xref: /dflybsd-src/sys/kern/kern_intr.c (revision b792147d2d9a225bb5c9a0d9ab69d4dbf010979e)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
28  *
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/thread2.h>
39 #include <sys/random.h>
40 #include <sys/serialize.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 #include <sys/machintr.h>
44 
45 #include <machine/frame.h>
46 
47 #include <sys/interrupt.h>
48 
49 struct info_info;
50 
51 typedef struct intrec {
52     struct intrec *next;
53     struct intr_info *info;
54     inthand2_t	*handler;
55     void	*argument;
56     char	*name;
57     int		intr;
58     int		intr_flags;
59     struct lwkt_serialize *serializer;
60 } *intrec_t;
61 
62 struct intr_info {
63 	intrec_t	i_reclist;
64 	struct thread	i_thread;
65 	struct random_softc i_random;
66 	int		i_running;
67 	long		i_count;	/* interrupts dispatched */
68 	int		i_mplock_required;
69 	int		i_fast;
70 	int		i_slow;
71 	int		i_state;
72 	int		i_errorticks;
73 	unsigned long	i_straycount;
74 } intr_info_ary[MAX_INTS];
75 
76 int max_installed_hard_intr;
77 int max_installed_soft_intr;
78 
79 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
80 
81 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
82 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
83 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
84 static void ithread_handler(void *arg);
85 static void ithread_emergency(void *arg);
86 static void report_stray_interrupt(int intr, struct intr_info *info);
87 
88 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
89 
90 static struct systimer emergency_intr_timer;
91 static struct thread emergency_intr_thread;
92 
93 #define ISTATE_NOTHREAD		0
94 #define ISTATE_NORMAL		1
95 #define ISTATE_LIVELOCKED	2
96 
97 #ifdef SMP
98 static int intr_mpsafe = 1;
99 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
100 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
101         CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
102 #endif
103 static int livelock_limit = 40000;
104 static int livelock_lowater = 20000;
105 static int livelock_debug = -1;
106 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
107         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
108 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
109         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
110 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
111         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
112 
113 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
114 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
115 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
116         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
117 
118 static int emergency_intr_freq = 10;	/* emergency polling frequency */
119 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
120 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
121         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
122 
123 /*
124  * Sysctl support routines
125  */
126 static int
127 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
128 {
129 	int error, enabled;
130 
131 	enabled = emergency_intr_enable;
132 	error = sysctl_handle_int(oidp, &enabled, 0, req);
133 	if (error || req->newptr == NULL)
134 		return error;
135 	emergency_intr_enable = enabled;
136 	if (emergency_intr_enable) {
137 		systimer_adjust_periodic(&emergency_intr_timer,
138 					 emergency_intr_freq);
139 	} else {
140 		systimer_adjust_periodic(&emergency_intr_timer, 1);
141 	}
142 	return 0;
143 }
144 
145 static int
146 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
147 {
148         int error, phz;
149 
150         phz = emergency_intr_freq;
151         error = sysctl_handle_int(oidp, &phz, 0, req);
152         if (error || req->newptr == NULL)
153                 return error;
154         if (phz <= 0)
155                 return EINVAL;
156         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
157                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
158 
159         emergency_intr_freq = phz;
160 	if (emergency_intr_enable) {
161 		systimer_adjust_periodic(&emergency_intr_timer,
162 					 emergency_intr_freq);
163 	} else {
164 		systimer_adjust_periodic(&emergency_intr_timer, 1);
165 	}
166         return 0;
167 }
168 
169 /*
170  * Register an SWI or INTerrupt handler.
171  */
172 void *
173 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
174 		struct lwkt_serialize *serializer)
175 {
176     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
177 	panic("register_swi: bad intr %d", intr);
178     return(register_int(intr, handler, arg, name, serializer, 0));
179 }
180 
181 void *
182 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
183 		struct lwkt_serialize *serializer, int intr_flags)
184 {
185     struct intr_info *info;
186     struct intrec **list;
187     intrec_t rec;
188     int orig_cpuid = mycpuid, cpuid;
189     char envpath[32];
190 
191     if (intr < 0 || intr >= MAX_INTS)
192 	panic("register_int: bad intr %d", intr);
193     if (name == NULL)
194 	name = "???";
195     info = &intr_info_ary[intr];
196 
197     /*
198      * Construct an interrupt handler record
199      */
200     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
201     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
202     strcpy(rec->name, name);
203 
204     rec->info = info;
205     rec->handler = handler;
206     rec->argument = arg;
207     rec->intr = intr;
208     rec->intr_flags = intr_flags;
209     rec->next = NULL;
210     rec->serializer = serializer;
211 
212     /*
213      * Create an emergency polling thread and set up a systimer to wake
214      * it up.
