xref: /dflybsd-src/sys/kern/kern_intr.c (revision c0d274d062fd959993bf623f25f7cb6a8a676c4e)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  *
28  */
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/kernel.h>
34 #include <sys/sysctl.h>
35 #include <sys/thread.h>
36 #include <sys/proc.h>
37 #include <sys/random.h>
38 #include <sys/serialize.h>
39 #include <sys/interrupt.h>
40 #include <sys/bus.h>
41 #include <sys/machintr.h>
42 
43 #include <machine/frame.h>
44 
45 #include <sys/interrupt.h>
46 
47 #include <sys/thread2.h>
48 #include <sys/mplock2.h>
49 
50 struct info_info;
51 
52 typedef struct intrec {
53     struct intrec *next;
54     struct intr_info *info;
55     inthand2_t	*handler;
56     void	*argument;
57     char	*name;
58     int		intr;
59     int		intr_flags;
60     struct lwkt_serialize *serializer;
61 } *intrec_t;
62 
63 struct intr_info {
64 	intrec_t	i_reclist;
65 	struct thread	i_thread;
66 	struct random_softc i_random;
67 	int		i_running;
68 	long		i_count;	/* interrupts dispatched */
69 	int		i_mplock_required;
70 	int		i_fast;
71 	int		i_slow;
72 	int		i_state;
73 	int		i_errorticks;
74 	unsigned long	i_straycount;
75 } intr_info_ary[MAX_INTS];
76 
77 int max_installed_hard_intr;
78 int max_installed_soft_intr;
79 
80 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
81 
82 /*
83  * Assert that callers into interrupt handlers don't return with
84  * dangling tokens, spinlocks, or mp locks.
85  */
86 #ifdef INVARIANTS
87 
88 #define TD_INVARIANTS_DECLARE   \
89         int spincount;          \
90         lwkt_tokref_t curstop
91 
92 #define TD_INVARIANTS_GET(td)                                   \
93         do {                                                    \
94                 spincount = (td)->td_gd->gd_spinlocks_wr;       \
95                 curstop = (td)->td_toks_stop;                   \
96         } while(0)
97 
98 #define TD_INVARIANTS_TEST(td, name)                                    \
99         do {                                                            \
100                 KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr,      \
101                         ("spincount mismatch after interrupt handler %s", \
102                         name));                                         \
103                 KASSERT(curstop == (td)->td_toks_stop,                  \
104                         ("token count mismatch after interrupt handler %s", \
105                         name));                                         \
106         } while(0)
107 
108 #else
109 
110 /* !INVARIANTS */
111 
112 #define TD_INVARIANTS_DECLARE
113 #define TD_INVARIANTS_GET(td)
114 #define TD_INVARIANTS_TEST(td, name)
115 
116 #endif /* ndef INVARIANTS */
117 
118 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
119 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
120 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *);
121 static void ithread_handler(void *arg);
122 static void ithread_emergency(void *arg);
123 static void report_stray_interrupt(int intr, struct intr_info *info);
124 static void int_moveto_destcpu(int *, int *, int);
125 static void int_moveto_origcpu(int, int);
126 
127 int intr_info_size = NELEM(intr_info_ary);
128 
129 static struct systimer emergency_intr_timer;
130 static struct thread emergency_intr_thread;
131 
132 #define ISTATE_NOTHREAD		0
133 #define ISTATE_NORMAL		1
134 #define ISTATE_LIVELOCKED	2
135 
136 static int livelock_limit = 40000;
137 static int livelock_lowater = 20000;
138 static int livelock_debug = -1;
139 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
140         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
141 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
142         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
143 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
144         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
145 
146 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
147 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
148 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
149         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
150 
151 static int emergency_intr_freq = 10;	/* emergency polling frequency */
152 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
153 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
154         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
155 
156 /*
157  * Sysctl support routines
158  */
159 static int
160 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
161 {
162 	int error, enabled;
163 
164 	enabled = emergency_intr_enable;
165 	error = sysctl_handle_int(oidp, &enabled, 0, req);
166 	if (error || req->newptr == NULL)
167 		return error;
168 	emergency_intr_enable = enabled;
169 	if (emergency_intr_enable) {
170 		systimer_adjust_periodic(&emergency_intr_timer,
171 					 emergency_intr_freq);
172 	} else {
173 		systimer_adjust_periodic(&emergency_intr_timer, 1);
174 	}
175 	return 0;
176 }
177 
178 static int
179 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
180 {
181         int error, phz;
182 
183         phz = emergency_intr_freq;
184         error = sysctl_handle_int(oidp, &phz, 0, req);
185         if (error || req->newptr == NULL)
186                 return error;
187         if (phz <= 0)
188                 return EINVAL;
189         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
190                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
191 
192         emergency_intr_freq = phz;
193 	if (emergency_intr_enable) {
194 		systimer_adjust_periodic(&emergency_intr_timer,
195 					 emergency_intr_freq);
196 	} else {
197 		systimer_adjust_periodic(&emergency_intr_timer, 1);
198 	}
199         return 0;
200 }
201 
202 /*
203  * Register an SWI or INTerrupt handler.
