1 /* 2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved. 3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $ 27 * 28 */ 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/malloc.h> 33 #include <sys/kernel.h> 34 #include <sys/sysctl.h> 35 #include <sys/thread.h> 36 #include <sys/proc.h> 37 #include <sys/random.h> 38 #include <sys/serialize.h> 39 #include <sys/interrupt.h> 40 #include <sys/bus.h> 41 #include <sys/machintr.h> 42 43 #include <machine/frame.h> 44 45 #include <sys/interrupt.h> 46 47 #include <sys/thread2.h> 48 #include <sys/mplock2.h> 49 50 struct info_info; 51 52 typedef struct intrec { 53 struct intrec *next; 54 struct intr_info *info; 55 inthand2_t *handler; 56 void *argument; 57 char *name; 58 int intr; 59 int intr_flags; 60 struct lwkt_serialize *serializer; 61 } *intrec_t; 62 63 struct intr_info { 64 intrec_t i_reclist; 65 struct thread i_thread; 66 struct random_softc i_random; 67 int i_running; 68 long i_count; /* interrupts dispatched */ 69 int i_mplock_required; 70 int i_fast; 71 int i_slow; 72 int i_state; 73 int i_errorticks; 74 unsigned long i_straycount; 75 } intr_info_ary[MAX_INTS]; 76 77 int max_installed_hard_intr; 78 int max_installed_soft_intr; 79 80 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000 81 82 /* 83 * Assert that callers into interrupt handlers don't return with 84 * dangling tokens, spinlocks, or mp locks. 85 */ 86 #ifdef INVARIANTS 87 88 #define TD_INVARIANTS_DECLARE \ 89 int spincount; \ 90 lwkt_tokref_t curstop 91 92 #define TD_INVARIANTS_GET(td) \ 93 do { \ 94 spincount = (td)->td_gd->gd_spinlocks_wr; \ 95 curstop = (td)->td_toks_stop; \ 96 } while(0) 97 98 #define TD_INVARIANTS_TEST(td, name) \ 99 do { \ 100 KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr, \ 101 ("spincount mismatch after interrupt handler %s", \ 102 name)); \ 103 KASSERT(curstop == (td)->td_toks_stop, \ 104 ("token count mismatch after interrupt handler %s", \ 105 name)); \ 106 } while(0) 107 108 #else 109 110 /* !INVARIANTS */ 111 112 #define TD_INVARIANTS_DECLARE 113 #define TD_INVARIANTS_GET(td) 114 #define TD_INVARIANTS_TEST(td, name) 115 116 #endif /* ndef INVARIANTS */ 117 118 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS); 119 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS); 120 static void emergency_intr_timer_callback(systimer_t, int, struct intrframe *); 121 static void ithread_handler(void *arg); 122 static void ithread_emergency(void *arg); 123 static void report_stray_interrupt(int intr, struct intr_info *info); 124 static void int_moveto_destcpu(int *, int *, int); 125 static void int_moveto_origcpu(int, int); 126 127 int intr_info_size = NELEM(intr_info_ary); 128 129 static struct systimer emergency_intr_timer; 130 static struct thread emergency_intr_thread; 131 132 #define ISTATE_NOTHREAD 0 133 #define ISTATE_NORMAL 1 134 #define ISTATE_LIVELOCKED 2 135 136 static int livelock_limit = 40000; 137 static int livelock_lowater = 20000; 138 static int livelock_debug = -1; 139 SYSCTL_INT(_kern, OID_AUTO, livelock_limit, 140 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit"); 141 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater, 142 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore"); 143 SYSCTL_INT(_kern, OID_AUTO, livelock_debug, 144 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#"); 145 146 static int emergency_intr_enable = 0; /* emergency interrupt polling */ 147 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable); 148 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW, 149 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable"); 150 151 static int emergency_intr_freq = 10; /* emergency polling frequency */ 152 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq); 153 