215      */
216     if (emergency_intr_thread.td_kstack == NULL) {
217 	lwkt_create(ithread_emergency, NULL, NULL,
218 		    &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
219 		    "ithread emerg");
220 	systimer_init_periodic_nq(&emergency_intr_timer,
221 		    emergency_intr_timer_callback, &emergency_intr_thread,
222 		    (emergency_intr_enable ? emergency_intr_freq : 1));
223     }
224 
225     cpuid = orig_cpuid;
226     ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
227     kgetenv_int(envpath, &cpuid);
228     if (cpuid >= ncpus)
229 	cpuid = orig_cpuid;
230 
231     if (cpuid != orig_cpuid)
232 	lwkt_migratecpu(cpuid);
233 
234     /*
235      * Create an interrupt thread if necessary, leave it in an unscheduled
236      * state.
237      */
238     if (info->i_state == ISTATE_NOTHREAD) {
239 	info->i_state = ISTATE_NORMAL;
240 	lwkt_create((void *)ithread_handler, (void *)intr, NULL,
241 	    &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
242 	    "ithread %d", intr);
243 	if (intr >= FIRST_SOFTINT)
244 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
245 	else
246 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
247 	info->i_thread.td_preemptable = lwkt_preempt;
248     }
249 
250     list = &info->i_reclist;
251 
252     /*
253      * Keep track of how many fast and slow interrupts we have.
254      * Set i_mplock_required if any handler in the chain requires
255      * the MP lock to operate.
256      */
257     if ((intr_flags & INTR_MPSAFE) == 0)
258 	info->i_mplock_required = 1;
259     if (intr_flags & INTR_FAST)
260 	++info->i_fast;
261     else
262 	++info->i_slow;
263 
264     /*
265      * Enable random number generation keying off of this interrupt.
266      */
267     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
268 	info->i_random.sc_enabled = 1;
269 	info->i_random.sc_intr = intr;
270     }
271 
272     /*
273      * Add the record to the interrupt list.
274      */
275     crit_enter();
276     while (*list != NULL)
277 	list = &(*list)->next;
278     *list = rec;
279     crit_exit();
280 
281     /*
282      * Update max_installed_hard_intr to make the emergency intr poll
283      * a bit more efficient.
284      */
285     if (intr < FIRST_SOFTINT) {
286 	if (max_installed_hard_intr <= intr)
287 	    max_installed_hard_intr = intr + 1;
288     } else {
289 	if (max_installed_soft_intr <= intr)
290 	    max_installed_soft_intr = intr + 1;
291     }
292 
293     /*
294      * Setup the machine level interrupt vector
295      *
296      * XXX temporary workaround for some ACPI brokedness.  ACPI installs
297      * its interrupt too early, before the IOAPICs have been configured,
298      * which means the IOAPIC is not enabled by the registration of the
299      * ACPI interrupt.  Anything else sharing that IRQ will wind up not
300      * being enabled.  Temporarily work around the problem by always
301      * installing and enabling on every new interrupt handler, even
302      * if one has already been setup on that irq.
303      */
304     if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
305 	if (machintr_vector_setup(intr, intr_flags))
306 	    kprintf("machintr_vector_setup: failed on irq %d\n", intr);
307     }
308 
309     if (cpuid != orig_cpuid)
310 	lwkt_migratecpu(orig_cpuid);
311 
312     return(rec);
313 }
314 
315 void
316 unregister_swi(void *id)
317 {
318     unregister_int(id);
319 }
320 
321 void
322 unregister_int(void *id)
323 {
324     struct intr_info *info;
325     struct intrec **list;
326     intrec_t rec;
327     int intr;
328 
329     intr = ((intrec_t)id)->intr;
330 
331     if (intr < 0 || intr >= MAX_INTS)
332 	panic("register_int: bad intr %d", intr);
333 
334     info = &intr_info_ary[intr];
335 
336     /*
337      * Remove the interrupt descriptor, adjust the descriptor count,
338      * and teardown the machine level vector if this was the last interrupt.