204  */
205 void *
206 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
207 		struct lwkt_serialize *serializer)
208 {
209     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
210 	panic("register_swi: bad intr %d", intr);
211     return(register_int(intr, handler, arg, name, serializer, 0));
212 }
213 
214 void *
215 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
216 		struct lwkt_serialize *serializer)
217 {
218     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
219 	panic("register_swi: bad intr %d", intr);
220     return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE));
221 }
222 
223 void *
224 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
225 		struct lwkt_serialize *serializer, int intr_flags)
226 {
227     struct intr_info *info;
228     struct intrec **list;
229     intrec_t rec;
230     int orig_cpuid, cpuid;
231 
232     if (intr < 0 || intr >= MAX_INTS)
233 	panic("register_int: bad intr %d", intr);
234     if (name == NULL)
235 	name = "???";
236     info = &intr_info_ary[intr];
237 
238     /*
239      * Construct an interrupt handler record
240      */
241     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
242     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
243     strcpy(rec->name, name);
244 
245     rec->info = info;
246     rec->handler = handler;
247     rec->argument = arg;
248     rec->intr = intr;
249     rec->intr_flags = intr_flags;
250     rec->next = NULL;
251     rec->serializer = serializer;
252 
253     /*
254      * Create an emergency polling thread and set up a systimer to wake
255      * it up.
256      */
257     if (emergency_intr_thread.td_kstack == NULL) {
258 	lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread,
259 		    TDF_STOPREQ | TDF_INTTHREAD, -1, "ithread emerg");
260 	systimer_init_periodic_nq(&emergency_intr_timer,
261 		    emergency_intr_timer_callback, &emergency_intr_thread,
262 		    (emergency_intr_enable ? emergency_intr_freq : 1));
263     }
264 
265     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
266 
267     /*
268      * Create an interrupt thread if necessary, leave it in an unscheduled
269      * state.
270      */
271     if (info->i_state == ISTATE_NOTHREAD) {
272 	info->i_state = ISTATE_NORMAL;
273 	lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
274 		    &info->i_thread, TDF_STOPREQ | TDF_INTTHREAD, -1,
275 		    "ithread %d", intr);
276 	if (intr >= FIRST_SOFTINT)
277 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
278 	else
279 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
280 	info->i_thread.td_preemptable = lwkt_preempt;
281     }
282 
283     list = &info->i_reclist;
284 
285     /*
286      * Keep track of how many fast and slow interrupts we have.
287      * Set i_mplock_required if any handler in the chain requires
288      * the MP lock to operate.
289      */
290     if ((intr_flags & INTR_MPSAFE) == 0)
291 	info->i_mplock_required = 1;
292     if (intr_flags & INTR_CLOCK)
293 	++info->i_fast;
294     else
295 	++info->i_slow;
296 
297     /*
298      * Enable random number generation keying off of this interrupt.
299      */
300     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
301 	info->i_random.sc_enabled = 1;
302 	info->i_random.sc_intr = intr;
303     }
304 
305     /*
306      * Add the record to the interrupt list.
