1 /* 2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved. 3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $ 27 * 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/malloc.h> 33 #include <sys/kernel.h> 34 #include <sys/sysctl.h> 35 #include <sys/thread.h> 36 #include <sys/proc.h> 37 #include <sys/random.h> 38 #include <sys/serialize.h> 39 #include <sys/interrupt.h> 40 #include <sys/bus.h> 41 #include <sys/machintr.h> 42 43 #include <machine/frame.h> 44 45 #include <sys/interrupt.h> 46 47 #include <sys/thread2.h> 48 #include <sys/mplock2.h> 49 50 struct info_info; 51 52 typedef struct intrec { 53 struct intrec *next; 54 struct intr_info *info; 55 inthand2_t *handler; 56 void *argument; 57 char *name; 58 int intr; 59 int intr_flags; 60 struct lwkt_serialize *serializer; 61 } *intrec_t; 62 63 struct intr_info { 64 intrec_t i_reclist; 65 struct thread i_thread; 66 struct random_softc i_random; 67 int i_running; 68 long i_count; /* interrupts dispatched */ 69 int i_mplock_required; 70 int i_fast; 71 int i_slow; 72 int i_state; 73 int i_errorticks; 74 unsigned long i_straycount; 75 } intr_info_ary[MAX_INTS]; 76 77 int max_installed_hard_intr; 78 int max_installed_soft_intr; 79 80 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000 81 82 /* 83 * Assert that callers into interrupt handlers don't return with 84 * dangling tokens, spinlocks, or mp locks. 85 */ 86 #ifdef INVARIANTS 87 88 #define TD_INVARIANTS_DECLARE \ 89 int spincount; \ 90 lwkt_tokref_t curstop 91 92 #define TD_INVARIANTS_GET(td) \ 93 do { \ 94 spincount = (td)->td_gd->gd_spinlocks_wr; \ 95 curstop = (td)->td_toks_stop; \ 96 } while(0) 97 98 #define TD_INVARIANTS_TEST(td, name) \ 99 do { \ 100 KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr, \ 101 ("spincount mismatch after interrupt handler %s", \ 102 name)); \ 103 KASSERT(curstop == (td)->td_toks_stop, \ 104 ("token count mismatch after interrupt handler %s", \ 105 name)); \ 106 } while(0) 107 108 #else 109 110 /* !INVARIANTS */ 111 112 #define TD_INVARIANTS_DECLARE 113 #define TD_INVARIANTS_GET(td) 114 #define TD_INVARIANTS_TEST(td, name) 115 116 #endif /* ndef INVARIANTS */ 117 118 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS); 119 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS); 120 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *); 121 static void ithread_handler(void *arg); 122 static void ithread_emergency(void *arg); 123 static void report_stray_interrupt(int intr, struct intr_info *info); 124 static void int_moveto_destcpu(int *, int *, int); 125 static void int_moveto_origcpu(int, int); 126 127 int intr_info_size = NELEM(intr_info_ary); 128 129 static struct systimer emergency_intr_timer; 130 static struct thread emergency_intr_thread; 131 132 #define ISTATE_NOTHREAD 0 133 #define ISTATE_NORMAL 1 134 #define ISTATE_LIVELOCKED 2 135 136 static int livelock_limit = 40000; 137 static int livelock_lowater = 20000; 138 static int livelock_debug = -1; 139 SYSCTL_INT(_kern, OID_AUTO, livelock_limit, 140 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit"); 141 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater, 142 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore"); 143 SYSCTL_INT(_kern, OID_AUTO, livelock_debug, 144 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#"); 145 146 static int emergency_intr_enable = 0; /* emergency interrupt polling */ 147 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable); 148 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW, 149 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable"); 150 151 static int emergency_intr_freq = 10; /* emergency polling frequency */ 152 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq); 153 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW, 