1 /* 2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved. 3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $ 27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $ 28 * 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/kernel.h> 35 #include <sys/sysctl.h> 36 #include <sys/thread.h> 37 #include <sys/proc.h> 38 #include <sys/thread2.h> 39 #include <sys/random.h> 40 #include <sys/serialize.h> 41 #include <sys/interrupt.h> 42 #include <sys/bus.h> 43 #include <sys/machintr.h> 44 45 #include <machine/frame.h> 46 47 #include <sys/interrupt.h> 48 49 struct info_info; 50 51 typedef struct intrec { 52 struct intrec *next; 53 struct intr_info *info; 54 inthand2_t *handler; 55 void *argument; 56 char *name; 57 int intr; 58 int intr_flags; 59 struct lwkt_serialize *serializer; 60 } *intrec_t; 61 62 struct intr_info { 63 intrec_t i_reclist; 64 struct thread i_thread; 65 struct random_softc i_random; 66 int i_running; 67 long i_count; /* interrupts dispatched */ 68 int i_mplock_required; 69 int i_fast; 70 int i_slow; 71 int i_state; 72 int i_errorticks; 73 unsigned long i_straycount; 74 } intr_info_ary[MAX_INTS]; 75 76 int max_installed_hard_intr; 77 int max_installed_soft_intr; 78 79 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000 80 81 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS); 82 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS); 83 static void emergency_intr_timer_callback(systimer_t, struct intrframe *); 84 static void ithread_handler(void *arg); 85 static void ithread_emergency(void *arg); 86 static void report_stray_interrupt(int intr, struct intr_info *info); 87 88 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]); 89 90 static struct systimer emergency_intr_timer; 91 static struct thread emergency_intr_thread; 92 93 #define ISTATE_NOTHREAD 0 94 #define ISTATE_NORMAL 1 95 #define ISTATE_LIVELOCKED 2 96 97 #ifdef SMP 98 static int intr_mpsafe = 1; 99 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe); 100 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe, 101 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL"); 102 #endif 103 static int livelock_limit = 40000; 104 static int livelock_lowater = 20000; 105 static int livelock_debug = -1; 106 SYSCTL_INT(_kern, OID_AUTO, livelock_limit, 107 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit"); 108 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater, 109 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore"); 110 SYSCTL_INT(_kern, OID_AUTO, livelock_debug, 111 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#"); 112 113 static int emergency_intr_enable = 0; /* emergency interrupt polling */ 114 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable); 115 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW, 116 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable"); 117 118 static int emergency_intr_freq = 10; /* emergency polling frequency */ 119 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq); 120 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW, 121 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency"); 122 123 /* 124 * Sysctl support routines 125 */ 126 static int 127 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS) 128 { 129 int error, enabled; 130 131 enabled = emergency_intr_enable; 132 error = sysctl_handle_int(oidp, &enabled, 0, req); 133 if (error || req->newptr == NULL) 134 return error; 135 emergency_intr_enable = enabled; 136 if (emergency_intr_enable) { 137 systimer_adjust_periodic(&emergency_intr_timer, 138 emergency_intr_freq); 139 } else { 140 systimer_adjust_periodic(&emergency_intr_timer, 1); 141 } 142 return 0; 143 } 144 145 static int 146 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS) 147 { 148 int error, phz; 149 150 phz = emergency_intr_freq; 151 error = sysctl_handle_int(oidp, &phz, 0, req); 152 if (error || req->newptr == NULL) 153 return error; 154 if (phz <= 0) 155 return EINVAL; 156 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX) 157 phz = EMERGENCY_INTR_POLLING_FREQ_MAX; 158 159 emergency_intr_freq = phz; 160 if (emergency_intr_enable) { 161 systimer_adjust_periodic(&emergency_intr_timer, 162 emergency_intr_freq); 163 } else { 164 systimer_adjust_periodic(&emergency_intr_timer, 1); 165 } 166 return 0; 167 } 168 169 /* 170 * Register an SWI or INTerrupt handler. 