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW, 154 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency"); 155 156 /* 157 * Sysctl support routines 158 */ 159 static int 160 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS) 161 { 162 int error, enabled; 163 164 enabled = emergency_intr_enable; 165 error = sysctl_handle_int(oidp, &enabled, 0, req); 166 if (error || req->newptr == NULL) 167 return error; 168 emergency_intr_enable = enabled; 169 if (emergency_intr_enable) { 170 systimer_adjust_periodic(&emergency_intr_timer, 171 emergency_intr_freq); 172 } else { 173 systimer_adjust_periodic(&emergency_intr_timer, 1); 174 } 175 return 0; 176 } 177 178 static int 179 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS) 180 { 181 int error, phz; 182 183 phz = emergency_intr_freq; 184 error = sysctl_handle_int(oidp, &phz, 0, req); 185 if (error || req->newptr == NULL) 186 return error; 187 if (phz <= 0) 188 return EINVAL; 189 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX) 190 phz = EMERGENCY_INTR_POLLING_FREQ_MAX; 191 192 emergency_intr_freq = phz; 193 if (emergency_intr_enable) { 194 systimer_adjust_periodic(&emergency_intr_timer, 195 emergency_intr_freq); 196 } else { 197 systimer_adjust_periodic(&emergency_intr_timer, 1); 198 } 199 return 0; 200 } 201 202 /* 203 * Register an SWI or INTerrupt handler. 204 */ 205 void * 206 register_swi(int intr, inthand2_t *handler, void *arg, const char *name, 207 struct lwkt_serialize *serializer) 208 { 209 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 210 panic("register_swi: bad intr %d", intr); 211 return(register_int(intr, handler, arg, name, serializer, 0)); 212 } 213 214 void * 215 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name, 216 struct lwkt_serialize *serializer) 217 { 218 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 219 panic("register_swi: bad intr %d", intr); 220 return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE)); 221 } 222 223 void * 224 register_int(int intr, inthand2_t *handler, void *arg, const char *name, 225 struct lwkt_serialize *serializer, int intr_flags) 226 { 227 struct intr_info *info; 228 struct intrec **list; 229 intrec_t rec; 230 int orig_cpuid, cpuid; 231 232 if (intr < 0 || intr >= MAX_INTS) 233 panic("register_int: bad intr %d", intr); 234 if (name == NULL) 235 name = "???"; 236 info = &intr_info_ary[intr]; 237 238 /* 239 * Construct an interrupt handler record 240 */ 241 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT); 242 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT); 243 strcpy(rec->name, name); 244 245 rec->info = info; 246 rec->handler = handler; 247 rec->argument = arg; 248 rec->intr = intr; 249 rec->intr_flags = intr_flags; 250 rec->next = NULL; 251 rec->serializer = serializer; 252 253 /* 254 * Create an emergency polling thread and set up a systimer to wake 255 * it up. 256 */ 257 if (emergency_intr_thread.td_kstack == NULL) { 258 lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread, 259 TDF_STOPREQ | TDF_INTTHREAD, -1, "ithread emerg"); 260 systimer_init_periodic_nq(&emergency_intr_timer, 261 emergency_intr_timer_callback, &emergency_intr_thread, 262 (emergency_intr_enable ? emergency_intr_freq : 1)); 263 } 264 265 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 266 267 /* 268 * Create an interrupt thread if necessary, leave it in an unscheduled 269 * state. 270 */ 271 if (info->i_state == ISTATE_NOTHREAD) { 272 info->i_state = ISTATE_NORMAL; 273 lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL, 274 &info->i_thread, TDF_STOPREQ | TDF_INTTHREAD, -1, 275 "ithread %d", intr); 276 if (intr >= FIRST_SOFTINT) 277 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM); 278 else 279 lwkt_setpri(&info->i_thread, TDPRI_INT_MED); 280 info->i_thread.td_preemptable = lwkt_preempt; 281 } 282 283 list = &info->i_reclist; 284 285 /* 286 * Keep track of how many fast and slow interrupts we have. 287 * Set i_mplock_required if any handler in the chain requires 288 * the MP lock to operate. 