intr_freq); 170 } else { 171 systimer_adjust_periodic(&emergency_intr_timer, 1); 172 } 173 return 0; 174 } 175 176 static int 177 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS) 178 { 179 int error, phz; 180 181 phz = emergency_intr_freq; 182 error = sysctl_handle_int(oidp, &phz, 0, req); 183 if (error || req->newptr == NULL) 184 return error; 185 if (phz <= 0) 186 return EINVAL; 187 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX) 188 phz = EMERGENCY_INTR_POLLING_FREQ_MAX; 189 190 emergency_intr_freq = phz; 191 if (emergency_intr_enable) { 192 systimer_adjust_periodic(&emergency_intr_timer, 193 emergency_intr_freq); 194 } else { 195 systimer_adjust_periodic(&emergency_intr_timer, 1); 196 } 197 return 0; 198 } 199 200 /* 201 * Register an SWI or INTerrupt handler. 202 */ 203 void * 204 register_swi(int intr, inthand2_t *handler, void *arg, const char *name, 205 struct lwkt_serialize *serializer, int cpuid) 206 { 207 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 208 panic("register_swi: bad intr %d", intr); 209 210 if (cpuid < 0) 211 cpuid = intr % ncpus; 212 return(register_int(intr, handler, arg, name, serializer, 0, cpuid)); 213 } 214 215 void * 216 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name, 217 struct lwkt_serialize *serializer, int cpuid) 218 { 219 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 220 panic("register_swi: bad intr %d", intr); 221 222 if (cpuid < 0) 223 cpuid = intr % ncpus; 224 return(register_int(intr, handler, arg, name, serializer, 225 INTR_MPSAFE, cpuid)); 226 } 227 228 void * 229 register_int(int intr, inthand2_t *handler, void *arg, const char *name, 230 struct lwkt_serialize *serializer, int intr_flags, int cpuid) 231 { 232 struct intr_info *info; 233 struct intrec **list; 234 intrec_t rec; 235 int orig_cpuid; 236 237 KKASSERT(cpuid >= 0 && cpuid < ncpus); 238 239 if (intr < 0 || intr >= MAX_INTS) 240 panic("register_int: bad intr %d", intr); 241 if (name == NULL) 242 name = "???"; 243 info = &intr_info_ary[intr]; 244 245 /* 246 * Construct an interrupt handler record 247 */ 248 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT); 249 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT); 250 strcpy(rec->name, name); 251 252 rec->info = info; 253 rec->handler = handler; 254 rec->argument = arg; 255 rec->intr = intr; 256 rec->intr_flags = intr_flags; 257 rec->next = NULL; 258 rec->serializer = serializer; 259 260 /* 261 * Create an emergency polling thread and set up a systimer to wake 262 * it up. 263 */ 264 if (emergency_intr_thread.td_kstack == NULL) { 265 lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread, 266 TDF_NOSTART | TDF_INTTHREAD, ncpus - 1, "ithread emerg"); 267 systimer_init_periodic_nq(&emergency_intr_timer, 268 emergency_intr_timer_callback, &emergency_intr_thread, 269 (emergency_intr_enable ? emergency_intr_freq : 1)); 270 } 271 272 int_moveto_destcpu(&orig_cpuid, cpuid); 273 274 /* 275 * Create an interrupt thread if necessary, leave it in an unscheduled 276 * state. 277 */ 278 if (info->i_state == ISTATE_NOTHREAD) { 279 info->i_state = ISTATE_NORMAL; 280 lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL, 281 &info->i_thread, TDF_NOSTART | TDF_INTTHREAD, cpuid, 282 "ithread %d", intr); 283 if (intr >= FIRST_SOFTINT) 284 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM); 285 else 286 lwkt_setpri(&info->i_thread, TDPRI_INT_MED); 287 info->i_thread.td_preemptable = lwkt_preempt; 288 } 289 290 list = &info->i_reclist; 291 292 /* 293 * Keep track of how many fast and slow interrupts we have. 294 * Set i_mplock_required if any handler in the chain requires 295 * the MP lock to operate. 