339      */
340     crit_enter();
341     list = &info->i_reclist;
342     while ((rec = *list) != NULL) {
343 	if (rec == id)
344 	    break;
345 	list = &rec->next;
346     }
347     if (rec) {
348 	intrec_t rec0;
349 
350 	*list = rec->next;
351 	if (rec->intr_flags & INTR_FAST)
352 	    --info->i_fast;
353 	else
354 	    --info->i_slow;
355 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
356 	    machintr_vector_teardown(intr);
357 
358 	/*
359 	 * Clear i_mplock_required if no handlers in the chain require the
360 	 * MP lock.
361 	 */
362 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
363 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
364 		break;
365 	}
366 	if (rec0 == NULL)
367 	    info->i_mplock_required = 0;
368     }
369 
370     crit_exit();
371 
372     /*
373      * Free the record.
374      */
375     if (rec != NULL) {
376 	kfree(rec->name, M_DEVBUF);
377 	kfree(rec, M_DEVBUF);
378     } else {
379 	kprintf("warning: unregister_int: int %d handler for %s not found\n",
380 		intr, ((intrec_t)id)->name);
381     }
382 }
383 
384 const char *
385 get_registered_name(int intr)
386 {
387     intrec_t rec;
388 
389     if (intr < 0 || intr >= MAX_INTS)
390 	panic("register_int: bad intr %d", intr);
391 
392     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
393 	return(NULL);
394     else if (rec->next)
395 	return("mux");
396     else
397 	return(rec->name);
398 }
399 
400 int
401 count_registered_ints(int intr)
402 {
403     struct intr_info *info;
404 
405     if (intr < 0 || intr >= MAX_INTS)
406 	panic("register_int: bad intr %d", intr);
407     info = &intr_info_ary[intr];
408     return(info->i_fast + info->i_slow);
409 }
410 
411 long
412 get_interrupt_counter(int intr)
413 {
414     struct intr_info *info;
415 
416     if (intr < 0 || intr >= MAX_INTS)
417 	panic("register_int: bad intr %d", intr);
418     info = &intr_info_ary[intr];
419     return(info->i_count);
420 }
421 
422 
423 void
424 swi_setpriority(int intr, int pri)
425 {
426     struct intr_info *info;
427 
428     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
429 	panic("register_swi: bad intr %d", intr);
430     info = &intr_info_ary[intr];
431     if (info->i_state != ISTATE_NOTHREAD)
432 	lwkt_setpri(&info->i_thread, pri);
433 }
434 
435 void
436 register_randintr(int intr)
437 {
438     struct intr_info *info;
439 
440     if (intr < 0 || intr >= MAX_INTS)
441 	panic("register_randintr: bad intr %d", intr);
442     info = &intr_info_ary[intr];
443     info->i_random.sc_intr = intr;
444     info->i_random.sc_enabled = 1;
445 }
446 
447 void
448 unregister_randintr(int intr)
449 {
450     struct intr_info *info;
451 
452     if (intr < 0 || intr >= MAX_INTS)
453 	panic("register_swi: bad intr %d", intr);
454     info = &intr_info_ary[intr];
455     info->i_random.sc_enabled = -1;
456 }
457 
458 int
459 next_registered_randintr(int intr)
460 {
461     struct intr_info *info;
462 
463     if (intr < 0 || intr >= MAX_INTS)
464 	panic("register_swi: bad intr %d", intr);
465     while (intr < MAX_INTS) {
466 	info = &intr_info_ary[intr];
467 	if (info->i_random.sc_enabled > 0)
468 	    break;
469 	++intr;
470     }
471     return(intr);
472 }
473 
474 /*
475  * Dispatch an interrupt.  If there's nothing to do we have a stray
476  * interrupt and can just return, leaving the interrupt masked.
477  *
478  * We need to schedule the interrupt and set its i_running bit.  If
479  * we are not on the interrupt thread's cpu we have to send a message
480  * to the correct cpu that will issue the desired action (interlocking
481  * with the interrupt thread's critical section).  We do NOT attempt to
482  * reschedule interrupts whos i_running bit is already set because
483  * this would prematurely wakeup a livelock-limited interrupt thread.
484  *
485  * i_running is only tested/set on the same cpu as the interrupt thread.
486  *
487  * We are NOT in a critical section, which will allow the scheduled
488  * interrupt to preempt us.  The MP lock might *NOT* be held here.