289 */ 290 if ((intr_flags & INTR_MPSAFE) == 0) 291 info->i_mplock_required = 1; 292 if (intr_flags & INTR_CLOCK) 293 ++info->i_fast; 294 else 295 ++info->i_slow; 296 297 /* 298 * Enable random number generation keying off of this interrupt. 299 */ 300 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) { 301 info->i_random.sc_enabled = 1; 302 info->i_random.sc_intr = intr; 303 } 304 305 /* 306 * Add the record to the interrupt list. 307 */ 308 crit_enter(); 309 while (*list != NULL) 310 list = &(*list)->next; 311 *list = rec; 312 crit_exit(); 313 314 /* 315 * Update max_installed_hard_intr to make the emergency intr poll 316 * a bit more efficient. 317 */ 318 if (intr < FIRST_SOFTINT) { 319 if (max_installed_hard_intr <= intr) 320 max_installed_hard_intr = intr + 1; 321 } else { 322 if (max_installed_soft_intr <= intr) 323 max_installed_soft_intr = intr + 1; 324 } 325 326 /* 327 * Setup the machine level interrupt vector 328 */ 329 if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) 330 machintr_intr_setup(intr, intr_flags); 331 332 int_moveto_origcpu(orig_cpuid, cpuid); 333 334 return(rec); 335 } 336 337 void 338 unregister_swi(void *id) 339 { 340 unregister_int(id); 341 } 342 343 void 344 unregister_int(void *id) 345 { 346 struct intr_info *info; 347 struct intrec **list; 348 intrec_t rec; 349 int intr, orig_cpuid, cpuid; 350 351 intr = ((intrec_t)id)->intr; 352 353 if (intr < 0 || intr >= MAX_INTS) 354 panic("register_int: bad intr %d", intr); 355 356 info = &intr_info_ary[intr]; 357 358 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 359 360 /* 361 * Remove the interrupt descriptor, adjust the descriptor count, 362 * and teardown the machine level vector if this was the last interrupt. 363 */ 364 crit_enter(); 365 list = &info->i_reclist; 366 while ((rec = *list) != NULL) { 367 if (rec == id) 368 break; 369 list = &rec->next; 370 } 371 if (rec) { 372 intrec_t rec0; 373 374 *list = rec->next; 375 if (rec->intr_flags & INTR_CLOCK) 376 --info->i_fast; 377 else 378 --info->i_slow; 379 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0) 380 machintr_intr_teardown(intr); 381 382 /* 383 * Clear i_mplock_required if no handlers in the chain require the 384 * MP lock. 385 */ 386 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) { 387 if ((rec0->intr_flags & INTR_MPSAFE) == 0) 388 break; 389 } 390 if (rec0 == NULL) 391 info->i_mplock_required = 0; 392 } 393 394 crit_exit(); 395 396 int_moveto_origcpu(orig_cpuid, cpuid); 397 398 /* 399 * Free the record. 400 */ 401 if (rec != NULL) { 402 kfree(rec->name, M_DEVBUF); 403 kfree(rec, M_DEVBUF); 404 } else { 405 kprintf("warning: unregister_int: int %d handler for %s not found\n", 406 intr, ((intrec_t)id)->name); 407 } 408 } 409 410 const char * 411 get_registered_name(int intr) 412 { 413 intrec_t rec; 414 415 if (intr < 0 || intr >= MAX_INTS) 416 panic("register_int: bad intr %d", intr); 417 418 if ((rec = intr_info_ary[intr].i_reclist) == NULL) 419 return(NULL); 420 else if (rec->next) 421 return("mux"); 422 else 423 return(rec->name); 424 } 425 426 int 427 count_registered_ints(int intr) 428 { 429 struct intr_info *info; 430 431 if (intr < 0 || intr >= MAX_INTS) 432 panic("register_int: bad intr %d", intr); 433 info = &intr_info_ary[intr]; 434 return(info->i_fast + info->i_slow); 435 } 436 437 long 438 get_interrupt_counter(int intr) 439 { 440 struct intr_info *info; 441 442 if (intr < 0 || intr >= MAX_INTS) 443 panic("register_int: bad intr %d", intr); 444 info = &intr_info_ary[intr]; 445 return(info->i_count); 446 } 447 448 449 void 450 swi_setpriority(int intr, int pri) 451 { 452 struct intr_info *info; 453 454 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 455 panic("register_swi: bad intr %d", intr); 456 info = &intr_info_ary[intr]; 457 if (info->i_state != ISTATE_NOTHREAD) 458 lwkt_setpri(&info->i_thread, pri); 459 } 460 461 void 462 register_randintr(int intr) 463 { 464 struct intr_info *info; 465 466 if (intr < 0 || intr >= MAX_INTS) 467 panic("register_randintr: bad intr %d", intr); 468 info = &intr_info_ary[intr]; 469 info->i_random.sc_intr = intr; 470 info->i_random.sc_enabled = 1; 471 } 472 473 void 474 unregister_randintr(int intr) 475 { 476 struct intr_info *info; 477 478 if (intr < 0 || intr >= MAX_INTS) 479 panic("register_swi: bad intr %d", intr); 480 info = &intr_info_ary[intr]; 481 info->i_random.sc_enabled = -1; 482 } 483 484 int 485 next_registered_randintr(int intr) 486 { 487 struct intr_info *info; 488 489 if (intr < 0 || intr >= MAX_INTS) 490 panic("register_swi: bad intr %d", intr); 491 while (intr < MAX_INTS) { 492 info = &intr_info_ary[intr]; 493 if (info->i_random.sc_enabled > 0) 494 break; 495 ++intr; 496 } 497 return(intr); 498 } 499 500 /* 501 * Dispatch an interrupt. If there's nothing to do we have a stray 502 * interrupt and can just return, leaving the interrupt masked. 503 * 504 * We need to schedule the interrupt and set its i_running bit. If 505 * we are not on the interrupt thread's cpu we have to send a message 506 * to the correct cpu that will issue the desired action (interlocking 507 * with the interrupt thread's critical section). We do NOT attempt to 508 * reschedule interrupts whos i_running bit is already set because 509 * this would prematurely wakeup a livelock-limited interrupt thread. 510 * 511 * i_running is only tested/set on the same cpu as the interrupt thread. 512 * 513 * We are NOT in a critical section, which will allow the scheduled 514 * interrupt to preempt us. The MP lock might *NOT* be held here. 515 */ 516 #ifdef SMP 517 518 static void 519 sched_ithd_remote(void *arg) 520 { 521 sched_ithd((int)(intptr_t)arg); 522 } 523 524 #endif 525 526 void 527 sched_ithd(int intr) 528 { 529 struct intr_info *info; 530 531 info = &intr_info_ary[intr]; 532 533 ++info->i_count; 534 if (info->i_state != ISTATE_NOTHREAD) { 535 if (info->i_reclist == NULL) { 536 report_stray_interrupt(intr, info); 537 } else { 538 #ifdef SMP 539 if (info->i_thread.td_gd == mycpu) { 540 if (info->i_running == 0) { 541 info->i_running = 1; 542 if (info->i_state != ISTATE_LIVELOCKED) 543 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 544 } 545 } else { 546 lwkt_send_ipiq(info->i_thread.td_gd, 547 sched_ithd_remote, (void *)(intptr_t)intr); 548 } 549 #else 550 if (info->i_running == 0) { 551 info->i_running = 1; 552 if (info->i_state != ISTATE_LIVELOCKED) 553 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 554 } 555 #endif 556 } 557 } else { 558 report_stray_interrupt(intr, info); 559 } 560 } 561 562 static void 563 report_stray_interrupt(int intr, struct intr_info *info) 564 { 565 ++info->i_straycount; 566 if (info->i_straycount < 10) { 567 if (info->i_errorticks == ticks) 568 return; 569 info->i_errorticks = ticks; 570 kprintf("sched_ithd: stray interrupt %d on cpu %d\n", 571 intr, mycpuid); 572 } else if (info->i_straycount == 10) { 573 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - " 574 "there will be no further reports\n", 575 info->i_straycount, intr, mycpuid); 576 } 577 } 578 579 /* 580 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL 581 * might not be held). 