296 */ 297 if ((intr_flags & INTR_MPSAFE) == 0) 298 info->i_mplock_required = 1; 299 if (intr_flags & INTR_CLOCK) 300 ++info->i_fast; 301 else 302 ++info->i_slow; 303 304 /* 305 * Enable random number generation keying off of this interrupt. 306 */ 307 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) { 308 info->i_random.sc_enabled = 1; 309 info->i_random.sc_intr = intr; 310 } 311 312 /* 313 * Add the record to the interrupt list. 314 */ 315 crit_enter(); 316 while (*list != NULL) 317 list = &(*list)->next; 318 *list = rec; 319 crit_exit(); 320 321 /* 322 * Update max_installed_hard_intr to make the emergency intr poll 323 * a bit more efficient. 324 */ 325 if (intr < FIRST_SOFTINT) { 326 if (max_installed_hard_intr <= intr) 327 max_installed_hard_intr = intr + 1; 328 } else { 329 if (max_installed_soft_intr <= intr) 330 max_installed_soft_intr = intr + 1; 331 } 332 333 /* 334 * Setup the machine level interrupt vector 335 */ 336 if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) 337 machintr_intr_setup(intr, intr_flags); 338 339 int_moveto_origcpu(orig_cpuid, cpuid); 340 341 return(rec); 342 } 343 344 void 345 unregister_swi(void *id, int intr, int cpuid) 346 { 347 if (cpuid < 0) 348 cpuid = intr % ncpus; 349 350 unregister_int(id, cpuid); 351 } 352 353 void 354 unregister_int(void *id, int cpuid) 355 { 356 struct intr_info *info; 357 struct intrec **list; 358 intrec_t rec; 359 int intr, orig_cpuid; 360 361 KKASSERT(cpuid >= 0 && cpuid < ncpus); 362 363 intr = ((intrec_t)id)->intr; 364 365 if (intr < 0 || intr >= MAX_INTS) 366 panic("register_int: bad intr %d", intr); 367 368 info = &intr_info_ary[intr]; 369 370 int_moveto_destcpu(&orig_cpuid, cpuid); 371 372 /* 373 * Remove the interrupt descriptor, adjust the descriptor count, 374 * and teardown the machine level vector if this was the last interrupt. 375 */ 376 crit_enter(); 377 list = &info->i_reclist; 378 while ((rec = *list) != NULL) { 379 if (rec == id) 380 break; 381 list = &rec->next; 382 } 383 if (rec) { 384 intrec_t rec0; 385 386 *list = rec->next; 387 if (rec->intr_flags & INTR_CLOCK) 388 --info->i_fast; 389 else 390 --info->i_slow; 391 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0) 392 machintr_intr_teardown(intr); 393 394 /* 395 * Clear i_mplock_required if no handlers in the chain require the 396 * MP lock. 397 */ 398 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) { 399 if ((rec0->intr_flags & INTR_MPSAFE) == 0) 400 break; 401 } 402 if (rec0 == NULL) 403 info->i_mplock_required = 0; 404 } 405 406 crit_exit(); 407 408 int_moveto_origcpu(orig_cpuid, cpuid); 409 410 /* 411 * Free the record. 412 */ 413 if (rec != NULL) { 414 kfree(rec->name, M_DEVBUF); 415 kfree(rec, M_DEVBUF); 416 } else { 417 kprintf("warning: unregister_int: int %d handler for %s not found\n", 418 intr, ((intrec_t)id)->name); 419 } 420 } 421 422 const char * 423 get_registered_name(int intr) 424 { 425 intrec_t rec; 426 427 if (intr < 0 || intr >= MAX_INTS) 428 panic("register_int: bad intr %d", intr); 429 430 if ((rec = intr_info_ary[intr].i_reclist) == NULL) 431 return(NULL); 432 else if (rec->next) 433 return("mux"); 434 else 435 return(rec->name); 436 } 437 438 int 439 count_registered_ints(int intr) 440 { 441 struct intr_info *info; 442 443 if (intr < 0 || intr >= MAX_INTS) 444 panic("register_int: bad intr %d", intr); 445 info = &intr_info_ary[intr]; 446 return(info->i_fast + info->i_slow); 447 } 448 449 long 450 get_interrupt_counter(int intr) 451 { 452 struct intr_info *info; 453 454 if (intr < 0 || intr >= MAX_INTS) 455 panic("register_int: bad intr %d", intr); 456 info = &intr_info_ary[intr]; 457 return(info->i_count); 458 } 459 460 461 void 462 swi_setpriority(int intr, int pri) 463 { 464 