489  */
490 #ifdef SMP
491 
492 static void
493 sched_ithd_remote(void *arg)
494 {
495     sched_ithd((int)arg);
496 }
497 
498 #endif
499 
500 void
501 sched_ithd(int intr)
502 {
503     struct intr_info *info;
504 
505     info = &intr_info_ary[intr];
506 
507     ++info->i_count;
508     if (info->i_state != ISTATE_NOTHREAD) {
509 	if (info->i_reclist == NULL) {
510 	    report_stray_interrupt(intr, info);
511 	} else {
512 #ifdef SMP
513 	    if (info->i_thread.td_gd == mycpu) {
514 		if (info->i_running == 0) {
515 		    info->i_running = 1;
516 		    if (info->i_state != ISTATE_LIVELOCKED)
517 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
518 		}
519 	    } else {
520 		lwkt_send_ipiq(info->i_thread.td_gd,
521 				sched_ithd_remote, (void *)intr);
522 	    }
523 #else
524 	    if (info->i_running == 0) {
525 		info->i_running = 1;
526 		if (info->i_state != ISTATE_LIVELOCKED)
527 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
528 	    }
529 #endif
530 	}
531     } else {
532 	report_stray_interrupt(intr, info);
533     }
534 }
535 
536 static void
537 report_stray_interrupt(int intr, struct intr_info *info)
538 {
539 	++info->i_straycount;
540 	if (info->i_straycount < 10) {
541 		if (info->i_errorticks == ticks)
542 			return;
543 		info->i_errorticks = ticks;
544 		kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
545 			intr, mycpuid);
546 	} else if (info->i_straycount == 10) {
547 		kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
548 			"there will be no further reports\n",
549 			info->i_straycount, intr, mycpuid);
550 	}
551 }
552 
553 /*
554  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
555  * might not be held).
556  */
557 static void
558 ithread_livelock_wakeup(systimer_t st)
559 {
560     struct intr_info *info;
561 
562     info = &intr_info_ary[(int)st->data];
563     if (info->i_state != ISTATE_NOTHREAD)
564 	lwkt_schedule(&info->i_thread);
565 }
566 
567 /*
568  * This function is called directly from the ICU or APIC vector code assembly
569  * to process an interrupt.  The critical section and interrupt deferral
570  * checks have already been done but the function is entered WITHOUT
571  * a critical section held.  The BGL may or may not be held.
572  *
573  * Must return non-zero if we do not want the vector code to re-enable
574  * the interrupt (which we don't if we have to schedule the interrupt)
575  */
576 int ithread_fast_handler(struct intrframe *frame);
577 
578 int
579 ithread_fast_handler(struct intrframe *frame)
580 {
581     int intr;
582     struct intr_info *info;
583     struct intrec **list;
584     int must_schedule;
585 #ifdef SMP
586     int got_mplock;
587 #endif
588     intrec_t rec, next_rec;
589     globaldata_t gd;
590 
591     intr = frame->if_vec;
592     gd = mycpu;
593 
594     info = &intr_info_ary[intr];
595 
596     /*
597      * If we are not processing any FAST interrupts, just schedule the thing.
598      * (since we aren't in a critical section, this can result in a
599      * preemption)
600      *
601      * XXX Protect sched_ithd() call with gd_intr_nesting_level? Interrupts
602      * aren't enabled, but still...
603      */
604     if (info->i_fast == 0) {
605     	++gd->gd_cnt.v_intr;
606 	sched_ithd(intr);
607 	return(1);
608     }
609 
610     /*
611      * This should not normally occur since interrupts ought to be
612      * masked if the ithread has been scheduled or is running.
613      */
614     if (info->i_running)
615 	return(1);
616 
617     /*
618      * Bump the interrupt nesting level to process any FAST interrupts.
619      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
620      * schedule the interrupt thread to deal with the issue instead.
621      *
622      * To reduce overhead, just leave the MP lock held once it has been
623      * obtained.
624      */
625     crit_enter_gd(gd);
626     ++gd->gd_intr_nesting_level;
627     ++gd->gd_cnt.v_intr;
628     must_schedule = info->i_slow;
629 #ifdef SMP
630     got_mplock = 0;
631 #endif
632 
633     list = &info->i_reclist;
634     for (rec = *list; rec; rec = next_rec) {
635 	next_rec = rec->next;	/* rec may be invalid after call */
636 
637 	if (rec->intr_flags & INTR_FAST) {
638 #ifdef SMP
639 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
640 		if (try_mplock() == 0) {
641 		    int owner;
642 
643 		    /*
644 		     * If we couldn't get the MP lock try to forward it
645 		     * to the cpu holding the MP lock, setting must_schedule
646 		     * to -1 so we do not schedule and also do not unmask
647 		     * the interrupt.  Otherwise just schedule it.