582 */ 583 static void 584 ithread_livelock_wakeup(systimer_t st, int in_ipi __unused, 585 struct intrframe *frame __unused) 586 { 587 struct intr_info *info; 588 589 info = &intr_info_ary[(int)(intptr_t)st->data]; 590 if (info->i_state != ISTATE_NOTHREAD) 591 lwkt_schedule(&info->i_thread); 592 } 593 594 /* 595 * Schedule ithread within fast intr handler 596 * 597 * XXX Protect sched_ithd() call with gd_intr_nesting_level? 598 * Interrupts aren't enabled, but still... 599 */ 600 static __inline void 601 ithread_fast_sched(int intr, thread_t td) 602 { 603 ++td->td_nest_count; 604 605 /* 606 * We are already in critical section, exit it now to 607 * allow preemption. 608 */ 609 crit_exit_quick(td); 610 sched_ithd(intr); 611 crit_enter_quick(td); 612 613 --td->td_nest_count; 614 } 615 616 /* 617 * This function is called directly from the ICU or APIC vector code assembly 618 * to process an interrupt. The critical section and interrupt deferral 619 * checks have already been done but the function is entered WITHOUT 620 * a critical section held. The BGL may or may not be held. 621 * 622 * Must return non-zero if we do not want the vector code to re-enable 623 * the interrupt (which we don't if we have to schedule the interrupt) 624 */ 625 int ithread_fast_handler(struct intrframe *frame); 626 627 int 628 ithread_fast_handler(struct intrframe *frame) 629 { 630 int intr; 631 struct intr_info *info; 632 struct intrec **list; 633 int must_schedule; 634 #ifdef SMP 635 int got_mplock; 636 #endif 637 TD_INVARIANTS_DECLARE; 638 intrec_t rec, nrec; 639 globaldata_t gd; 640 thread_t td; 641 642 intr = frame->if_vec; 643 gd = mycpu; 644 td = curthread; 645 646 /* We must be in critical section. */ 647 KKASSERT(td->td_critcount); 648 649 info = &intr_info_ary[intr]; 650 651 /* 652 * If we are not processing any FAST interrupts, just schedule the thing. 653 */ 654 if (info->i_fast == 0) { 655 ++gd->gd_cnt.v_intr; 656 ithread_fast_sched(intr, td); 657 return(1); 658 } 659 660 /* 661 * This should not normally occur since interrupts ought to be 662 * masked if the ithread has been scheduled or is running. 663 */ 664 if (info->i_running) 665 return(1); 666 667 /* 668 * Bump the interrupt nesting level to process any FAST interrupts. 669 * Obtain the MP lock as necessary. If the MP lock cannot be obtained, 670 * schedule the interrupt thread to deal with the issue instead. 671 * 672 * To reduce overhead, just leave the MP lock held once it has been 673 * obtained. 674 */ 675 ++gd->gd_intr_nesting_level; 676 ++gd->gd_cnt.v_intr; 677 must_schedule = info->i_slow; 678 #ifdef SMP 679 got_mplock = 0; 680 #endif 681 682 TD_INVARIANTS_GET(td); 683 list = &info->i_reclist; 684 685 for (rec = *list; rec; rec = nrec) { 686 /* rec may be invalid after call */ 687 nrec = rec->next; 688 689 if (rec->intr_flags & INTR_CLOCK) { 690 #ifdef SMP 691 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) { 692 if (try_mplock() == 0) { 693 /* Couldn't get the MP lock; just schedule it. */ 694 must_schedule = 1; 695 break; 696 } 697 got_mplock = 1; 698 } 699 #endif 700 if (rec->serializer) { 701 must_schedule += lwkt_serialize_handler_try( 702 rec->serializer, rec->handler, 703 rec->argument, frame); 704 } else { 705 rec->handler(rec->argument, frame); 706 } 707 TD_INVARIANTS_TEST(td, rec->name); 708 } 709 } 710 711 /* 712 * Cleanup 713 */ 714 --gd->gd_intr_nesting_level; 715 #ifdef SMP 716 if (got_mplock) 717 rel_mplock(); 718 #endif 719 720 /* 721 * If we had a problem, or mixed fast and slow interrupt handlers are 722 * registered, schedule the ithread to catch the missed records (it 723 * will just re-run all of them). A return value of 0 indicates that 724 * all handlers have been run and the interrupt can be re-enabled, and 725 * a non-zero return indicates that the interrupt thread controls 726 * re-enablement. 