struct intr_info *info; 465 466 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 467 panic("register_swi: bad intr %d", intr); 468 info = &intr_info_ary[intr]; 469 if (info->i_state != ISTATE_NOTHREAD) 470 lwkt_setpri(&info->i_thread, pri); 471 } 472 473 void 474 register_randintr(int intr) 475 { 476 struct intr_info *info; 477 478 if (intr < 0 || intr >= MAX_INTS) 479 panic("register_randintr: bad intr %d", intr); 480 info = &intr_info_ary[intr]; 481 info->i_random.sc_intr = intr; 482 info->i_random.sc_enabled = 1; 483 } 484 485 void 486 unregister_randintr(int intr) 487 { 488 struct intr_info *info; 489 490 if (intr < 0 || intr >= MAX_INTS) 491 panic("register_swi: bad intr %d", intr); 492 info = &intr_info_ary[intr]; 493 info->i_random.sc_enabled = -1; 494 } 495 496 int 497 next_registered_randintr(int intr) 498 { 499 struct intr_info *info; 500 501 if (intr < 0 || intr >= MAX_INTS) 502 panic("register_swi: bad intr %d", intr); 503 while (intr < MAX_INTS) { 504 info = &intr_info_ary[intr]; 505 if (info->i_random.sc_enabled > 0) 506 break; 507 ++intr; 508 } 509 return(intr); 510 } 511 512 /* 513 * Dispatch an interrupt. If there's nothing to do we have a stray 514 * interrupt and can just return, leaving the interrupt masked. 515 * 516 * We need to schedule the interrupt and set its i_running bit. If 517 * we are not on the interrupt thread's cpu we have to send a message 518 * to the correct cpu that will issue the desired action (interlocking 519 * with the interrupt thread's critical section). We do NOT attempt to 520 * reschedule interrupts whos i_running bit is already set because 521 * this would prematurely wakeup a livelock-limited interrupt thread. 522 * 523 * i_running is only tested/set on the same cpu as the interrupt thread. 524 * 525 * We are NOT in a critical section, which will allow the scheduled 526 * interrupt to preempt us. The MP lock might *NOT* be held here. 527 */ 528 #ifdef SMP 529 530 static void 531 sched_ithd_remote(void *arg) 532 { 533 sched_ithd((int)(intptr_t)arg); 534 } 535 536 #endif 537 538 void 539 sched_ithd(int intr) 540 { 541 struct intr_info *info; 542 543 info = &intr_info_ary[intr]; 544 545 ++info->i_count; 546 if (info->i_state != ISTATE_NOTHREAD) { 547 if (info->i_reclist == NULL) { 548 report_stray_interrupt(intr, info); 549 } else { 550 #ifdef SMP 551 if (info->i_thread.td_gd == mycpu) { 552 if (info->i_running == 0) { 553 info->i_running = 1; 554 if (info->i_state != ISTATE_LIVELOCKED) 555 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 556 } 557 } else { 558 lwkt_send_ipiq(info->i_thread.td_gd, 559 sched_ithd_remote, (void *)(intptr_t)intr); 560 } 561 #else 562 if (info->i_running == 0) { 563 info->i_running = 1; 564 if (info->i_state != ISTATE_LIVELOCKED) 565 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 566 } 567 #endif 568 } 569 } else { 570 report_stray_interrupt(intr, info); 571 } 572 } 573 574 static void 575 report_stray_interrupt(int intr, struct intr_info *info) 576 { 577 ++info->i_straycount; 578 if (info->i_straycount < 10) { 579 if (info->i_errorticks == ticks) 580 return; 581 info->i_errorticks = ticks; 582 kprintf("sched_ithd: stray interrupt %d on cpu %d\n", 583 intr, mycpuid); 584 } else if (info->i_straycount == 10) { 585 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - " 586 "there will be no further reports\n", 587 info->i_straycount, intr, mycpuid); 588 } 589 } 590 591 /* 592 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL 593 * might not be held). 