648 		     */
649 		    owner = owner_mplock();
650 		    if (owner >= 0 && owner != gd->gd_cpuid) {
651 			lwkt_send_ipiq_bycpu(owner, forward_fastint_remote,
652 						(void *)intr);
653 			must_schedule = -1;
654 			++gd->gd_cnt.v_forwarded_ints;
655 		    } else {
656 			must_schedule = 1;
657 		    }
658 		    break;
659 		}
660 		got_mplock = 1;
661 	    }
662 #endif
663 	    if (rec->serializer) {
664 		must_schedule += lwkt_serialize_handler_try(
665 					rec->serializer, rec->handler,
666 					rec->argument, frame);
667 	    } else {
668 		rec->handler(rec->argument, frame);
669 	    }
670 	}
671     }
672 
673     /*
674      * Cleanup
675      */
676     --gd->gd_intr_nesting_level;
677 #ifdef SMP
678     if (got_mplock)
679 	rel_mplock();
680 #endif
681     crit_exit_gd(gd);
682 
683     /*
684      * If we had a problem, schedule the thread to catch the missed
685      * records (it will just re-run all of them).  A return value of 0
686      * indicates that all handlers have been run and the interrupt can
687      * be re-enabled, and a non-zero return indicates that the interrupt
688      * thread controls re-enablement.
689      */
690     if (must_schedule > 0)
691 	sched_ithd(intr);
692     else if (must_schedule == 0)
693 	++info->i_count;
694     return(must_schedule);
695 }
696 
697 #if 0
698 
699 6: ;                                                                    \
700         /* could not get the MP lock, forward the interrupt */          \
701         movl    mp_lock, %eax ;          /* check race */               \
702         cmpl    $MP_FREE_LOCK,%eax ;                                    \
703         je      2b ;                                                    \
704         incl    PCPU(cnt)+V_FORWARDED_INTS ;                            \
705         subl    $12,%esp ;                                              \
706         movl    $irq_num,8(%esp) ;                                      \
707         movl    $forward_fastint_remote,4(%esp) ;                       \
708         movl    %eax,(%esp) ;                                           \
709         call    lwkt_send_ipiq_bycpu ;                                  \
710         addl    $12,%esp ;                                              \
711         jmp     5f ;
712 
713 #endif
714 
715 
716 /*
717  * Interrupt threads run this as their main loop.
718  *
719  * The handler begins execution outside a critical section and with the BGL
720  * held.
721  *
722  * The i_running state starts at 0.  When an interrupt occurs, the hardware
723  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
724  * until all routines have run.  We then call ithread_done() to reenable
725  * the HW interrupt and deschedule us until the next interrupt.
726  *
727  * We are responsible for atomically checking i_running and ithread_done()
728  * is responsible for atomically checking for platform-specific delayed
729  * interrupts.  i_running for our irq is only set in the context of our cpu,
730  * so a critical section is a sufficient interlock.
731  */
732 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
733 
734 static void
735 ithread_handler(void *arg)
736 {
737     struct intr_info *info;
738     int use_limit;
739     __uint32_t lseconds;
740     int intr;
741     int mpheld;
742     struct intrec **list;
743     intrec_t rec, nrec;
744     globaldata_t gd;
745     struct systimer ill_timer;	/* enforced freq. timer */
746     u_int ill_count;		/* interrupt livelock counter */
747 
748     ill_count = 0;
749     intr = (int)arg;
750     info = &intr_info_ary[intr];
751     list = &info->i_reclist;
752     gd = mycpu;
753     lseconds = gd->gd_time_seconds;
754 
755     /*
756      * The loop must be entered with one critical section held.  The thread
757      * is created with TDF_MPSAFE so the MP lock is not held on start.
758      */
759     crit_enter_gd(gd);
760     mpheld = 0;
761 
762     for (;;) {
763 	/*
764 	 * The chain is only considered MPSAFE if all its interrupt handlers
765 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
766 	 * always operate with the BGL.