307      */
308     crit_enter();
309     while (*list != NULL)
310 	list = &(*list)->next;
311     *list = rec;
312     crit_exit();
313 
314     /*
315      * Update max_installed_hard_intr to make the emergency intr poll
316      * a bit more efficient.
317      */
318     if (intr < FIRST_SOFTINT) {
319 	if (max_installed_hard_intr <= intr)
320 	    max_installed_hard_intr = intr + 1;
321     } else {
322 	if (max_installed_soft_intr <= intr)
323 	    max_installed_soft_intr = intr + 1;
324     }
325 
326     /*
327      * Setup the machine level interrupt vector
328      */
329     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) {
330 	if (machintr_vector_setup(intr, intr_flags))
331 	    kprintf("machintr_vector_setup: failed on irq %d\n", intr);
332     }
333 
334     int_moveto_origcpu(orig_cpuid, cpuid);
335 
336     return(rec);
337 }
338 
339 void
340 unregister_swi(void *id)
341 {
342     unregister_int(id);
343 }
344 
345 void
346 unregister_int(void *id)
347 {
348     struct intr_info *info;
349     struct intrec **list;
350     intrec_t rec;
351     int intr, orig_cpuid, cpuid;
352 
353     intr = ((intrec_t)id)->intr;
354 
355     if (intr < 0 || intr >= MAX_INTS)
356 	panic("register_int: bad intr %d", intr);
357 
358     info = &intr_info_ary[intr];
359 
360     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
361 
362     /*
363      * Remove the interrupt descriptor, adjust the descriptor count,
364      * and teardown the machine level vector if this was the last interrupt.
365      */
366     crit_enter();
367     list = &info->i_reclist;
368     while ((rec = *list) != NULL) {
369 	if (rec == id)
370 	    break;
371 	list = &rec->next;
372     }
373     if (rec) {
374 	intrec_t rec0;
375 
376 	*list = rec->next;
377 	if (rec->intr_flags & INTR_CLOCK)
378 	    --info->i_fast;
379 	else
380 	    --info->i_slow;
381 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
382 	    machintr_vector_teardown(intr);
383 
384 	/*
385 	 * Clear i_mplock_required if no handlers in the chain require the
386 	 * MP lock.
387 	 */
388 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
389 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
390 		break;
391 	}
392 	if (rec0 == NULL)
393 	    info->i_mplock_required = 0;
394     }
395 
396     crit_exit();
397 
398     int_moveto_origcpu(orig_cpuid, cpuid);
399 
400     /*
401      * Free the record.
402      */
403     if (rec != NULL) {
404 	kfree(rec->name, M_DEVBUF);
405 	kfree(rec, M_DEVBUF);
406     } else {
407 	kprintf("warning: unregister_int: int %d handler for %s not found\n",
408 		intr, ((intrec_t)id)->name);
409     }
410 }
411 
412 const char *
413 get_registered_name(int intr)
414 {
415     intrec_t rec;
416 
417     if (intr < 0 || intr >= MAX_INTS)
418 	panic("register_int: bad intr %d", intr);
419 
420     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
421 	return(NULL);
422     else if (rec->next)
423 	return("mux");
424     else
425 	return(rec->name);
426 }
427 
428 int
429 count_registered_ints(int intr)
430 {
431     struct intr_info *info;
432 
433     if (intr < 0 || intr >= MAX_INTS)
434 	panic("register_int: bad intr %d", intr);
435     info = &intr_info_ary[intr];
436     return(info->i_fast + info->i_slow);
437 }
438 
439 long
440 get_interrupt_counter(int intr)
441 {
442     struct intr_info *info;
443 
444     if (intr < 0 || intr >= MAX_INTS)
445 	panic("register_int: bad intr %d", intr);
446     info = &intr_info_ary[intr];
447     return(info->i_count);
448 }
449 
450 
451 void
452 swi_setpriority(int intr, int pri)
453 {
454     struct intr_info *info;
455 
456     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
457 	panic("register_swi: bad intr %d", intr);
458     info = &intr_info_ary[intr];
459     if (info->i_state != ISTATE_NOTHREAD)
460 	lwkt_setpri(&info->i_thread, pri);
461 }
462 
463 void