594 */ 595 static void 596 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused, 597 struct intrframe *frame __unused) 598 { 599 struct intr_info *info; 600 601 info = &intr_info_ary[(int)(intptr_t)st->data]; 602 if (info->i_state != ISTATE_NOTHREAD) 603 lwkt_schedule(&info->i_thread); 604 } 605 606 /* 607 * Schedule ithread within fast intr handler 608 * 609 * XXX Protect sched_ithd() call with gd_intr_nesting_level? 610 * Interrupts aren't enabled, but still... 611 */ 612 static __inline void 613 ithread_fast_sched(int intr, thread_t td) 614 { 615 ++td->td_nest_count; 616 617 /* 618 * We are already in critical section, exit it now to 619 * allow preemption. 620 */ 621 crit_exit_quick(td); 622 sched_ithd(intr); 623 crit_enter_quick(td); 624 625 --td->td_nest_count; 626 } 627 628 /* 629 * This function is called directly from the ICU or APIC vector code assembly 630 * to process an interrupt. The critical section and interrupt deferral 631 * checks have already been done but the function is entered WITHOUT 632 * a critical section held. The BGL may or may not be held. 633 * 634 * Must return non-zero if we do not want the vector code to re-enable 635 * the interrupt (which we don't if we have to schedule the interrupt) 636 */ 637 int ithread_fast_handler(struct intrframe *frame); 638 639 int 640 ithread_fast_handler(struct intrframe *frame) 641 { 642 int intr; 643 struct intr_info *info; 644 struct intrec **list; 645 int must_schedule; 646 #ifdef SMP 647 int got_mplock; 648 #endif 649 TD_INVARIANTS_DECLARE; 650 intrec_t rec, nrec; 651 globaldata_t gd; 652 thread_t td; 653 654 intr = frame->if_vec; 655 gd = mycpu; 656 td = curthread; 657 658 /* We must be in critical section. */ 659 KKASSERT(td->td_critcount); 660 661 info = &intr_info_ary[intr]; 662 663 /* 664 * If we are not processing any FAST interrupts, just schedule the thing. 665 */ 666 if (info->i_fast == 0) { 667 ++gd->gd_cnt.v_intr; 668 ithread_fast_sched(intr, td); 669 return(1); 670 } 671 672 /* 673 * This should not normally occur since interrupts ought to be 674 * masked if the ithread has been scheduled or is running. 675 */ 676 if (info->i_running) 677 return(1); 678 679 /* 680 * Bump the interrupt nesting level to process any FAST interrupts. 681 * Obtain the MP lock as necessary. If the MP lock cannot be obtained, 682 * schedule the interrupt thread to deal with the issue instead. 683 * 684 * To reduce overhead, just leave the MP lock held once it has been 685 * obtained. 686 */ 687 ++gd->gd_intr_nesting_level; 688 ++gd->gd_cnt.v_intr; 689 must_schedule = info->i_slow; 690 #ifdef SMP 691 got_mplock = 0; 692 #endif 693 694 TD_INVARIANTS_GET(td); 695 list = &info->i_reclist; 696 697 for (rec = *list; rec; rec = nrec) { 698 /* rec may be invalid after call */ 699 nrec = rec->next; 700 701 if (rec->intr_flags & INTR_CLOCK) { 702 #ifdef SMP 703 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) { 704 if (try_mplock() == 0) { 705 /* Couldn't get the MP lock; just schedule it. */ 706 must_schedule = 1; 707 break; 708 } 709 got_mplock = 1; 710 } 711 #endif 712 if (rec->serializer) { 713 must_schedule += lwkt_serialize_handler_try( 714 rec->serializer, rec->handler, 715 rec->argument, frame); 716 } else { 717 rec->handler(rec->argument, frame); 718 } 719 TD_INVARIANTS_TEST(td, rec->name); 720 } 721 } 722 723 /* 724 * Cleanup 725 */ 726 --gd->gd_intr_nesting_level; 727 #ifdef SMP 728 if (got_mplock) 729 rel_mplock(); 730 #endif 731 732 /* 733 * If we had a problem, or mixed fast and slow interrupt handlers are 734 * registered, schedule the ithread to catch the missed records (it 735 * will just re-run all of them). A return value of 0 indicates that 736 * all handlers have been run and the interrupt can be re-enabled, and 737 * a non-zero return indicates that the interrupt thread controls 738 * re-enablement. 