767 	 */
768 #ifdef SMP
769 	if (intr_mpsafe == 0) {
770 	    if (mpheld == 0) {
771 		get_mplock();
772 		mpheld = 1;
773 	    }
774 	} else if (info->i_mplock_required != mpheld) {
775 	    if (info->i_mplock_required) {
776 		KKASSERT(mpheld == 0);
777 		get_mplock();
778 		mpheld = 1;
779 	    } else {
780 		KKASSERT(mpheld != 0);
781 		rel_mplock();
782 		mpheld = 0;
783 	    }
784 	}
785 #endif
786 
787 	/*
788 	 * If an interrupt is pending, clear i_running and execute the
789 	 * handlers.  Note that certain types of interrupts can re-trigger
790 	 * and set i_running again.
791 	 *
792 	 * Each handler is run in a critical section.  Note that we run both
793 	 * FAST and SLOW designated service routines.
794 	 */
795 	if (info->i_running) {
796 	    ++ill_count;
797 	    info->i_running = 0;
798 
799 	    if (*list == NULL)
800 		report_stray_interrupt(intr, info);
801 
802 	    for (rec = *list; rec; rec = nrec) {
803 		nrec = rec->next;
804 		if (rec->serializer) {
805 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
806 						rec->argument, NULL);
807 		} else {
808 		    rec->handler(rec->argument, NULL);
809 		}
810 	    }
811 	}
812 
813 	/*
814 	 * This is our interrupt hook to add rate randomness to the random
815 	 * number generator.
816 	 */
817 	if (info->i_random.sc_enabled > 0)
818 	    add_interrupt_randomness(intr);
819 
820 	/*
821 	 * Unmask the interrupt to allow it to trigger again.  This only
822 	 * applies to certain types of interrupts (typ level interrupts).
823 	 * This can result in the interrupt retriggering, but the retrigger
824 	 * will not be processed until we cycle our critical section.
825 	 *
826 	 * Only unmask interrupts while handlers are installed.  It is
827 	 * possible to hit a situation where no handlers are installed
828 	 * due to a device driver livelocking and then tearing down its
829 	 * interrupt on close (the parallel bus being a good example).
830 	 */
831 	if (*list)
832 	    machintr_intren(intr);
833 
834 	/*
835 	 * Do a quick exit/enter to catch any higher-priority interrupt
836 	 * sources, such as the statclock, so thread time accounting
837 	 * will still work.  This may also cause an interrupt to re-trigger.
838 	 */
839 	crit_exit_gd(gd);
840 	crit_enter_gd(gd);
841 
842 	/*
843 	 * LIVELOCK STATE MACHINE
844 	 */
845 	switch(info->i_state) {
846 	case ISTATE_NORMAL:
847 	    /*
848 	     * Reset the count each second.
849 	     */
850 	    if (lseconds != gd->gd_time_seconds) {
851 		lseconds = gd->gd_time_seconds;
852 		ill_count = 0;
853 	    }
854 
855 	    /*
856 	     * If we did not exceed the frequency limit, we are done.
857 	     * If the interrupt has not retriggered we deschedule ourselves.
858 	     */
859 	    if (ill_count <= livelock_limit) {
860 		if (info->i_running == 0) {
861 		    lwkt_deschedule_self(gd->gd_curthread);
862 		    lwkt_switch();
863 		}
864 		break;
865 	    }
866 
867 	    /*
868 	     * Otherwise we are livelocked.  Set up a periodic systimer
869 	     * to wake the thread up at the limit frequency.
870 	     */
871 	    kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
872 		   intr, ill_count, livelock_limit);
873 	    info->i_state = ISTATE_LIVELOCKED;
874 	    if ((use_limit = livelock_limit) < 100)
875 		use_limit = 100;
876 	    else if (use_limit > 500000)
877 		use_limit = 500000;
878 	    systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
879 	    			      (void *)intr, use_limit);
880 	    /* fall through */
881 	case ISTATE_LIVELOCKED:
882 	    /*
883 	     * Wait for our periodic timer to go off.  Since the interrupt
884 	     * has re-armed it can still set i_running, but it will not
885 	     * reschedule us while we are in a livelocked state.
886 	     */
887 	    lwkt_deschedule_self(gd->gd_curthread);
888 	    lwkt_switch();
889 
890 	    /*
891 	     * Check once a second to see if the livelock condition no
892 	     * longer applies.