171 */ 172 void * 173 register_swi(int intr, inthand2_t *handler, void *arg, const char *name, 174 struct lwkt_serialize *serializer) 175 { 176 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 177 panic("register_swi: bad intr %d", intr); 178 return(register_int(intr, handler, arg, name, serializer, 0)); 179 } 180 181 void * 182 register_int(int intr, inthand2_t *handler, void *arg, const char *name, 183 struct lwkt_serialize *serializer, int intr_flags) 184 { 185 struct intr_info *info; 186 struct intrec **list; 187 intrec_t rec; 188 int orig_cpuid = mycpuid, cpuid; 189 char envpath[32]; 190 191 if (intr < 0 || intr >= MAX_INTS) 192 panic("register_int: bad intr %d", intr); 193 if (name == NULL) 194 name = "???"; 195 info = &intr_info_ary[intr]; 196 197 /* 198 * Construct an interrupt handler record 199 */ 200 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT); 201 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT); 202 strcpy(rec->name, name); 203 204 rec->info = info; 205 rec->handler = handler; 206 rec->argument = arg; 207 rec->intr = intr; 208 rec->intr_flags = intr_flags; 209 rec->next = NULL; 210 rec->serializer = serializer; 211 212 /* 213 * Create an emergency polling thread and set up a systimer to wake 214 * it up. 215 */ 216 if (emergency_intr_thread.td_kstack == NULL) { 217 lwkt_create(ithread_emergency, NULL, NULL, 218 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1, 219 "ithread emerg"); 220 systimer_init_periodic_nq(&emergency_intr_timer, 221 emergency_intr_timer_callback, &emergency_intr_thread, 222 (emergency_intr_enable ? emergency_intr_freq : 1)); 223 } 224 225 cpuid = orig_cpuid; 226 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr); 227 kgetenv_int(envpath, &cpuid); 228 if (cpuid >= ncpus) 229 cpuid = orig_cpuid; 230 231 if (cpuid != orig_cpuid) 232 lwkt_migratecpu(cpuid); 233 234 /* 235 * Create an interrupt thread if necessary, leave it in an unscheduled 236 * state. 237 */ 238 if (info->i_state == ISTATE_NOTHREAD) { 239 info->i_state = ISTATE_NORMAL; 240 lwkt_create((void *)ithread_handler, (void *)intr, NULL, 241 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1, 242 "ithread %d", intr); 243 if (intr >= FIRST_SOFTINT) 244 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM); 245 else 246 lwkt_setpri(&info->i_thread, TDPRI_INT_MED); 247 info->i_thread.td_preemptable = lwkt_preempt; 248 } 249 250 list = &info->i_reclist; 251 252 /* 253 * Keep track of how many fast and slow interrupts we have. 254 * Set i_mplock_required if any handler in the chain requires 255 * the MP lock to operate. 256 */ 257 if ((intr_flags & INTR_MPSAFE) == 0) 258 info->i_mplock_required = 1; 259 if (intr_flags & INTR_FAST) 260 ++info->i_fast; 261 else 262 ++info->i_slow; 263 264 /* 265 * Enable random number generation keying off of this interrupt. 266 */ 267 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) { 268 info->i_random.sc_enabled = 1; 269 info->i_random.sc_intr = intr; 270 } 271 272 /* 273 * Add the record to the interrupt list. 274 */ 275 crit_enter(); 276 while (*list != NULL) 277 list = &(*list)->next; 278 *list = rec; 279 crit_exit(); 280 281 /* 282 * Update max_installed_hard_intr to make the emergency intr poll 283 * a bit more efficient. 