154 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency"); 155 156 /* 157 * Sysctl support routines 158 */ 159 static int 160 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS) 161 { 162 int error, enabled; 163 164 enabled = emergency_intr_enable; 165 error = sysctl_handle_int(oidp, &enabled, 0, req); 166 if (error || req->newptr == NULL) 167 return error; 168 emergency_intr_enable = enabled; 169 if (emergency_intr_enable) { 170 systimer_adjust_periodic(&emergency_intr_timer, 171 emergency_intr_freq); 172 } else { 173 systimer_adjust_periodic(&emergency_intr_timer, 1); 174 } 175 return 0; 176 } 177 178 static int 179 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS) 180 { 181 int error, phz; 182 183 phz = emergency_intr_freq; 184 error = sysctl_handle_int(oidp, &phz, 0, req); 185 if (error || req->newptr == NULL) 186 return error; 187 if (phz <= 0) 188 return EINVAL; 189 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX) 190 phz = EMERGENCY_INTR_POLLING_FREQ_MAX; 191 192 emergency_intr_freq = phz; 193 if (emergency_intr_enable) { 194 systimer_adjust_periodic(&emergency_intr_timer, 195 emergency_intr_freq); 196 } else { 197 systimer_adjust_periodic(&emergency_intr_timer, 1); 198 } 199 return 0; 200 } 201 202 /* 203 * Register an SWI or INTerrupt handler. 204 */ 205 void * 206 register_swi(int intr, inthand2_t *handler, void *arg, const char *name, 207 struct lwkt_serialize *serializer) 208 { 209 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 210 panic("register_swi: bad intr %d", intr); 211 return(register_int(intr, handler, arg, name, serializer, 0)); 212 } 213 214 void * 215 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name, 216 struct lwkt_serialize *serializer) 217 { 218 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 219 panic("register_swi: bad intr %d", intr); 220 return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE)); 221 } 222 223 void * 224 register_int(int intr, inthand2_t *handler, void *arg, const char *name, 225 struct lwkt_serialize *serializer, int intr_flags) 226 { 227 struct intr_info *info; 228 struct intrec **list; 229 intrec_t rec; 230 int orig_cpuid, cpuid; 231 232 if (intr < 0 || intr >= MAX_INTS) 233 panic("register_int: bad intr %d", intr); 234 if (name == NULL) 235 name = "???"; 236 info = &intr_info_ary[intr]; 237 238 /* 239 * Construct an interrupt handler record 240 */ 241 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT); 242 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT); 243 strcpy(rec->name, name); 244 245 rec->info = info; 246 rec->handler = handler; 247 rec->argument = arg; 248 rec->intr = intr; 249 rec->intr_flags = intr_flags; 250 rec->next = NULL; 251 rec->serializer = serializer; 252 253 /* 254 * Create an emergency polling thread and set up a systimer to wake 255 * it up. 256 */ 257 if (emergency_intr_thread.td_kstack == NULL) { 258 lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread, 259 TDF_STOPREQ | TDF_INTTHREAD, -1, "ithread emerg"); 260 systimer_init_periodic_nq(&emergency_intr_timer, 261 emergency_intr_timer_callback, &emergency_intr_thread, 262 (emergency_intr_enable ? emergency_intr_freq : 1)); 263 } 264 265 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 266 267 /* 268 * Create an interrupt thread if necessary, leave it in an unscheduled 269 * state. 270 */ 271 if (info->i_state == ISTATE_NOTHREAD) { 272 info->i_state = ISTATE_NORMAL; 273 lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL, 274 &info->i_thread, TDF_STOPREQ | TDF_INTTHREAD, -1, 275 "ithread %d", intr); 276 if (intr >= FIRST_SOFTINT) 277 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM); 278 else 279 lwkt_setpri(&info->i_thread, TDPRI_INT_MED); 280 info->i_thread.td_preemptable = lwkt_preempt; 281 } 282 283 list = &info->i_reclist; 284 285 /* 286 * Keep track of how many fast and slow interrupts we have. 287 * Set i_mplock_required if any handler in the chain requires 288 * the MP lock to operate. 