727 */ 728 if (must_schedule > 0) 729 ithread_fast_sched(intr, td); 730 else if (must_schedule == 0) 731 ++info->i_count; 732 return(must_schedule); 733 } 734 735 /* 736 * Interrupt threads run this as their main loop. 737 * 738 * The handler begins execution outside a critical section and no MP lock. 739 * 740 * The i_running state starts at 0. When an interrupt occurs, the hardware 741 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled 742 * until all routines have run. We then call ithread_done() to reenable 743 * the HW interrupt and deschedule us until the next interrupt. 744 * 745 * We are responsible for atomically checking i_running and ithread_done() 746 * is responsible for atomically checking for platform-specific delayed 747 * interrupts. i_running for our irq is only set in the context of our cpu, 748 * so a critical section is a sufficient interlock. 749 */ 750 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */ 751 752 static void 753 ithread_handler(void *arg) 754 { 755 struct intr_info *info; 756 int use_limit; 757 __uint32_t lseconds; 758 int intr; 759 int mpheld; 760 struct intrec **list; 761 intrec_t rec, nrec; 762 globaldata_t gd; 763 struct systimer ill_timer; /* enforced freq. timer */ 764 u_int ill_count; /* interrupt livelock counter */ 765 TD_INVARIANTS_DECLARE; 766 767 ill_count = 0; 768 intr = (int)(intptr_t)arg; 769 info = &intr_info_ary[intr]; 770 list = &info->i_reclist; 771 772 /* 773 * The loop must be entered with one critical section held. The thread 774 * does not hold the mplock on startup. 775 */ 776 gd = mycpu; 777 lseconds = gd->gd_time_seconds; 778 crit_enter_gd(gd); 779 mpheld = 0; 780 781 for (;;) { 782 /* 783 * The chain is only considered MPSAFE if all its interrupt handlers 784 * are MPSAFE. However, if intr_mpsafe has been turned off we 785 * always operate with the BGL. 786 */ 787 #ifdef SMP 788 if (info->i_mplock_required != mpheld) { 789 if (info->i_mplock_required) { 790 KKASSERT(mpheld == 0); 791 get_mplock(); 792 mpheld = 1; 793 } else { 794 KKASSERT(mpheld != 0); 795 rel_mplock(); 796 mpheld = 0; 797 } 798 } 799 #endif 800 801 TD_INVARIANTS_GET(gd->gd_curthread); 802 803 /* 804 * If an interrupt is pending, clear i_running and execute the 805 * handlers. Note that certain types of interrupts can re-trigger 806 * and set i_running again. 807 * 808 * Each handler is run in a critical section. Note that we run both 809 * FAST and SLOW designated service routines. 810 */ 811 if (info->i_running) { 812 ++ill_count; 813 info->i_running = 0; 814 815 if (*list == NULL) 816 report_stray_interrupt(intr, info); 817 818 for (rec = *list; rec; rec = nrec) { 819 /* rec may be invalid after call */ 820 nrec = rec->next; 821 if (rec->serializer) { 822 lwkt_serialize_handler_call(rec->serializer, rec->handler, 823 rec->argument, NULL); 824 } else { 825 rec->handler(rec->argument, NULL); 826 } 827 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name); 828 } 829 } 830 831 /* 832 * This is our interrupt hook to add rate randomness to the random 833 * number generator. 834 */ 835 if (info->i_random.sc_enabled > 0) 836 add_interrupt_randomness(intr); 837 838 /* 839 * Unmask the interrupt to allow it to trigger again. This only 840 * applies to certain types of interrupts (typ level interrupts). 841 * This can result in the interrupt retriggering, but the retrigger 842 * will not be processed until we cycle our critical section. 843 * 844 * Only unmask interrupts while handlers are installed. It is 845 * possible to hit a situation where no handlers are installed 846 * due to a device driver livelocking and then tearing down its 847 * interrupt on close (the parallel bus being a good example). 