284 */ 285 if (intr < FIRST_SOFTINT) { 286 if (max_installed_hard_intr <= intr) 287 max_installed_hard_intr = intr + 1; 288 } else { 289 if (max_installed_soft_intr <= intr) 290 max_installed_soft_intr = intr + 1; 291 } 292 293 /* 294 * Setup the machine level interrupt vector 295 * 296 * XXX temporary workaround for some ACPI brokedness. ACPI installs 297 * its interrupt too early, before the IOAPICs have been configured, 298 * which means the IOAPIC is not enabled by the registration of the 299 * ACPI interrupt. Anything else sharing that IRQ will wind up not 300 * being enabled. Temporarily work around the problem by always 301 * installing and enabling on every new interrupt handler, even 302 * if one has already been setup on that irq. 303 */ 304 if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) { 305 if (machintr_vector_setup(intr, intr_flags)) 306 kprintf("machintr_vector_setup: failed on irq %d\n", intr); 307 } 308 309 if (cpuid != orig_cpuid) 310 lwkt_migratecpu(orig_cpuid); 311 312 return(rec); 313 } 314 315 void 316 unregister_swi(void *id) 317 { 318 unregister_int(id); 319 } 320 321 void 322 unregister_int(void *id) 323 { 324 struct intr_info *info; 325 struct intrec **list; 326 intrec_t rec; 327 int intr; 328 329 intr = ((intrec_t)id)->intr; 330 331 if (intr < 0 || intr >= MAX_INTS) 332 panic("register_int: bad intr %d", intr); 333 334 info = &intr_info_ary[intr]; 335 336 /* 337 * Remove the interrupt descriptor, adjust the descriptor count, 338 * and teardown the machine level vector if this was the last interrupt. 339 */ 340 crit_enter(); 341 list = &info->i_reclist; 342 while ((rec = *list) != NULL) { 343 if (rec == id) 344 break; 345 list = &rec->next; 346 } 347 if (rec) { 348 intrec_t rec0; 349 350 *list = rec->next; 351 if (rec->intr_flags & INTR_FAST) 352 --info->i_fast; 353 else 354 --info->i_slow; 355 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0) 356 machintr_vector_teardown(intr); 357 358 /* 359 * Clear i_mplock_required if no handlers in the chain require the 360 * MP lock. 361 */ 362 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) { 363 if ((rec0->intr_flags & INTR_MPSAFE) == 0) 364 break; 365 } 366 if (rec0 == NULL) 367 info->i_mplock_required = 0; 368 } 369 370 crit_exit(); 371 372 /* 373 * Free the record. 374 */ 375 if (rec != NULL) { 376 kfree(rec->name, M_DEVBUF); 377 kfree(rec, M_DEVBUF); 378 } else { 379 kprintf("warning: unregister_int: int %d handler for %s not found\n", 380 intr, ((intrec_t)id)->name); 381 } 382 } 383 384 const char * 385 get_registered_name(int intr) 386 { 387 intrec_t rec; 388 389 if (intr < 0 || intr >= MAX_INTS) 390 panic("register_int: bad intr %d", intr); 391 392 if ((rec = intr_info_ary[intr].i_reclist) == NULL) 393 return(NULL); 394 else if (rec->next) 395 return("mux"); 396 else 397 return(rec->name); 398 } 399 400 int 401 count_registered_ints(int intr) 402 { 403 struct intr_info *info; 404 405 if (intr < 0 || intr >= MAX_INTS) 406 panic("register_int: bad intr %d", intr); 407 info = &intr_info_ary[intr]; 408 return(info->i_fast + info->i_slow); 409 } 410 411 long 412 get_interrupt_counter(int intr) 413 { 414 struct intr_info *info; 415 416 if (intr < 0 || intr >= MAX_INTS) 417 panic("register_int: bad intr %d", intr); 418 info = &intr_info_ary[intr]; 419 return(info->i_count); 420 } 421 422 423 void 424 swi_setpriority(int intr, int pri) 425 { 426 struct intr_info *info; 427 428 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 429 panic("register_swi: bad intr %d", intr); 430 info = &intr_info_ary[intr]; 431 if (info->i_state != ISTATE_NOTHREAD) 432 lwkt_setpri(&info->i_thread, pri); 433 } 434 435 void 436 register_randintr(int intr) 437 { 438 struct intr_info *info; 439 440 if (intr < 0 || intr >= MAX_INTS) 441 panic("register_randintr: bad intr %d", intr); 442 info = &intr_info_ary[intr]; 443 info->i_random.sc_intr = intr; 444 info->i_random.sc_enabled = 1; 445 } 446 447 void 448 unregister_randintr(int intr) 449 { 450 struct intr_info *info; 451 452 if (intr < 0 || intr >= MAX_INTS) 453 panic("register_swi: bad intr %d", intr); 454 info = &intr_info_ary[intr]; 455 info->i_random.sc_enabled = -1; 456 } 457 458 int 459 next_registered_randintr(int intr) 460 { 461 struct intr_info *info; 462 463 if (intr < 0 || intr >= MAX_INTS) 464 panic("register_swi: bad intr %d", intr); 465 while (intr < MAX_INTS) { 466 info = &intr_info_ary[intr]; 467 if (info->i_random.sc_enabled > 0) 468 break; 469 ++intr; 470 } 471 return(intr); 472 } 473 474 /* 475 * Dispatch an interrupt. If there's nothing to do we have a stray 476 * interrupt and can just return, leaving the interrupt masked. 