289 */ 290 if ((intr_flags & INTR_MPSAFE) == 0) 291 info->i_mplock_required = 1; 292 if (intr_flags & INTR_CLOCK) 293 ++info->i_fast; 294 else 295 ++info->i_slow; 296 297 /* 298 * Enable random number generation keying off of this interrupt. 299 */ 300 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) { 301 info->i_random.sc_enabled = 1; 302 info->i_random.sc_intr = intr; 303 } 304 305 /* 306 * Add the record to the interrupt list. 307 */ 308 crit_enter(); 309 while (*list != NULL) 310 list = &(*list)->next; 311 *list = rec; 312 crit_exit(); 313 314 /* 315 * Update max_installed_hard_intr to make the emergency intr poll 316 * a bit more efficient. 317 */ 318 if (intr < FIRST_SOFTINT) { 319 if (max_installed_hard_intr <= intr) 320 max_installed_hard_intr = intr + 1; 321 } else { 322 if (max_installed_soft_intr <= intr) 323 max_installed_soft_intr = intr + 1; 324 } 325 326 /* 327 * Setup the machine level interrupt vector 328 */ 329 if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) { 330 if (machintr_vector_setup(intr, intr_flags)) 331 kprintf("machintr_vector_setup: failed on irq %d\n", intr); 332 } 333 334 int_moveto_origcpu(orig_cpuid, cpuid); 335 336 return(rec); 337 } 338 339 void 340 unregister_swi(void *id) 341 { 342 unregister_int(id); 343 } 344 345 void 346 unregister_int(void *id) 347 { 348 struct intr_info *info; 349 struct intrec **list; 350 intrec_t rec; 351 int intr, orig_cpuid, cpuid; 352 353 intr = ((intrec_t)id)->intr; 354 355 if (intr < 0 || intr >= MAX_INTS) 356 panic("register_int: bad intr %d", intr); 357 358 info = &intr_info_ary[intr]; 359 360 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 361 362 /* 363 * Remove the interrupt descriptor, adjust the descriptor count, 364 * and teardown the machine level vector if this was the last interrupt. 365 */ 366 crit_enter(); 367 list = &info->i_reclist; 368 while ((rec = *list) != NULL) { 369 if (rec == id) 370 break; 371 list = &rec->next; 372 } 373 if (rec) { 374 intrec_t rec0; 375 376 *list = rec->next; 377 if (rec->intr_flags & INTR_CLOCK) 378 --info->i_fast; 379 else 380 --info->i_slow; 381 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0) 382 machintr_vector_teardown(intr); 383 384 /* 385 * Clear i_mplock_required if no handlers in the chain require the 386 * MP lock. 387 */ 388 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) { 389 if ((rec0->intr_flags & INTR_MPSAFE) == 0) 390 break; 391 } 392 if (rec0 == NULL) 393 info->i_mplock_required = 0; 394 } 395 396 crit_exit(); 397 398 int_moveto_origcpu(orig_cpuid, cpuid); 399 400 /* 401 * Free the record. 402 */ 403 if (rec != NULL) { 404 kfree(rec->name, M_DEVBUF); 405 kfree(rec, M_DEVBUF); 406 } else { 407 kprintf("warning: unregister_int: int %d handler for %s not found\n", 408 intr, ((intrec_t)id)->name); 409 } 410 } 411 412 const char * 413 get_registered_name(int intr) 414 { 415 intrec_t rec; 416 417 if (intr < 0 || intr >= MAX_INTS) 418 panic("register_int: bad intr %d", intr); 419 420 if ((rec = intr_info_ary[intr].i_reclist) == NULL) 421 return(NULL); 422 else if (rec->next) 423 return("mux"); 424 else 425 return(rec->name); 426 } 427 428 int 429 count_registered_ints(int intr) 430 { 431 struct intr_info *info; 432 433 if (intr < 0 || intr >= MAX_INTS) 434 panic("register_int: bad intr %d", intr); 435 info = &intr_info_ary[intr]; 436 return(info->i_fast + info->i_slow); 437 } 438 439 long 440 get_interrupt_counter(int intr) 441 { 442 struct intr_info *info; 443 444 if (intr < 0 || intr >= MAX_INTS) 445 panic("register_int: bad intr %d", intr); 446 info = &intr_info_ary[intr]; 447 return(info->i_count); 448 } 449 450 451 void 452 swi_setpriority(int intr, int pri) 453 { 454 struct intr_info *info; 455 456 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 457 panic("register_swi: bad intr %d", intr); 458 info = &intr_info_ary[intr]; 459 if (info->i_state != ISTATE_NOTHREAD) 460 lwkt_setpri(&info->i_thread, pri); 461 } 462 463 void 464 register_randintr(int intr) 465 { 466 struct intr_info *info; 467 468 if (intr < 0 || intr >= MAX_INTS) 469 panic("register_randintr: bad intr %d", intr); 470 info = &intr_info_ary[intr]; 471 info->i_random.sc_intr = intr; 472 info->i_random.sc_enabled = 1; 473 } 474 475 void 476 unregister_randintr(int intr) 477 { 478 struct intr_info *info; 479 480 if (intr < 0 || intr >= MAX_INTS) 481 panic("register_swi: bad intr %d", intr); 482 info = &intr_info_ary[intr]; 483 info->i_random.sc_enabled = -1; 484 } 485 486 int 487 next_registered_randintr(int intr) 488 { 489 struct intr_info *info; 490 491 if (intr < 0 || intr >= MAX_INTS) 492 panic("register_swi: bad intr %d", intr); 493 while (intr < MAX_INTS) { 494 info = &intr_info_ary[intr]; 495 if (info->i_random.sc_enabled > 0) 496 break; 497 ++intr; 498 } 499 return(intr); 500 } 501 502 /* 503 * Dispatch an interrupt. If there's nothing to do we have a stray 504 * interrupt and can just return, leaving the interrupt masked. 505 * 506 * We need to schedule the interrupt and set its i_running bit. If 507 * we are not on the interrupt thread's cpu we have to send a message 508 * to the correct cpu that will issue the desired action (interlocking 509 * with the interrupt thread's critical section). We do NOT attempt to 510 * reschedule interrupts whos i_running bit is already set because 511 * this would prematurely wakeup a livelock-limited interrupt thread. 512 * 513 * i_running is only tested/set on the same cpu as the interrupt thread. 514 * 515 * We are NOT in a critical section, which will allow the scheduled 516 * interrupt to preempt us. The MP lock might *NOT* be held here. 517 */ 518 #ifdef SMP 519 520 static void 521 sched_ithd_remote(void *arg) 522 { 523 sched_ithd((int)(intptr_t)arg); 524 } 525 526 #endif 527 528 void 529 sched_ithd(int intr) 530 { 531 struct intr_info *info; 532 533 info = &intr_info_ary[intr]; 534 535 ++info->i_count; 536 if (info->i_state != ISTATE_NOTHREAD) { 537 if (info->i_reclist == NULL) { 538 report_stray_interrupt(intr, info); 539 } else { 540 #ifdef SMP 541 if (info->i_thread.td_gd == mycpu) { 542 if (info->i_running == 0) { 543 info->i_running = 1; 544 if (info->i_state != ISTATE_LIVELOCKED) 545 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 546 } 547 } else { 548 lwkt_send_ipiq(info->i_thread.td_gd, 549 sched_ithd_remote, (void *)(intptr_t)intr); 550 } 551 #else 552 if (info->i_running == 0) { 553 info->i_running = 1; 554 if (info->i_state != ISTATE_LIVELOCKED) 555 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 556 } 557 #endif 558 } 559 } else { 560 report_stray_interrupt(intr, info); 561 } 562 } 563 564 static void 565 report_stray_interrupt(int intr, struct intr_info *info) 566 { 567 ++info->i_straycount; 568 if (info->i_straycount < 10) { 569 if (info->i_errorticks == ticks) 570 return; 571 info->i_errorticks = ticks; 572 kprintf("sched_ithd: stray interrupt %d on cpu %d\n", 573 intr, mycpuid); 574 } else if (info->i_straycount == 10) { 575 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - " 576 "there will be no further reports\n", 577 info->i_straycount, intr, mycpuid); 578 } 579 } 580 581 /* 582 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL 583 * might not be held). 