464 register_randintr(int intr)
465 {
466     struct intr_info *info;
467 
468     if (intr < 0 || intr >= MAX_INTS)
469 	panic("register_randintr: bad intr %d", intr);
470     info = &intr_info_ary[intr];
471     info->i_random.sc_intr = intr;
472     info->i_random.sc_enabled = 1;
473 }
474 
475 void
476 unregister_randintr(int intr)
477 {
478     struct intr_info *info;
479 
480     if (intr < 0 || intr >= MAX_INTS)
481 	panic("register_swi: bad intr %d", intr);
482     info = &intr_info_ary[intr];
483     info->i_random.sc_enabled = -1;
484 }
485 
486 int
487 next_registered_randintr(int intr)
488 {
489     struct intr_info *info;
490 
491     if (intr < 0 || intr >= MAX_INTS)
492 	panic("register_swi: bad intr %d", intr);
493     while (intr < MAX_INTS) {
494 	info = &intr_info_ary[intr];
495 	if (info->i_random.sc_enabled > 0)
496 	    break;
497 	++intr;
498     }
499     return(intr);
500 }
501 
502 /*
503  * Dispatch an interrupt.  If there's nothing to do we have a stray
504  * interrupt and can just return, leaving the interrupt masked.
505  *
506  * We need to schedule the interrupt and set its i_running bit.  If
507  * we are not on the interrupt thread's cpu we have to send a message
508  * to the correct cpu that will issue the desired action (interlocking
509  * with the interrupt thread's critical section).  We do NOT attempt to
510  * reschedule interrupts whos i_running bit is already set because
511  * this would prematurely wakeup a livelock-limited interrupt thread.
512  *
513  * i_running is only tested/set on the same cpu as the interrupt thread.
514  *
515  * We are NOT in a critical section, which will allow the scheduled
516  * interrupt to preempt us.  The MP lock might *NOT* be held here.
517  */
518 #ifdef SMP
519 
520 static void
521 sched_ithd_remote(void *arg)
522 {
523     sched_ithd((int)(intptr_t)arg);
524 }
525 
526 #endif
527 
528 void
529 sched_ithd(int intr)
530 {
531     struct intr_info *info;
532 
533     info = &intr_info_ary[intr];
534 
535     ++info->i_count;
536     if (info->i_state != ISTATE_NOTHREAD) {
537 	if (info->i_reclist == NULL) {
538 	    report_stray_interrupt(intr, info);
539 	} else {
540 #ifdef SMP
541 	    if (info->i_thread.td_gd == mycpu) {
542 		if (info->i_running == 0) {
543 		    info->i_running = 1;
544 		    if (info->i_state != ISTATE_LIVELOCKED)
545 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
546 		}
547 	    } else {
548 		lwkt_send_ipiq(info->i_thread.td_gd,
549 				sched_ithd_remote, (void *)(intptr_t)intr);
550 	    }
551 #else
552 	    if (info->i_running == 0) {
553 		info->i_running = 1;
554 		if (info->i_state != ISTATE_LIVELOCKED)
555 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
556 	    }
557 #endif
558 	}
559     } else {
560 	report_stray_interrupt(intr, info);
561     }
562 }
563 
564 static void
565 report_stray_interrupt(int intr, struct intr_info *info)
566 {
567 	++info->i_straycount;
568 	if (info->i_straycount < 10) {
569 		if (info->i_errorticks == ticks)
570 			return;
571 		info->i_errorticks = ticks;
572 		kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
573 			intr, mycpuid);
574 	} else if (info->i_straycount == 10) {
575 		kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
576 			"there will be no further reports\n",
577 			info->i_straycount, intr, mycpuid);
578 	}
579 }
580 
581 /*
582  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
583  * might not be held).
584  */
585 static void
586 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused,
587     struct intrframe *frame __unused)
588 {
589     struct intr_info *info;
590 
591     info = &intr_info_ary[(int)(intptr_t)st->data];
592     if (info->i_state != ISTATE_NOTHREAD)
593 	lwkt_schedule(&info->i_thread);
594 }
595 
596 /*
597  * Schedule ithread within fast intr handler
598  *
599  * XXX Protect sched_ithd() call with gd_intr_nesting_level?