477 * 478 * We need to schedule the interrupt and set its i_running bit. If 479 * we are not on the interrupt thread's cpu we have to send a message 480 * to the correct cpu that will issue the desired action (interlocking 481 * with the interrupt thread's critical section). We do NOT attempt to 482 * reschedule interrupts whos i_running bit is already set because 483 * this would prematurely wakeup a livelock-limited interrupt thread. 484 * 485 * i_running is only tested/set on the same cpu as the interrupt thread. 486 * 487 * We are NOT in a critical section, which will allow the scheduled 488 * interrupt to preempt us. The MP lock might *NOT* be held here. 489 */ 490 #ifdef SMP 491 492 static void 493 sched_ithd_remote(void *arg) 494 { 495 sched_ithd((int)arg); 496 } 497 498 #endif 499 500 void 501 sched_ithd(int intr) 502 { 503 struct intr_info *info; 504 505 info = &intr_info_ary[intr]; 506 507 ++info->i_count; 508 if (info->i_state != ISTATE_NOTHREAD) { 509 if (info->i_reclist == NULL) { 510 report_stray_interrupt(intr, info); 511 } else { 512 #ifdef SMP 513 if (info->i_thread.td_gd == mycpu) { 514 if (info->i_running == 0) { 515 info->i_running = 1; 516 if (info->i_state != ISTATE_LIVELOCKED) 517 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 518 } 519 } else { 520 lwkt_send_ipiq(info->i_thread.td_gd, 521 sched_ithd_remote, (void *)intr); 522 } 523 #else 524 if (info->i_running == 0) { 525 info->i_running = 1; 526 if (info->i_state != ISTATE_LIVELOCKED) 527 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 528 } 529 #endif 530 } 531 } else { 532 report_stray_interrupt(intr, info); 533 } 534 } 535 536 static void 537 report_stray_interrupt(int intr, struct intr_info *info) 538 { 539 ++info->i_straycount; 540 if (info->i_straycount < 10) { 541 if (info->i_errorticks == ticks) 542 return; 543 info->i_errorticks = ticks; 544 kprintf("sched_ithd: stray interrupt %d on cpu %d\n", 545 intr, mycpuid); 546 } else if (info->i_straycount == 10) { 547 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - " 548 "there will be no further reports\n", 549 info->i_straycount, intr, mycpuid); 550 } 551 } 552 553 /* 554 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL 555 * might not be held). 556 */ 557 static void 558 ithread_livelock_wakeup(systimer_t st) 559 { 560 struct intr_info *info; 561 562 info = &intr_info_ary[(int)st->data]; 563 if (info->i_state != ISTATE_NOTHREAD) 564 lwkt_schedule(&info->i_thread); 565 } 566 567 /* 568 * This function is called directly from the ICU or APIC vector code assembly 569 * to process an interrupt. The critical section and interrupt deferral 570 * checks have already been done but the function is entered WITHOUT 571 * a critical section held. The BGL may or may not be held. 572 * 573 * Must return non-zero if we do not want the vector code to re-enable 574 * the interrupt (which we don't if we have to schedule the interrupt) 575 */ 576 int ithread_fast_handler(struct intrframe *frame); 577 578 int 579 ithread_fast_handler(struct intrframe *frame) 580 { 581 int intr; 582 struct intr_info *info; 583 struct intrec **list; 584 int must_schedule; 585 #ifdef SMP 586 int got_mplock; 587 #endif 588 intrec_t rec, next_rec; 589 globaldata_t gd; 590 591 intr = frame->if_vec; 592 gd = mycpu; 593 594 info = &intr_info_ary[intr]; 595 596 /* 597 * If we are not processing any FAST interrupts, just schedule the thing. 598 * (since we aren't in a critical section, this can result in a 599 * preemption) 600 * 601 * XXX Protect sched_ithd() call with gd_intr_nesting_level? Interrupts 602 * aren't enabled, but still... 603 */ 604 if (info->i_fast == 0) { 605 ++gd->gd_cnt.v_intr; 606 sched_ithd(intr); 607 return(1); 608 } 609 610 /* 611 * This should not normally occur since interrupts ought to be 612 * masked if the ithread has been scheduled or is running. 613 */ 614 if (info->i_running) 615 return(1); 616 617 /* 618 * Bump the interrupt nesting level to process any FAST interrupts. 