584 */ 585 static void 586 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused, 587 struct intrframe *frame __unused) 588 { 589 struct intr_info *info; 590 591 info = &intr_info_ary[(int)(intptr_t)st->data]; 592 if (info->i_state != ISTATE_NOTHREAD) 593 lwkt_schedule(&info->i_thread); 594 } 595 596 /* 597 * Schedule ithread within fast intr handler 598 * 599 * XXX Protect sched_ithd() call with gd_intr_nesting_level? 600 * Interrupts aren't enabled, but still... 601 */ 602 static __inline void 603 ithread_fast_sched(int intr, thread_t td) 604 { 605 ++td->td_nest_count; 606 607 /* 608 * We are already in critical section, exit it now to 609 * allow preemption. 610 */ 611 crit_exit_quick(td); 612 sched_ithd(intr); 613 crit_enter_quick(td); 614 615 --td->td_nest_count; 616 } 617 618 /* 619 * This function is called directly from the ICU or APIC vector code assembly 620 * to process an interrupt. The critical section and interrupt deferral 621 * checks have already been done but the function is entered WITHOUT 622 * a critical section held. The BGL may or may not be held. 623 * 624 * Must return non-zero if we do not want the vector code to re-enable 625 * the interrupt (which we don't if we have to schedule the interrupt) 626 */ 627 int ithread_fast_handler(struct intrframe *frame); 628 629 int 630 ithread_fast_handler(struct intrframe *frame) 631 { 632 int intr; 633 struct intr_info *info; 634 struct intrec **list; 635 int must_schedule; 636 #ifdef SMP 637 int got_mplock; 638 #endif 639 TD_INVARIANTS_DECLARE; 640 intrec_t rec, nrec; 641 globaldata_t gd; 642 thread_t td; 643 644 intr = frame->if_vec; 645 gd = mycpu; 646 td = curthread; 647 648 /* We must be in critical section. */ 649 KKASSERT(td->td_critcount); 650 651 info = &intr_info_ary[intr]; 652 653 /* 654 * If we are not processing any FAST interrupts, just schedule the thing. 655 */ 656 if (info->i_fast == 0) { 657 ++gd->gd_cnt.v_intr; 658 ithread_fast_sched(intr, td); 659 return(1); 660 } 661 662 /* 663 * This should not normally occur since interrupts ought to be 664 * masked if the ithread has been scheduled or is running. 665 */ 666 if (info->i_running) 667 return(1); 668 669 /* 670 * Bump the interrupt nesting level to process any FAST interrupts. 671 * Obtain the MP lock as necessary. If the MP lock cannot be obtained, 672 * schedule the interrupt thread to deal with the issue instead. 673 * 674 * To reduce overhead, just leave the MP lock held once it has been 675 * obtained. 676 */ 677 ++gd->gd_intr_nesting_level; 678 ++gd->gd_cnt.v_intr; 679 must_schedule = info->i_slow; 680 #ifdef SMP 681 got_mplock = 0; 682 #endif 683 684 TD_INVARIANTS_GET(td); 685 list = &info->i_reclist; 686 687 for (rec = *list; rec; rec = nrec) { 688 /* rec may be invalid after call */ 689 nrec = rec->next; 690 691 if (rec->intr_flags & INTR_CLOCK) { 692 #ifdef SMP 693 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) { 694 if (try_mplock() == 0) { 695 /* Couldn't get the MP lock; just schedule it. */ 696 must_schedule = 1; 697 break; 698 } 699 got_mplock = 1; 700 } 701 #endif 702 if (rec->serializer) { 703 must_schedule += lwkt_serialize_handler_try( 704 rec->serializer, rec->handler, 705 rec->argument, frame); 706 } else { 707 rec->handler(rec->argument, frame); 708 } 709 TD_INVARIANTS_TEST(td, rec->name); 710 } 711 } 712 713 /* 714 * Cleanup 715 */ 716 --gd->gd_intr_nesting_level; 717 #ifdef SMP 718 if (got_mplock) 719 rel_mplock(); 720 #endif 721 722 /* 723 * If we had a problem, or mixed fast and slow interrupt handlers are 724 * registered, schedule the ithread to catch the missed records (it 725 * will just re-run all of them). A return value of 0 indicates that 726 * all handlers have been run and the interrupt can be re-enabled, and 727 * a non-zero return indicates that the interrupt thread controls 728 * re-enablement. 