893 	     */
894 	    if (lseconds != gd->gd_time_seconds) {
895 		lseconds = gd->gd_time_seconds;
896 		if (ill_count < livelock_lowater) {
897 		    info->i_state = ISTATE_NORMAL;
898 		    systimer_del(&ill_timer);
899 		    kprintf("intr %d at %d/%d hz, livelock removed\n",
900 			   intr, ill_count, livelock_lowater);
901 		} else if (livelock_debug == intr ||
902 			   (bootverbose && cold)) {
903 		    kprintf("intr %d at %d/%d hz, in livelock\n",
904 			   intr, ill_count, livelock_lowater);
905 		}
906 		ill_count = 0;
907 	    }
908 	    break;
909 	}
910     }
911     /* not reached */
912 }
913 
914 /*
915  * Emergency interrupt polling thread.  The thread begins execution
916  * outside a critical section with the BGL held.
917  *
918  * If emergency interrupt polling is enabled, this thread will
919  * execute all system interrupts not marked INTR_NOPOLL at the
920  * specified polling frequency.
921  *
922  * WARNING!  This thread runs *ALL* interrupt service routines that
923  * are not marked INTR_NOPOLL, which basically means everything except
924  * the 8254 clock interrupt and the ATA interrupt.  It has very high
925  * overhead and should only be used in situations where the machine
926  * cannot otherwise be made to work.  Due to the severe performance
927  * degredation, it should not be enabled on production machines.
928  */
929 static void
930 ithread_emergency(void *arg __unused)
931 {
932     struct intr_info *info;
933     intrec_t rec, nrec;
934     int intr;
935 
936     for (;;) {
937 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
938 	    info = &intr_info_ary[intr];
939 	    for (rec = info->i_reclist; rec; rec = nrec) {
940 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
941 		    if (rec->serializer) {
942 			lwkt_serialize_handler_call(rec->serializer,
943 						rec->handler, rec->argument, NULL);
944 		    } else {
945 			rec->handler(rec->argument, NULL);
946 		    }
947 		}
948 		nrec = rec->next;
949 	    }
950 	}
951 	lwkt_deschedule_self(curthread);
952 	lwkt_switch();
953     }
954 }
955 
956 /*
957  * Systimer callback - schedule the emergency interrupt poll thread
958  * 		       if emergency polling is enabled.
959  */
960 static
961 void
962 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
963 {
964     if (emergency_intr_enable)
965 	lwkt_schedule(info->data);
966 }
967 
968 int
969 ithread_cpuid(int intr)
970 {
971 	const struct intr_info *info;
972 
973 	KKASSERT(intr >= 0 && intr < MAX_INTS);
974 	info = &intr_info_ary[intr];
975 
976 	if (info->i_state == ISTATE_NOTHREAD)
977 		return -1;
978 	return info->i_thread.td_gd->gd_cpuid;
979 }
980 
981 /*
982  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
983  * The data for this machine dependent, and the declarations are in machine
984  * dependent code.  The layout of intrnames and intrcnt however is machine
985  * independent.
986  *
987  * We do not know the length of intrcnt and intrnames at compile time, so
988  * calculate things at run time.
989  */
990 
991 static int
992 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
993 {
994     struct intr_info *info;
995     intrec_t rec;
996     int error = 0;
997     int len;
998     int intr;
999     char buf[64];
1000 
1001     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1002 	info = &intr_info_ary[intr];
1003 
1004 	len = 0;
1005 	buf[0] = 0;
1006 	for (rec = info->i_reclist; rec; rec = rec->next) {
1007 	    ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1008 		(len ? "/" : ""), rec->name);
1009 	    len += strlen(buf + len);
1010 	}
1011 	if (len == 0) {
1012 	    ksnprintf(buf, sizeof(buf), "irq%d", intr);
1013 	    len = strlen(buf);
1014 	}
1015 	error = SYSCTL_OUT(req, buf, len + 1);
1016     }
1017     return (error);
1018 }
1019 
1020 
1021 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1022 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1023 
1024 static int
1025 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1026 {
1027     struct intr_info *info;
1028     int error = 0;
1029     int intr;
1030 
1031     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1032 	info = &intr_info_ary[intr];
1033 
1034 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1035 	if (error)
1036 		goto failed;
1037     }
1038     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1039 	info = &intr_info_ary[intr];
1040 
1041 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1042 	if (error)
1043 		goto failed;
1044     }
1045 failed:
1046     return(error);
1047 }
1048 
1049 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1050 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1051 
1052