619 * Obtain the MP lock as necessary. If the MP lock cannot be obtained, 620 * schedule the interrupt thread to deal with the issue instead. 621 * 622 * To reduce overhead, just leave the MP lock held once it has been 623 * obtained. 624 */ 625 crit_enter_gd(gd); 626 ++gd->gd_intr_nesting_level; 627 ++gd->gd_cnt.v_intr; 628 must_schedule = info->i_slow; 629 #ifdef SMP 630 got_mplock = 0; 631 #endif 632 633 list = &info->i_reclist; 634 for (rec = *list; rec; rec = next_rec) { 635 next_rec = rec->next; /* rec may be invalid after call */ 636 637 if (rec->intr_flags & INTR_FAST) { 638 #ifdef SMP 639 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) { 640 if (try_mplock() == 0) { 641 int owner; 642 643 /* 644 * If we couldn't get the MP lock try to forward it 645 * to the cpu holding the MP lock, setting must_schedule 646 * to -1 so we do not schedule and also do not unmask 647 * the interrupt. Otherwise just schedule it. 648 */ 649 owner = owner_mplock(); 650 if (owner >= 0 && owner != gd->gd_cpuid) { 651 lwkt_send_ipiq_bycpu(owner, forward_fastint_remote, 652 (void *)intr); 653 must_schedule = -1; 654 ++gd->gd_cnt.v_forwarded_ints; 655 } else { 656 must_schedule = 1; 657 } 658 break; 659 } 660 got_mplock = 1; 661 } 662 #endif 663 if (rec->serializer) { 664 must_schedule += lwkt_serialize_handler_try( 665 rec->serializer, rec->handler, 666 rec->argument, frame); 667 } else { 668 rec->handler(rec->argument, frame); 669 } 670 } 671 } 672 673 /* 674 * Cleanup 675 */ 676 --gd->gd_intr_nesting_level; 677 #ifdef SMP 678 if (got_mplock) 679 rel_mplock(); 680 #endif 681 crit_exit_gd(gd); 682 683 /* 684 * If we had a problem, schedule the thread to catch the missed 685 * records (it will just re-run all of them). A return value of 0 686 * indicates that all handlers have been run and the interrupt can 687 * be re-enabled, and a non-zero return indicates that the interrupt 688 * thread controls re-enablement. 689 */ 690 if (must_schedule > 0) 691 sched_ithd(intr); 692 else if (must_schedule == 0) 693 ++info->i_count; 694 return(must_schedule); 695 } 696 697 #if 0 698 699 6: ; \ 700 /* could not get the MP lock, forward the interrupt */ \ 701 movl mp_lock, %eax ; /* check race */ \ 702 cmpl $MP_FREE_LOCK,%eax ; \ 703 je 2b ; \ 704 incl PCPU(cnt)+V_FORWARDED_INTS ; \ 705 subl $12,%esp ; \ 706 movl $irq_num,8(%esp) ; \ 707 movl $forward_fastint_remote,4(%esp) ; \ 708 movl %eax,(%esp) ; \ 709 call lwkt_send_ipiq_bycpu ; \ 710 addl $12,%esp ; \ 711 jmp 5f ; 712 713 #endif 714 715 716 /* 717 * Interrupt threads run this as their main loop. 718 * 719 * The handler begins execution outside a critical section and with the BGL 720 * held. 721 * 722 * The i_running state starts at 0. When an interrupt occurs, the hardware 723 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled 724 * until all routines have run. We then call ithread_done() to reenable 725 * the HW interrupt and deschedule us until the next interrupt. 726 * 727 * We are responsible for atomically checking i_running and ithread_done() 728 * is responsible for atomically checking for platform-specific delayed 729 * interrupts. i_running for our irq is only set in the context of our cpu, 730 * so a critical section is a sufficient interlock. 731 */ 732 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */ 733 734 static void 735 ithread_handler(void *arg) 736 { 737 struct intr_info *info; 738 int use_limit; 739 __uint32_t lseconds; 740 int intr; 741 int mpheld; 742 struct intrec **list; 743 intrec_t rec, nrec; 744 globaldata_t gd; 745 struct systimer ill_timer; /* enforced freq. timer */ 746 u_int ill_count; /* interrupt livelock counter */ 747 748 ill_count = 0; 749 intr = (int)arg; 750 info = &intr_info_ary[intr]; 751 list = &info->i_reclist; 752 gd = mycpu; 753 lseconds = gd->gd_time_seconds; 754 755 /* 756 * The loop must be entered with one critical section held. The thread 757 * is created with TDF_MPSAFE so the MP lock is not held on start. 