729 */ 730 if (must_schedule > 0) 731 ithread_fast_sched(intr, td); 732 else if (must_schedule == 0) 733 ++info->i_count; 734 return(must_schedule); 735 } 736 737 /* 738 * Interrupt threads run this as their main loop. 739 * 740 * The handler begins execution outside a critical section and no MP lock. 741 * 742 * The i_running state starts at 0. When an interrupt occurs, the hardware 743 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled 744 * until all routines have run. We then call ithread_done() to reenable 745 * the HW interrupt and deschedule us until the next interrupt. 746 * 747 * We are responsible for atomically checking i_running and ithread_done() 748 * is responsible for atomically checking for platform-specific delayed 749 * interrupts. i_running for our irq is only set in the context of our cpu, 750 * so a critical section is a sufficient interlock. 751 */ 752 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */ 753 754 static void 755 ithread_handler(void *arg) 756 { 757 struct intr_info *info; 758 int use_limit; 759 __uint32_t lseconds; 760 int intr; 761 int mpheld; 762 struct intrec **list; 763 intrec_t rec, nrec; 764 globaldata_t gd; 765 struct systimer ill_timer; /* enforced freq. timer */ 766 u_int ill_count; /* interrupt livelock counter */ 767 TD_INVARIANTS_DECLARE; 768 769 ill_count = 0; 770 intr = (int)(intptr_t)arg; 771 info = &intr_info_ary[intr]; 772 list = &info->i_reclist; 773 774 /* 775 * The loop must be entered with one critical section held. The thread 776 * does not hold the mplock on startup. 777 */ 778 gd = mycpu; 779 lseconds = gd->gd_time_seconds; 780 crit_enter_gd(gd); 781 mpheld = 0; 782 783 for (;;) { 784 /* 785 * The chain is only considered MPSAFE if all its interrupt handlers 786 * are MPSAFE. However, if intr_mpsafe has been turned off we 787 * always operate with the BGL. 788 */ 789 #ifdef SMP 790 if (info->i_mplock_required != mpheld) { 791 if (info->i_mplock_required) { 792 KKASSERT(mpheld == 0); 793 get_mplock(); 794 mpheld = 1; 795 } else { 796 KKASSERT(mpheld != 0); 797 rel_mplock(); 798 mpheld = 0; 799 } 800 } 801 #endif 802 803 TD_INVARIANTS_GET(gd->gd_curthread); 804 805 /* 806 * If an interrupt is pending, clear i_running and execute the 807 * handlers. Note that certain types of interrupts can re-trigger 808 * and set i_running again. 809 * 810 * Each handler is run in a critical section. Note that we run both 811 * FAST and SLOW designated service routines. 812 */ 813 if (info->i_running) { 814 ++ill_count; 815 info->i_running = 0; 816 817 if (*list == NULL) 818 report_stray_interrupt(intr, info); 819 820 for (rec = *list; rec; rec = nrec) { 821 /* rec may be invalid after call */ 822 nrec = rec->next; 823 if (rec->serializer) { 824 lwkt_serialize_handler_call(rec->serializer, rec->handler, 825 rec->argument, NULL); 826 } else { 827 rec->handler(rec->argument, NULL); 828 } 829 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name); 830 } 831 } 832 833 /* 834 * This is our interrupt hook to add rate randomness to the random 835 * number generator. 836 */ 837 if (info->i_random.sc_enabled > 0) 838 add_interrupt_randomness(intr); 839 840 /* 841 * Unmask the interrupt to allow it to trigger again. This only 842 * applies to certain types of interrupts (typ level interrupts). 843 * This can result in the interrupt retriggering, but the retrigger 844 * will not be processed until we cycle our critical section. 845 * 846 * Only unmask interrupts while handlers are installed. It is 847 * possible to hit a situation where no handlers are installed 848 * due to a device driver livelocking and then tearing down its 849 * interrupt on close (the parallel bus being a good example). 