739 */ 740 if (must_schedule > 0) 741 ithread_fast_sched(intr, td); 742 else if (must_schedule == 0) 743 ++info->i_count; 744 return(must_schedule); 745 } 746 747 /* 748 * Interrupt threads run this as their main loop. 749 * 750 * The handler begins execution outside a critical section and no MP lock. 751 * 752 * The i_running state starts at 0. When an interrupt occurs, the hardware 753 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled 754 * until all routines have run. We then call ithread_done() to reenable 755 * the HW interrupt and deschedule us until the next interrupt. 756 * 757 * We are responsible for atomically checking i_running and ithread_done() 758 * is responsible for atomically checking for platform-specific delayed 759 * interrupts. i_running for our irq is only set in the context of our cpu, 760 * so a critical section is a sufficient interlock. 761 */ 762 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */ 763 764 static void 765 ithread_handler(void *arg) 766 { 767 struct intr_info *info; 768 int use_limit; 769 __uint32_t lseconds; 770 int intr; 771 int mpheld; 772 struct intrec **list; 773 intrec_t rec, nrec; 774 globaldata_t gd; 775 struct systimer ill_timer; /* enforced freq. timer */ 776 u_int ill_count; /* interrupt livelock counter */ 777 TD_INVARIANTS_DECLARE; 778 779 ill_count = 0; 780 intr = (int)(intptr_t)arg; 781 info = &intr_info_ary[intr]; 782 list = &info->i_reclist; 783 784 /* 785 * The loop must be entered with one critical section held. The thread 786 * does not hold the mplock on startup. 787 */ 788 gd = mycpu; 789 lseconds = gd->gd_time_seconds; 790 crit_enter_gd(gd); 791 mpheld = 0; 792 793 for (;;) { 794 /* 795 * The chain is only considered MPSAFE if all its interrupt handlers 796 * are MPSAFE. However, if intr_mpsafe has been turned off we 797 * always operate with the BGL. 798 */ 799 #ifdef SMP 800 if (info->i_mplock_required != mpheld) { 801 if (info->i_mplock_required) { 802 KKASSERT(mpheld == 0); 803 get_mplock(); 804 mpheld = 1; 805 } else { 806 KKASSERT(mpheld != 0); 807 rel_mplock(); 808 mpheld = 0; 809 } 810 } 811 #endif 812 813 TD_INVARIANTS_GET(gd->gd_curthread); 814 815 /* 816 * If an interrupt is pending, clear i_running and execute the 817 * handlers. Note that certain types of interrupts can re-trigger 818 * and set i_running again. 819 * 820 * Each handler is run in a critical section. Note that we run both 821 * FAST and SLOW designated service routines. 822 */ 823 if (info->i_running) { 824 ++ill_count; 825 info->i_running = 0; 826 827 if (*list == NULL) 828 report_stray_interrupt(intr, info); 829 830 for (rec = *list; rec; rec = nrec) { 831 /* rec may be invalid after call */ 832 nrec = rec->next; 833 if (rec->serializer) { 834 lwkt_serialize_handler_call(rec->serializer, rec->handler, 835 rec->argument, NULL); 836 } else { 837 rec->handler(rec->argument, NULL); 838 } 839 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name); 840 } 841 } 842 843 /* 844 * This is our interrupt hook to add rate randomness to the random 845 * number generator. 846 */ 847 if (info->i_random.sc_enabled > 0) 848 add_interrupt_randomness(intr); 849 850 /* 851 * Unmask the interrupt to allow it to trigger again. This only 852 * applies to certain types of interrupts (typ level interrupts). 853 * This can result in the interrupt retriggering, but the retrigger 854 * will not be processed until we cycle our critical section. 855 * 856 * Only unmask interrupts while handlers are installed. It is 857 * possible to hit a situation where no handlers are installed 858 * due to a device driver livelocking and then tearing down its 859 * interrupt on close (the parallel bus being a good example). 