600  * Interrupts aren't enabled, but still...
601  */
602 static __inline void
603 ithread_fast_sched(int intr, thread_t td)
604 {
605     ++td->td_nest_count;
606 
607     /*
608      * We are already in critical section, exit it now to
609      * allow preemption.
610      */
611     crit_exit_quick(td);
612     sched_ithd(intr);
613     crit_enter_quick(td);
614 
615     --td->td_nest_count;
616 }
617 
618 /*
619  * This function is called directly from the ICU or APIC vector code assembly
620  * to process an interrupt.  The critical section and interrupt deferral
621  * checks have already been done but the function is entered WITHOUT
622  * a critical section held.  The BGL may or may not be held.
623  *
624  * Must return non-zero if we do not want the vector code to re-enable
625  * the interrupt (which we don't if we have to schedule the interrupt)
626  */
627 int ithread_fast_handler(struct intrframe *frame);
628 
629 int
630 ithread_fast_handler(struct intrframe *frame)
631 {
632     int intr;
633     struct intr_info *info;
634     struct intrec **list;
635     int must_schedule;
636 #ifdef SMP
637     int got_mplock;
638 #endif
639     TD_INVARIANTS_DECLARE;
640     intrec_t rec, nrec;
641     globaldata_t gd;
642     thread_t td;
643 
644     intr = frame->if_vec;
645     gd = mycpu;
646     td = curthread;
647 
648     /* We must be in critical section. */
649     KKASSERT(td->td_critcount);
650 
651     info = &intr_info_ary[intr];
652 
653     /*
654      * If we are not processing any FAST interrupts, just schedule the thing.
655      */
656     if (info->i_fast == 0) {
657     	++gd->gd_cnt.v_intr;
658 	ithread_fast_sched(intr, td);
659 	return(1);
660     }
661 
662     /*
663      * This should not normally occur since interrupts ought to be
664      * masked if the ithread has been scheduled or is running.
665      */
666     if (info->i_running)
667 	return(1);
668 
669     /*
670      * Bump the interrupt nesting level to process any FAST interrupts.
671      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
672      * schedule the interrupt thread to deal with the issue instead.
673      *
674      * To reduce overhead, just leave the MP lock held once it has been
675      * obtained.
676      */
677     ++gd->gd_intr_nesting_level;
678     ++gd->gd_cnt.v_intr;
679     must_schedule = info->i_slow;
680 #ifdef SMP
681     got_mplock = 0;
682 #endif
683 
684     TD_INVARIANTS_GET(td);
685     list = &info->i_reclist;
686 
687     for (rec = *list; rec; rec = nrec) {
688 	/* rec may be invalid after call */
689 	nrec = rec->next;
690 
691 	if (rec->intr_flags & INTR_CLOCK) {
692 #ifdef SMP
693 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
694 		if (try_mplock() == 0) {
695 		    /* Couldn't get the MP lock; just schedule it. */
696 		    must_schedule = 1;
697 		    break;
698 		}
699 		got_mplock = 1;
700 	    }
701 #endif
702 	    if (rec->serializer) {
703 		must_schedule += lwkt_serialize_handler_try(
704 					rec->serializer, rec->handler,
705 					rec->argument, frame);
706 	    } else {
707 		rec->handler(rec->argument, frame);
708 	    }
709 	    TD_INVARIANTS_TEST(td, rec->name);
710 	}
711     }
712 
713     /*
714      * Cleanup
715      */
716     --gd->gd_intr_nesting_level;
717 #ifdef SMP
718     if (got_mplock)
719 	rel_mplock();
720 #endif
721 
722     /*
723      * If we had a problem, or mixed fast and slow interrupt handlers are
724      * registered, schedule the ithread to catch the missed records (it
725      * will just re-run all of them).  A return value of 0 indicates that
726      * all handlers have been run and the interrupt can be re-enabled, and
727      * a non-zero return indicates that the interrupt thread controls
728      * re-enablement.