848 */ 849 if (intr < FIRST_SOFTINT && *list) 850 machintr_intr_enable(intr); 851 852 /* 853 * Do a quick exit/enter to catch any higher-priority interrupt 854 * sources, such as the statclock, so thread time accounting 855 * will still work. This may also cause an interrupt to re-trigger. 856 */ 857 crit_exit_gd(gd); 858 crit_enter_gd(gd); 859 860 /* 861 * LIVELOCK STATE MACHINE 862 */ 863 switch(info->i_state) { 864 case ISTATE_NORMAL: 865 /* 866 * Reset the count each second. 867 */ 868 if (lseconds != gd->gd_time_seconds) { 869 lseconds = gd->gd_time_seconds; 870 ill_count = 0; 871 } 872 873 /* 874 * If we did not exceed the frequency limit, we are done. 875 * If the interrupt has not retriggered we deschedule ourselves. 876 */ 877 if (ill_count <= livelock_limit) { 878 if (info->i_running == 0) { 879 lwkt_deschedule_self(gd->gd_curthread); 880 lwkt_switch(); 881 } 882 break; 883 } 884 885 /* 886 * Otherwise we are livelocked. Set up a periodic systimer 887 * to wake the thread up at the limit frequency. 888 */ 889 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n", 890 intr, ill_count, livelock_limit); 891 info->i_state = ISTATE_LIVELOCKED; 892 if ((use_limit = livelock_limit) < 100) 893 use_limit = 100; 894 else if (use_limit > 500000) 895 use_limit = 500000; 896 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup, 897 (void *)(intptr_t)intr, use_limit); 898 /* fall through */ 899 case ISTATE_LIVELOCKED: 900 /* 901 * Wait for our periodic timer to go off. Since the interrupt 902 * has re-armed it can still set i_running, but it will not 903 * reschedule us while we are in a livelocked state. 904 */ 905 lwkt_deschedule_self(gd->gd_curthread); 906 lwkt_switch(); 907 908 /* 909 * Check once a second to see if the livelock condition no 910 * longer applies. 911 */ 912 if (lseconds != gd->gd_time_seconds) { 913 lseconds = gd->gd_time_seconds; 914 if (ill_count < livelock_lowater) { 915 info->i_state = ISTATE_NORMAL; 916 systimer_del(&ill_timer); 917 kprintf("intr %d at %d/%d hz, livelock removed\n", 918 intr, ill_count, livelock_lowater); 919 } else if (livelock_debug == intr || 920 (bootverbose && cold)) { 921 kprintf("intr %d at %d/%d hz, in livelock\n", 922 intr, ill_count, livelock_lowater); 923 } 924 ill_count = 0; 925 } 926 break; 927 } 928 } 929 /* NOT REACHED */ 930 } 931 932 /* 933 * Emergency interrupt polling thread. The thread begins execution 934 * outside a critical section with the BGL held. 935 * 936 * If emergency interrupt polling is enabled, this thread will 937 * execute all system interrupts not marked INTR_NOPOLL at the 938 * specified polling frequency. 939 * 940 * WARNING! This thread runs *ALL* interrupt service routines that 941 * are not marked INTR_NOPOLL, which basically means everything except 942 * the 8254 clock interrupt and the ATA interrupt. It has very high 943 * overhead and should only be used in situations where the machine 944 * cannot otherwise be made to work. Due to the severe performance 945 * degredation, it should not be enabled on production machines. 946 */ 947 static void 948 ithread_emergency(void *arg __unused) 949 { 950 globaldata_t gd = mycpu; 951 struct intr_info *info; 952 intrec_t rec, nrec; 953 int intr; 954 TD_INVARIANTS_DECLARE; 955 956 get_mplock(); 957 crit_enter_gd(gd); 958 TD_INVARIANTS_GET(gd->gd_curthread); 959 960 for (;;) { 961 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 962 info = &intr_info_ary[intr]; 963 for (rec = info->i_reclist; rec; rec = nrec) { 964 /* rec may be invalid after call */ 965 nrec = rec->next; 966 if ((rec->intr_flags & INTR_NOPOLL) == 0) { 967 if (rec->serializer) { 968 lwkt_serialize_handler_try(rec->serializer, 969 rec->handler, rec->argument, NULL); 970 } else { 971 rec->handler(rec->argument, NULL); 972 } 973 TD_INVARIANTS_TEST(gd->gd_curthread, rec->name); 974 } 975 } 976 } 977 lwkt_deschedule_self(gd->gd_curthread); 978 lwkt_switch(); 979 } 980 /* NOT REACHED */ 981 } 982 983 /* 984 * Systimer callback - schedule the emergency interrupt poll thread 985 * if emergency polling is enabled. 