860 */ 861 if (intr < FIRST_SOFTINT && *list) 862 machintr_intr_enable(intr); 863 864 /* 865 * Do a quick exit/enter to catch any higher-priority interrupt 866 * sources, such as the statclock, so thread time accounting 867 * will still work. This may also cause an interrupt to re-trigger. 868 */ 869 crit_exit_gd(gd); 870 crit_enter_gd(gd); 871 872 /* 873 * LIVELOCK STATE MACHINE 874 */ 875 switch(info->i_state) { 876 case ISTATE_NORMAL: 877 /* 878 * Reset the count each second. 879 */ 880 if (lseconds != gd->gd_time_seconds) { 881 lseconds = gd->gd_time_seconds; 882 ill_count = 0; 883 } 884 885 /* 886 * If we did not exceed the frequency limit, we are done. 887 * If the interrupt has not retriggered we deschedule ourselves. 888 */ 889 if (ill_count <= livelock_limit) { 890 if (info->i_running == 0) { 891 lwkt_deschedule_self(gd->gd_curthread); 892 lwkt_switch(); 893 } 894 break; 895 } 896 897 /* 898 * Otherwise we are livelocked. Set up a periodic systimer 899 * to wake the thread up at the limit frequency. 900 */ 901 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n", 902 intr, ill_count, livelock_limit); 903 info->i_state = ISTATE_LIVELOCKED; 904 if ((use_limit = livelock_limit) < 100) 905 use_limit = 100; 906 else if (use_limit > 500000) 907 use_limit = 500000; 908 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup, 909 (void *)(intptr_t)intr, use_limit); 910 /* fall through */ 911 case ISTATE_LIVELOCKED: 912 /* 913 * Wait for our periodic timer to go off. Since the interrupt 914 * has re-armed it can still set i_running, but it will not 915 * reschedule us while we are in a livelocked state. 916 */ 917 lwkt_deschedule_self(gd->gd_curthread); 918 lwkt_switch(); 919 920 /* 921 * Check once a second to see if the livelock condition no 922 * longer applies. 923 */ 924 if (lseconds != gd->gd_time_seconds) { 925 lseconds = gd->gd_time_seconds; 926 if (ill_count < livelock_lowater) { 927 info->i_state = ISTATE_NORMAL; 928 systimer_del(&ill_timer); 929 kprintf("intr %d at %d/%d hz, livelock removed\n", 930 intr, ill_count, livelock_lowater); 931 } else if (livelock_debug == intr || 932 (bootverbose && cold)) { 933 kprintf("intr %d at %d/%d hz, in livelock\n", 934 intr, ill_count, livelock_lowater); 935 } 936 ill_count = 0; 937 } 938 break; 939 } 940 } 941 /* NOT REACHED */ 942 } 943 944 /* 945 * Emergency interrupt polling thread. The thread begins execution 946 * outside a critical section with the BGL held. 947 * 948 * If emergency interrupt polling is enabled, this thread will 949 * execute all system interrupts not marked INTR_NOPOLL at the 950 * specified polling frequency. 951 * 952 * WARNING! This thread runs *ALL* interrupt service routines that 953 * are not marked INTR_NOPOLL, which basically means everything except 954 * the 8254 clock interrupt and the ATA interrupt. It has very high 955 * overhead and should only be used in situations where the machine 956 * cannot otherwise be made to work. Due to the severe performance 957 * degredation, it should not be enabled on production machines. 958 */ 959 static void 960 ithread_emergency(void *arg __unused) 961 { 962 globaldata_t gd = mycpu; 963 struct intr_info *info; 964 intrec_t rec, nrec; 965 int intr; 966 TD_INVARIANTS_DECLARE; 967 968 get_mplock(); 969 crit_enter_gd(gd); 970 TD_INVARIANTS_GET(gd->gd_curthread); 971 972 for (;;) { 973 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 974 info = &intr_info_ary[intr]; 975 for (rec = info->i_reclist; rec; rec = nrec) { 976 /* rec may be invalid after call */ 977 nrec = rec->next; 978 if ((rec->intr_flags & INTR_NOPOLL) == 0) { 979 if (rec->serializer) { 980 lwkt_serialize_handler_try(rec->serializer, 981 rec->handler, rec->argument, NULL); 982 } else { 983 rec->handler(rec->argument, NULL); 984 } 985 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name); 986 } 987 } 988 } 989 lwkt_deschedule_self(gd->gd_curthread); 990 lwkt_switch(); 991 } 992 /* NOT REACHED */ 993 } 994 995 /* 996 * Systimer callback - schedule the emergency interrupt poll thread 997 * if emergency polling is enabled. 