729      */
730     if (must_schedule > 0)
731 	ithread_fast_sched(intr, td);
732     else if (must_schedule == 0)
733 	++info->i_count;
734     return(must_schedule);
735 }
736 
737 /*
738  * Interrupt threads run this as their main loop.
739  *
740  * The handler begins execution outside a critical section and no MP lock.
741  *
742  * The i_running state starts at 0.  When an interrupt occurs, the hardware
743  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
744  * until all routines have run.  We then call ithread_done() to reenable
745  * the HW interrupt and deschedule us until the next interrupt.
746  *
747  * We are responsible for atomically checking i_running and ithread_done()
748  * is responsible for atomically checking for platform-specific delayed
749  * interrupts.  i_running for our irq is only set in the context of our cpu,
750  * so a critical section is a sufficient interlock.
751  */
752 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
753 
754 static void
755 ithread_handler(void *arg)
756 {
757     struct intr_info *info;
758     int use_limit;
759     __uint32_t lseconds;
760     int intr;
761     int mpheld;
762     struct intrec **list;
763     intrec_t rec, nrec;
764     globaldata_t gd;
765     struct systimer ill_timer;	/* enforced freq. timer */
766     u_int ill_count;		/* interrupt livelock counter */
767     TD_INVARIANTS_DECLARE;
768 
769     ill_count = 0;
770     intr = (int)(intptr_t)arg;
771     info = &intr_info_ary[intr];
772     list = &info->i_reclist;
773 
774     /*
775      * The loop must be entered with one critical section held.  The thread
776      * does not hold the mplock on startup.
777      */
778     gd = mycpu;
779     lseconds = gd->gd_time_seconds;
780     crit_enter_gd(gd);
781     mpheld = 0;
782 
783     for (;;) {
784 	/*
785 	 * The chain is only considered MPSAFE if all its interrupt handlers
786 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
787 	 * always operate with the BGL.
788 	 */
789 #ifdef SMP
790 	if (info->i_mplock_required != mpheld) {
791 	    if (info->i_mplock_required) {
792 		KKASSERT(mpheld == 0);
793 		get_mplock();
794 		mpheld = 1;
795 	    } else {
796 		KKASSERT(mpheld != 0);
797 		rel_mplock();
798 		mpheld = 0;
799 	    }
800 	}
801 #endif
802 
803 	TD_INVARIANTS_GET(gd->gd_curthread);
804 
805 	/*
806 	 * If an interrupt is pending, clear i_running and execute the
807 	 * handlers.  Note that certain types of interrupts can re-trigger
808 	 * and set i_running again.
809 	 *
810 	 * Each handler is run in a critical section.  Note that we run both
811 	 * FAST and SLOW designated service routines.
812 	 */
813 	if (info->i_running) {
814 	    ++ill_count;
815 	    info->i_running = 0;
816 
817 	    if (*list == NULL)
818 		report_stray_interrupt(intr, info);
819 
820 	    for (rec = *list; rec; rec = nrec) {
821 		/* rec may be invalid after call */
822 		nrec = rec->next;
823 		if (rec->serializer) {
824 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
825 						rec->argument, NULL);
826 		} else {
827 		    rec->handler(rec->argument, NULL);
828 		}
829 		TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
830 	    }
831 	}
832 
833 	/*
834 	 * This is our interrupt hook to add rate randomness to the random
835 	 * number generator.
836 	 */
837 	if (info->i_random.sc_enabled > 0)
838 	    add_interrupt_randomness(intr);
839 
840 	/*
841 	 * Unmask the interrupt to allow it to trigger again.  This only
842 	 * applies to certain types of interrupts (typ level interrupts).
843 	 * This can result in the interrupt retriggering, but the retrigger
844 	 * will not be processed until we cycle our critical section.
845 	 *
846 	 * Only unmask interrupts while handlers are installed.  It is
847 	 * possible to hit a situation where no handlers are installed
848 	 * due to a device driver livelocking and then tearing down its
849 	 * interrupt on close (the parallel bus being a good example).
850 	 */
851 	if (*list)
852 	    machintr_intren(intr);
853 
854 	/*
855 	 * Do a quick exit/enter to catch any higher-priority interrupt
856 	 * sources, such as the statclock, so thread time accounting
857 	 * will still work.  This may also cause an interrupt to re-trigger.