758 */ 759 crit_enter_gd(gd); 760 mpheld = 0; 761 762 for (;;) { 763 /* 764 * The chain is only considered MPSAFE if all its interrupt handlers 765 * are MPSAFE. However, if intr_mpsafe has been turned off we 766 * always operate with the BGL. 767 */ 768 #ifdef SMP 769 if (intr_mpsafe == 0) { 770 if (mpheld == 0) { 771 get_mplock(); 772 mpheld = 1; 773 } 774 } else if (info->i_mplock_required != mpheld) { 775 if (info->i_mplock_required) { 776 KKASSERT(mpheld == 0); 777 get_mplock(); 778 mpheld = 1; 779 } else { 780 KKASSERT(mpheld != 0); 781 rel_mplock(); 782 mpheld = 0; 783 } 784 } 785 #endif 786 787 /* 788 * If an interrupt is pending, clear i_running and execute the 789 * handlers. Note that certain types of interrupts can re-trigger 790 * and set i_running again. 791 * 792 * Each handler is run in a critical section. Note that we run both 793 * FAST and SLOW designated service routines. 794 */ 795 if (info->i_running) { 796 ++ill_count; 797 info->i_running = 0; 798 799 if (*list == NULL) 800 report_stray_interrupt(intr, info); 801 802 for (rec = *list; rec; rec = nrec) { 803 nrec = rec->next; 804 if (rec->serializer) { 805 lwkt_serialize_handler_call(rec->serializer, rec->handler, 806 rec->argument, NULL); 807 } else { 808 rec->handler(rec->argument, NULL); 809 } 810 } 811 } 812 813 /* 814 * This is our interrupt hook to add rate randomness to the random 815 * number generator. 816 */ 817 if (info->i_random.sc_enabled > 0) 818 add_interrupt_randomness(intr); 819 820 /* 821 * Unmask the interrupt to allow it to trigger again. This only 822 * applies to certain types of interrupts (typ level interrupts). 823 * This can result in the interrupt retriggering, but the retrigger 824 * will not be processed until we cycle our critical section. 825 * 826 * Only unmask interrupts while handlers are installed. It is 827 * possible to hit a situation where no handlers are installed 828 * due to a device driver livelocking and then tearing down its 829 * interrupt on close (the parallel bus being a good example). 830 */ 831 if (*list) 832 machintr_intren(intr); 833 834 /* 835 * Do a quick exit/enter to catch any higher-priority interrupt 836 * sources, such as the statclock, so thread time accounting 837 * will still work. This may also cause an interrupt to re-trigger. 838 */ 839 crit_exit_gd(gd); 840 crit_enter_gd(gd); 841 842 /* 843 * LIVELOCK STATE MACHINE 844 */ 845 switch(info->i_state) { 846 case ISTATE_NORMAL: 847 /* 848 * Reset the count each second. 849 */ 850 if (lseconds != gd->gd_time_seconds) { 851 lseconds = gd->gd_time_seconds; 852 ill_count = 0; 853 } 854 855 /* 856 * If we did not exceed the frequency limit, we are done. 857 * If the interrupt has not retriggered we deschedule ourselves. 858 */ 859 if (ill_count <= livelock_limit) { 860 if (info->i_running == 0) { 861 lwkt_deschedule_self(gd->gd_curthread); 862 lwkt_switch(); 863 } 864 break; 865 } 866 867 /* 868 * Otherwise we are livelocked. Set up a periodic systimer 869 * to wake the thread up at the limit frequency. 870 */ 871 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n", 872 intr, ill_count, livelock_limit); 873 info->i_state = ISTATE_LIVELOCKED; 874 if ((use_limit = livelock_limit) < 100) 875 use_limit = 100; 876 else if (use_limit > 500000) 877 use_limit = 500000; 878 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup, 879 (void *)intr, use_limit); 880 /* fall through */ 881 case ISTATE_LIVELOCKED: 882 /* 883 * Wait for our periodic timer to go off. Since the interrupt 884 * has re-armed it can still set i_running, but it will not 885 * reschedule us while we are in a livelocked state. 886 */ 887 lwkt_deschedule_self(gd->gd_curthread); 888 lwkt_switch(); 889 890 /* 891 * Check once a second to see if the livelock condition no 892 * longer applies. 