850 */ 851 if (*list) 852 machintr_intren(intr); 853 854 /* 855 * Do a quick exit/enter to catch any higher-priority interrupt 856 * sources, such as the statclock, so thread time accounting 857 * will still work. This may also cause an interrupt to re-trigger. 858 */ 859 crit_exit_gd(gd); 860 crit_enter_gd(gd); 861 862 /* 863 * LIVELOCK STATE MACHINE 864 */ 865 switch(info->i_state) { 866 case ISTATE_NORMAL: 867 /* 868 * Reset the count each second. 869 */ 870 if (lseconds != gd->gd_time_seconds) { 871 lseconds = gd->gd_time_seconds; 872 ill_count = 0; 873 } 874 875 /* 876 * If we did not exceed the frequency limit, we are done. 877 * If the interrupt has not retriggered we deschedule ourselves. 878 */ 879 if (ill_count <= livelock_limit) { 880 if (info->i_running == 0) { 881 lwkt_deschedule_self(gd->gd_curthread); 882 lwkt_switch(); 883 } 884 break; 885 } 886 887 /* 888 * Otherwise we are livelocked. Set up a periodic systimer 889 * to wake the thread up at the limit frequency. 890 */ 891 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n", 892 intr, ill_count, livelock_limit); 893 info->i_state = ISTATE_LIVELOCKED; 894 if ((use_limit = livelock_limit) < 100) 895 use_limit = 100; 896 else if (use_limit > 500000) 897 use_limit = 500000; 898 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup, 899 (void *)(intptr_t)intr, use_limit); 900 /* fall through */ 901 case ISTATE_LIVELOCKED: 902 /* 903 * Wait for our periodic timer to go off. Since the interrupt 904 * has re-armed it can still set i_running, but it will not 905 * reschedule us while we are in a livelocked state. 906 */ 907 lwkt_deschedule_self(gd->gd_curthread); 908 lwkt_switch(); 909 910 /* 911 * Check once a second to see if the livelock condition no 912 * longer applies. 913 */ 914 if (lseconds != gd->gd_time_seconds) { 915 lseconds = gd->gd_time_seconds; 916 if (ill_count < livelock_lowater) { 917 info->i_state = ISTATE_NORMAL; 918 systimer_del(&ill_timer); 919 kprintf("intr %d at %d/%d hz, livelock removed\n", 920 intr, ill_count, livelock_lowater); 921 } else if (livelock_debug == intr || 922 (bootverbose && cold)) { 923 kprintf("intr %d at %d/%d hz, in livelock\n", 924 intr, ill_count, livelock_lowater); 925 } 926 ill_count = 0; 927 } 928 break; 929 } 930 } 931 /* NOT REACHED */ 932 } 933 934 /* 935 * Emergency interrupt polling thread. The thread begins execution 936 * outside a critical section with the BGL held. 937 * 938 * If emergency interrupt polling is enabled, this thread will 939 * execute all system interrupts not marked INTR_NOPOLL at the 940 * specified polling frequency. 941 * 942 * WARNING! This thread runs *ALL* interrupt service routines that 943 * are not marked INTR_NOPOLL, which basically means everything except 944 * the 8254 clock interrupt and the ATA interrupt. It has very high 945 * overhead and should only be used in situations where the machine 946 * cannot otherwise be made to work. Due to the severe performance 947 * degredation, it should not be enabled on production machines. 948 */ 949 static void 950 ithread_emergency(void *arg __unused) 951 { 952 globaldata_t gd = mycpu; 953 struct intr_info *info; 954 intrec_t rec, nrec; 955 int intr; 956 TD_INVARIANTS_DECLARE; 957 958 get_mplock(); 959 crit_enter_gd(gd); 960 TD_INVARIANTS_GET(gd->gd_curthread); 961 962 for (;;) { 963 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 964 info = &intr_info_ary[intr]; 965 for (rec = info->i_reclist; rec; rec = nrec) { 966 /* rec may be invalid after call */ 967 nrec = rec->next; 968 if ((rec->intr_flags & INTR_NOPOLL) == 0) { 969 if (rec->serializer) { 970 lwkt_serialize_handler_try(rec->serializer, 971 rec->handler, rec->argument, NULL); 972 } else { 973 rec->handler(rec->argument, NULL); 974 } 975 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name); 976 } 977 } 978 } 979 lwkt_deschedule_self(gd->gd_curthread); 980 lwkt_switch(); 981 } 982 /* NOT REACHED */ 983 } 984 985 /* 986 * Systimer callback - schedule the emergency interrupt poll thread 987 * if emergency polling is enabled. 