998 */ 999 static 1000 void 1001 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused, 1002 struct intrframe *frame __unused) 1003 { 1004 if (emergency_intr_enable) 1005 lwkt_schedule(info->data); 1006 } 1007 1008 int 1009 ithread_cpuid(int intr) 1010 { 1011 const struct intr_info *info; 1012 1013 KKASSERT(intr >= 0 && intr < MAX_INTS); 1014 info = &intr_info_ary[intr]; 1015 1016 if (info->i_state == ISTATE_NOTHREAD) 1017 return -1; 1018 return info->i_thread.td_gd->gd_cpuid; 1019 } 1020 1021 /* 1022 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 1023 * The data for this machine dependent, and the declarations are in machine 1024 * dependent code. The layout of intrnames and intrcnt however is machine 1025 * independent. 1026 * 1027 * We do not know the length of intrcnt and intrnames at compile time, so 1028 * calculate things at run time. 1029 */ 1030 1031 static int 1032 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 1033 { 1034 struct intr_info *info; 1035 intrec_t rec; 1036 int error = 0; 1037 int len; 1038 int intr; 1039 char buf[64]; 1040 1041 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) { 1042 info = &intr_info_ary[intr]; 1043 1044 len = 0; 1045 buf[0] = 0; 1046 for (rec = info->i_reclist; rec; rec = rec->next) { 1047 ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 1048 (len ? "/" : ""), rec->name); 1049 len += strlen(buf + len); 1050 } 1051 if (len == 0) { 1052 ksnprintf(buf, sizeof(buf), "irq%d", intr); 1053 len = strlen(buf); 1054 } 1055 error = SYSCTL_OUT(req, buf, len + 1); 1056 } 1057 return (error); 1058 } 1059 1060 1061 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1062 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1063 1064 static int 1065 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1066 { 1067 struct intr_info *info; 1068 int error = 0; 1069 int intr; 1070 1071 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 1072 info = &intr_info_ary[intr]; 1073 1074 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1075 if (error) 1076 goto failed; 1077 } 1078 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) { 1079 info = &intr_info_ary[intr]; 1080 1081 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1082 if (error) 1083 goto failed; 1084 } 1085 failed: 1086 return(error); 1087 } 1088 1089 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1090 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1091 1092 static int 1093 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS) 1094 { 1095 struct intr_info *info; 1096 int error = 0; 1097 int intr; 1098 1099 for (intr = 0; intr < MAX_INTS; ++intr) { 1100 info = &intr_info_ary[intr]; 1101 1102 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1103 if (error) 1104 goto failed; 1105 } 1106 failed: 1107 return(error); 1108 } 1109 1110 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD, 1111 NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts"); 1112 1113 static void 1114 int_moveto_destcpu(int *orig_cpuid0, int cpuid) 1115 { 1116 int orig_cpuid = mycpuid; 1117 1118 if (cpuid != orig_cpuid) 1119 lwkt_migratecpu(cpuid); 1120 1121 *orig_cpuid0 = orig_cpuid; 1122 } 1123 1124 static void 1125 int_moveto_origcpu(int orig_cpuid, int cpuid) 1126 { 1127 if (cpuid != orig_cpuid) 1128 lwkt_migratecpu(orig_cpuid); 1129 } 1130