893 */ 894 if (lseconds != gd->gd_time_seconds) { 895 lseconds = gd->gd_time_seconds; 896 if (ill_count < livelock_lowater) { 897 info->i_state = ISTATE_NORMAL; 898 systimer_del(&ill_timer); 899 kprintf("intr %d at %d/%d hz, livelock removed\n", 900 intr, ill_count, livelock_lowater); 901 } else if (livelock_debug == intr || 902 (bootverbose && cold)) { 903 kprintf("intr %d at %d/%d hz, in livelock\n", 904 intr, ill_count, livelock_lowater); 905 } 906 ill_count = 0; 907 } 908 break; 909 } 910 } 911 /* not reached */ 912 } 913 914 /* 915 * Emergency interrupt polling thread. The thread begins execution 916 * outside a critical section with the BGL held. 917 * 918 * If emergency interrupt polling is enabled, this thread will 919 * execute all system interrupts not marked INTR_NOPOLL at the 920 * specified polling frequency. 921 * 922 * WARNING! This thread runs *ALL* interrupt service routines that 923 * are not marked INTR_NOPOLL, which basically means everything except 924 * the 8254 clock interrupt and the ATA interrupt. It has very high 925 * overhead and should only be used in situations where the machine 926 * cannot otherwise be made to work. Due to the severe performance 927 * degredation, it should not be enabled on production machines. 928 */ 929 static void 930 ithread_emergency(void *arg __unused) 931 { 932 struct intr_info *info; 933 intrec_t rec, nrec; 934 int intr; 935 936 for (;;) { 937 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 938 info = &intr_info_ary[intr]; 939 for (rec = info->i_reclist; rec; rec = nrec) { 940 if ((rec->intr_flags & INTR_NOPOLL) == 0) { 941 if (rec->serializer) { 942 lwkt_serialize_handler_call(rec->serializer, 943 rec->handler, rec->argument, NULL); 944 } else { 945 rec->handler(rec->argument, NULL); 946 } 947 } 948 nrec = rec->next; 949 } 950 } 951 lwkt_deschedule_self(curthread); 952 lwkt_switch(); 953 } 954 } 955 956 /* 957 * Systimer callback - schedule the emergency interrupt poll thread 958 * if emergency polling is enabled. 959 */ 960 static 961 void 962 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused) 963 { 964 if (emergency_intr_enable) 965 lwkt_schedule(info->data); 966 } 967 968 int 969 ithread_cpuid(int intr) 970 { 971 const struct intr_info *info; 972 973 KKASSERT(intr >= 0 && intr < MAX_INTS); 974 info = &intr_info_ary[intr]; 975 976 if (info->i_state == ISTATE_NOTHREAD) 977 return -1; 978 return info->i_thread.td_gd->gd_cpuid; 979 } 980 981 /* 982 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 983 * The data for this machine dependent, and the declarations are in machine 984 * dependent code. The layout of intrnames and intrcnt however is machine 985 * independent. 986 * 987 * We do not know the length of intrcnt and intrnames at compile time, so 988 * calculate things at run time. 989 */ 990 991 static int 992 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 993 { 994 struct intr_info *info; 995 intrec_t rec; 996 int error = 0; 997 int len; 998 int intr; 999 char buf[64]; 1000 1001 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) { 1002 info = &intr_info_ary[intr]; 1003 1004 len = 0; 1005 buf[0] = 0; 1006 for (rec = info->i_reclist; rec; rec = rec->next) { 1007 ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 1008 (len ? "/" : ""), rec->name); 1009 len += strlen(buf + len); 1010 } 1011 if (len == 0) { 1012 ksnprintf(buf, sizeof(buf), "irq%d", intr); 1013 len = strlen(buf); 1014 } 1015 error = SYSCTL_OUT(req, buf, len + 1); 1016 } 1017 return (error); 1018 } 1019 1020 1021 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1022 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1023 1024 static int 1025 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1026 { 1027 struct intr_info *info; 1028 int error = 0; 1029 int intr; 1030 1031 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 1032 info = &intr_info_ary[intr]; 1033 1034 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1035 if (error) 1036 goto failed; 1037 } 1038 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) { 1039 info = &intr_info_ary[intr]; 1040 1041 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1042 if (error) 1043 goto failed; 1044 } 1045 failed: 1046 return(error); 1047 } 1048 1049 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1050 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1051 1052