858 	 */
859 	crit_exit_gd(gd);
860 	crit_enter_gd(gd);
861 
862 	/*
863 	 * LIVELOCK STATE MACHINE
864 	 */
865 	switch(info->i_state) {
866 	case ISTATE_NORMAL:
867 	    /*
868 	     * Reset the count each second.
869 	     */
870 	    if (lseconds != gd->gd_time_seconds) {
871 		lseconds = gd->gd_time_seconds;
872 		ill_count = 0;
873 	    }
874 
875 	    /*
876 	     * If we did not exceed the frequency limit, we are done.
877 	     * If the interrupt has not retriggered we deschedule ourselves.
878 	     */
879 	    if (ill_count <= livelock_limit) {
880 		if (info->i_running == 0) {
881 		    lwkt_deschedule_self(gd->gd_curthread);
882 		    lwkt_switch();
883 		}
884 		break;
885 	    }
886 
887 	    /*
888 	     * Otherwise we are livelocked.  Set up a periodic systimer
889 	     * to wake the thread up at the limit frequency.
890 	     */
891 	    kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
892 		   intr, ill_count, livelock_limit);
893 	    info->i_state = ISTATE_LIVELOCKED;
894 	    if ((use_limit = livelock_limit) < 100)
895 		use_limit = 100;
896 	    else if (use_limit > 500000)
897 		use_limit = 500000;
898 	    systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
899 				      (void *)(intptr_t)intr, use_limit);
900 	    /* fall through */
901 	case ISTATE_LIVELOCKED:
902 	    /*
903 	     * Wait for our periodic timer to go off.  Since the interrupt
904 	     * has re-armed it can still set i_running, but it will not
905 	     * reschedule us while we are in a livelocked state.
906 	     */
907 	    lwkt_deschedule_self(gd->gd_curthread);
908 	    lwkt_switch();
909 
910 	    /*
911 	     * Check once a second to see if the livelock condition no
912 	     * longer applies.
913 	     */
914 	    if (lseconds != gd->gd_time_seconds) {
915 		lseconds = gd->gd_time_seconds;
916 		if (ill_count < livelock_lowater) {
917 		    info->i_state = ISTATE_NORMAL;
918 		    systimer_del(&ill_timer);
919 		    kprintf("intr %d at %d/%d hz, livelock removed\n",
920 			   intr, ill_count, livelock_lowater);
921 		} else if (livelock_debug == intr ||
922 			   (bootverbose && cold)) {
923 		    kprintf("intr %d at %d/%d hz, in livelock\n",
924 			   intr, ill_count, livelock_lowater);
925 		}
926 		ill_count = 0;
927 	    }
928 	    break;
929 	}
930     }
931     /* NOT REACHED */
932 }
933 
934 /*
935  * Emergency interrupt polling thread.  The thread begins execution
936  * outside a critical section with the BGL held.
937  *
938  * If emergency interrupt polling is enabled, this thread will
939  * execute all system interrupts not marked INTR_NOPOLL at the
940  * specified polling frequency.
941  *
942  * WARNING!  This thread runs *ALL* interrupt service routines that
943  * are not marked INTR_NOPOLL, which basically means everything except
944  * the 8254 clock interrupt and the ATA interrupt.  It has very high
945  * overhead and should only be used in situations where the machine
946  * cannot otherwise be made to work.  Due to the severe performance
947  * degredation, it should not be enabled on production machines.
948  */
949 static void
950 ithread_emergency(void *arg __unused)
951 {
952     globaldata_t gd = mycpu;
953     struct intr_info *info;
954     intrec_t rec, nrec;
955     int intr;
956     TD_INVARIANTS_DECLARE;
957 
958     get_mplock();
959     crit_enter_gd(gd);
960     TD_INVARIANTS_GET(gd->gd_curthread);
961 
962     for (;;) {
963 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
964 	    info = &intr_info_ary[intr];
965 	    for (rec = info->i_reclist; rec; rec = nrec) {
966 		/* rec may be invalid after call */
967 		nrec = rec->next;
968 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
969 		    if (rec->serializer) {
970 			lwkt_serialize_handler_try(rec->serializer,
971 						rec->handler, rec->argument, NULL);
972 		    } else {
973 			rec->handler(rec->argument, NULL);
974 		    }
975 		    TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
976 		}
977 	    }
978 	}
979 	lwkt_deschedule_self(gd->gd_curthread);
980 	lwkt_switch();
981     }
982     /* NOT REACHED */
983 }
984 
985 /*
986  * Systimer callback - schedule the emergency interrupt poll thread
987  * 		       if emergency polling is enabled.