988 */ 989 static 990 void 991 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused, 992 struct intrframe *frame __unused) 993 { 994 if (emergency_intr_enable) 995 lwkt_schedule(info->data); 996 } 997 998 int 999 ithread_cpuid(int intr) 1000 { 1001 const struct intr_info *info; 1002 1003 KKASSERT(intr >= 0 && intr < MAX_INTS); 1004 info = &intr_info_ary[intr]; 1005 1006 if (info->i_state == ISTATE_NOTHREAD) 1007 return -1; 1008 return info->i_thread.td_gd->gd_cpuid; 1009 } 1010 1011 /* 1012 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 1013 * The data for this machine dependent, and the declarations are in machine 1014 * dependent code. The layout of intrnames and intrcnt however is machine 1015 * independent. 1016 * 1017 * We do not know the length of intrcnt and intrnames at compile time, so 1018 * calculate things at run time. 1019 */ 1020 1021 static int 1022 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 1023 { 1024 struct intr_info *info; 1025 intrec_t rec; 1026 int error = 0; 1027 int len; 1028 int intr; 1029 char buf[64]; 1030 1031 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) { 1032 info = &intr_info_ary[intr]; 1033 1034 len = 0; 1035 buf[0] = 0; 1036 for (rec = info->i_reclist; rec; rec = rec->next) { 1037 ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 1038 (len ? "/" : ""), rec->name); 1039 len += strlen(buf + len); 1040 } 1041 if (len == 0) { 1042 ksnprintf(buf, sizeof(buf), "irq%d", intr); 1043 len = strlen(buf); 1044 } 1045 error = SYSCTL_OUT(req, buf, len + 1); 1046 } 1047 return (error); 1048 } 1049 1050 1051 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1052 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1053 1054 static int 1055 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1056 { 1057 struct intr_info *info; 1058 int error = 0; 1059 int intr; 1060 1061 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 1062 info = &intr_info_ary[intr]; 1063 1064 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1065 if (error) 1066 goto failed; 1067 } 1068 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) { 1069 info = &intr_info_ary[intr]; 1070 1071 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1072 if (error) 1073 goto failed; 1074 } 1075 failed: 1076 return(error); 1077 } 1078 1079 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1080 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1081 1082 static int 1083 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS) 1084 { 1085 struct intr_info *info; 1086 int error = 0; 1087 int intr; 1088 1089 for (intr = 0; intr < MAX_INTS; ++intr) { 1090 info = &intr_info_ary[intr]; 1091 1092 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1093 if (error) 1094 goto failed; 1095 } 1096 failed: 1097 return(error); 1098 } 1099 1100 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD, 1101 NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts"); 1102 1103 static void 1104 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr) 1105 { 1106 int orig_cpuid = mycpuid, cpuid; 1107 char envpath[32]; 1108 1109 cpuid = orig_cpuid; 1110 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr); 1111 kgetenv_int(envpath, &cpuid); 1112 if (cpuid >= ncpus) 1113 cpuid = orig_cpuid; 1114 1115 if (cpuid != orig_cpuid) 1116 lwkt_migratecpu(cpuid); 1117 1118 *orig_cpuid0 = orig_cpuid; 1119 *cpuid0 = cpuid; 1120 } 1121 1122 static void 1123 int_moveto_origcpu(int orig_cpuid, int cpuid) 1124 { 1125 if (cpuid != orig_cpuid) 1126 lwkt_migratecpu(orig_cpuid); 1127 } 1128