986 */ 987 static 988 void 989 emergency_intr_timer_callback(systimer_t info, int in_ipi __unused, 990 struct intrframe *frame __unused) 991 { 992 if (emergency_intr_enable) 993 lwkt_schedule(info->data); 994 } 995 996 int 997 ithread_cpuid(int intr) 998 { 999 const struct intr_info *info; 1000 1001 KKASSERT(intr >= 0 && intr < MAX_INTS); 1002 info = &intr_info_ary[intr]; 1003 1004 if (info->i_state == ISTATE_NOTHREAD) 1005 return -1; 1006 return info->i_thread.td_gd->gd_cpuid; 1007 } 1008 1009 /* 1010 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 1011 * The data for this machine dependent, and the declarations are in machine 1012 * dependent code. The layout of intrnames and intrcnt however is machine 1013 * independent. 1014 * 1015 * We do not know the length of intrcnt and intrnames at compile time, so 1016 * calculate things at run time. 1017 */ 1018 1019 static int 1020 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 1021 { 1022 struct intr_info *info; 1023 intrec_t rec; 1024 int error = 0; 1025 int len; 1026 int intr; 1027 char buf[64]; 1028 1029 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) { 1030 info = &intr_info_ary[intr]; 1031 1032 len = 0; 1033 buf[0] = 0; 1034 for (rec = info->i_reclist; rec; rec = rec->next) { 1035 ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 1036 (len ? "/" : ""), rec->name); 1037 len += strlen(buf + len); 1038 } 1039 if (len == 0) { 1040 ksnprintf(buf, sizeof(buf), "irq%d", intr); 1041 len = strlen(buf); 1042 } 1043 error = SYSCTL_OUT(req, buf, len + 1); 1044 } 1045 return (error); 1046 } 1047 1048 1049 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1050 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1051 1052 static int 1053 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1054 { 1055 struct intr_info *info; 1056 int error = 0; 1057 int intr; 1058 1059 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 1060 info = &intr_info_ary[intr]; 1061 1062 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1063 if (error) 1064 goto failed; 1065 } 1066 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) { 1067 info = &intr_info_ary[intr]; 1068 1069 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1070 if (error) 1071 goto failed; 1072 } 1073 failed: 1074 return(error); 1075 } 1076 1077 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1078 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1079 1080 static int 1081 sysctl_intrcnt_all(SYSCTL_HANDLER_ARGS) 1082 { 1083 struct intr_info *info; 1084 int error = 0; 1085 int intr; 1086 1087 for (intr = 0; intr < MAX_INTS; ++intr) { 1088 info = &intr_info_ary[intr]; 1089 1090 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1091 if (error) 1092 goto failed; 1093 } 1094 failed: 1095 return(error); 1096 } 1097 1098 SYSCTL_PROC(_hw, OID_AUTO, intrcnt_all, CTLTYPE_OPAQUE | CTLFLAG_RD, 1099 NULL, 0, sysctl_intrcnt_all, "", "Interrupt Counts"); 1100 1101 static void 1102 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr) 1103 { 1104 int orig_cpuid = mycpuid, cpuid; 1105 char envpath[32]; 1106 1107 cpuid = orig_cpuid; 1108 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr); 1109 kgetenv_int(envpath, &cpuid); 1110 if (cpuid >= ncpus) 1111 cpuid = orig_cpuid; 1112 1113 if (cpuid != orig_cpuid) 1114 lwkt_migratecpu(cpuid); 1115 1116 *orig_cpuid0 = orig_cpuid; 1117 *cpuid0 = cpuid; 1118 } 1119 1120 static void 1121 int_moveto_origcpu(int orig_cpuid, int cpuid) 1122 { 1123 if (cpuid != orig_cpuid) 1124 lwkt_migratecpu(orig_cpuid); 1125 } 1126