988  */
989 static
990 void
991 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused,
992     struct intrframe *frame __unused)
993 {
994     if (emergency_intr_enable)
995 	lwkt_schedule(info->data);
996 }
997 
998 int
999 ithread_cpuid(int intr)
1000 {
1001 	const struct intr_info *info;
1002 
1003 	KKASSERT(intr >= 0 && intr < MAX_INTS);
1004 	info = &intr_info_ary[intr];
1005 
1006 	if (info->i_state == ISTATE_NOTHREAD)
1007 		return -1;
1008 	return info->i_thread.td_gd->gd_cpuid;
1009 }
1010 
1011 /*
1012  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1013  * The data for this machine dependent, and the declarations are in machine
1014  * dependent code.  The layout of intrnames and intrcnt however is machine
1015  * independent.
1016  *
1017  * We do not know the length of intrcnt and intrnames at compile time, so
1018  * calculate things at run time.
1019  */
1020 
1021 static int
1022 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1023 {
1024     struct intr_info *info;
1025     intrec_t rec;
1026     int error = 0;
1027     int len;
1028     int intr;
1029     char buf[64];
1030 
1031     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1032 	info = &intr_info_ary[intr];
1033 
1034 	len = 0;
1035 	buf[0] = 0;
1036 	for (rec = info->i_reclist; rec; rec = rec->next) {
1037 	    ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1038 		(len ? "/" : ""), rec->name);
1039 	    len += strlen(buf + len);
1040 	}
1041 	if (len == 0) {
1042 	    ksnprintf(buf, sizeof(buf), "irq%d", intr);
1043 	    len = strlen(buf);
1044 	}
1045 	error = SYSCTL_OUT(req, buf, len + 1);
1046     }
1047     return (error);
1048 }
1049 
1050 
1051 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1052 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1053 
1054 static int
1055 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1056 {
1057     struct intr_info *info;
1058     int error = 0;
1059     int intr;
1060 
1061     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1062 	info = &intr_info_ary[intr];
1063 
1064 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1065 	if (error)
1066 		goto failed;
1067     }
1068     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1069 	info = &intr_info_ary[intr];
1070 
1071 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1072 	if (error)
1073 		goto failed;
1074     }
1075 failed:
1076     return(error);
1077 }
1078 
1079 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1080 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1081 
1082 static int
1083 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS)
1084 {
1085     struct intr_info *info;
1086     int error = 0;
1087     int intr;
1088 
1089     for (intr = 0; intr < MAX_INTS; ++intr) {
1090 	info = &intr_info_ary[intr];
1091 
1092 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1093 	if (error)
1094 		goto failed;
1095     }
1096 failed:
1097     return(error);
1098 }
1099 
1100 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD,
1101 	NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts");
1102 
1103 static void
1104 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr)
1105 {
1106     int orig_cpuid = mycpuid, cpuid;
1107     char envpath[32];
1108 
1109     cpuid = orig_cpuid;
1110     ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
1111     kgetenv_int(envpath, &cpuid);
1112     if (cpuid >= ncpus)
1113 	cpuid = orig_cpuid;
1114 
1115     if (cpuid != orig_cpuid)
1116 	lwkt_migratecpu(cpuid);
1117 
1118     *orig_cpuid0 = orig_cpuid;
1119     *cpuid0 = cpuid;
1120 }
1121 
1122 static void
1123 int_moveto_origcpu(int orig_cpuid, int cpuid)
1124 {
1125     if (cpuid != orig_cpuid)
1126 	lwkt_migratecpu(orig_cpuid);
1127 }
1128