1 /* 2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved. 3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $ 27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $ 28 * 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/kernel.h> 35 #include <sys/sysctl.h> 36 #include <sys/thread.h> 37 #include <sys/proc.h> 38 #include <sys/thread2.h> 39 #include <sys/random.h> 40 #include <sys/serialize.h> 41 #include <sys/interrupt.h> 42 #include <sys/bus.h> 43 #include <sys/machintr.h> 44 45 #include <machine/frame.h> 46 47 #include <sys/interrupt.h> 48 49 struct info_info; 50 51 typedef struct intrec { 52 struct intrec *next; 53 struct intr_info *info; 54 inthand2_t *handler; 55 void *argument; 56 char *name; 57 int intr; 58 int intr_flags; 59 struct lwkt_serialize *serializer; 60 } *intrec_t; 61 62 struct intr_info { 63 intrec_t i_reclist; 64 struct thread i_thread; 65 struct random_softc i_random; 66 int i_running; 67 long i_count; /* interrupts dispatched */ 68 int i_mplock_required; 69 int i_fast; 70 int i_slow; 71 int i_state; 72 int i_errorticks; 73 unsigned long i_straycount; 74 } intr_info_ary[MAX_INTS]; 75 76 int max_installed_hard_intr; 77 int max_installed_soft_intr; 78 79 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000 80 81 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS); 82 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS); 83 static void emergency_intr_timer_callback(systimer_t, struct intrframe *); 84 static void ithread_handler(void *arg); 85 static void ithread_emergency(void *arg); 86 static void report_stray_interrupt(int intr, struct intr_info *info); 87 static void int_moveto_destcpu(int *, int *, int); 88 static void int_moveto_origcpu(int, int); 89 #ifdef SMP 90 static void intr_get_mplock(void); 91 #endif 92 93 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]); 94 95 static struct systimer emergency_intr_timer; 96 static struct thread emergency_intr_thread; 97 98 #define ISTATE_NOTHREAD 0 99 #define ISTATE_NORMAL 1 100 #define ISTATE_LIVELOCKED 2 101 102 #ifdef SMP 103 static int intr_mpsafe = 1; 104 static int intr_migrate = 0; 105 static int intr_migrate_count; 106 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe); 107 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe, 108 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL"); 109 SYSCTL_INT(_kern, OID_AUTO, intr_migrate, 110 CTLFLAG_RW, &intr_migrate, 0, "Migrate to cpu holding BGL"); 111 SYSCTL_INT(_kern, OID_AUTO, intr_migrate_count, 112 CTLFLAG_RW, &intr_migrate_count, 0, ""); 113 #endif 114 static int livelock_limit = 40000; 115 static int livelock_lowater = 20000; 116 static int livelock_debug = -1; 117 SYSCTL_INT(_kern, OID_AUTO, livelock_limit, 118 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit"); 119 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater, 120 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore"); 121 SYSCTL_INT(_kern, OID_AUTO, livelock_debug, 122 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#"); 123 124 static int emergency_intr_enable = 0; /* emergency interrupt polling */ 125 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable); 126 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW, 127 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable"); 128 129 static int emergency_intr_freq = 10; /* emergency polling frequency */ 130 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq); 131 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW, 132 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency"); 133 134 /* 135 * Sysctl support routines 136 */ 137 static int 138 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS) 139 { 140 int error, enabled; 141 142 enabled = emergency_intr_enable; 143 error = sysctl_handle_int(oidp, &enabled, 0, req); 144 if (error || req->newptr == NULL) 145 return error; 146 emergency_intr_enable = enabled; 147 if (emergency_intr_enable) { 148 systimer_adjust_periodic(&emergency_intr_timer, 149 emergency_intr_freq); 150 } else { 151 systimer_adjust_periodic(&emergency_intr_timer, 1); 152 } 153 return 0; 154 } 155 156 static int 157 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS) 158 { 159 int error, phz; 160 161 phz = emergency_intr_freq; 162 error = sysctl_handle_int(oidp, &phz, 0, req); 163 if (error || req->newptr == NULL) 164 return error; 165 if (phz <= 0) 166 return EINVAL; 167 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX) 168 phz = EMERGENCY_INTR_POLLING_FREQ_MAX; 169 170 emergency_intr_freq = phz; 171 if (emergency_intr_enable) { 172 systimer_adjust_periodic(&emergency_intr_timer, 173 emergency_intr_freq); 174 } else { 175 systimer_adjust_periodic(&emergency_intr_timer, 1); 176 } 177 return 0; 178 } 179 180 /* 181 * Register an SWI or INTerrupt handler. 182 */ 183 void * 184 register_swi(int intr, inthand2_t *handler, void *arg, const char *name, 185 struct lwkt_serialize *serializer) 186 { 187 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 188 panic("register_swi: bad intr %d", intr); 189 return(register_int(intr, handler, arg, name, serializer, 0)); 190 } 191 192 void * 193 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name, 194 struct lwkt_serialize *serializer) 195 { 196 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 197 panic("register_swi: bad intr %d", intr); 198 return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE)); 199 } 200 201 void * 202 register_int(int intr, inthand2_t *handler, void *arg, const char *name, 203 struct lwkt_serialize *serializer, int intr_flags) 204 { 205 struct intr_info *info; 206 struct intrec **list; 207 intrec_t rec; 208 int orig_cpuid, cpuid; 209 210 if (intr < 0 || intr >= MAX_INTS) 211 panic("register_int: bad intr %d", intr); 212 if (name == NULL) 213 name = "???"; 214 info = &intr_info_ary[intr]; 215 216 /* 217 * Construct an interrupt handler record 218 */ 219 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT); 220 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT); 221 strcpy(rec->name, name); 222 223 rec->info = info; 224 rec->handler = handler; 225 rec->argument = arg; 226 rec->intr = intr; 227 rec->intr_flags = intr_flags; 228 rec->next = NULL; 229 rec->serializer = serializer; 230 231 /* 232 * Create an emergency polling thread and set up a systimer to wake 233 * it up. 234 */ 235 if (emergency_intr_thread.td_kstack == NULL) { 236 lwkt_create(ithread_emergency, NULL, NULL, 237 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1, 238 "ithread emerg"); 239 systimer_init_periodic_nq(&emergency_intr_timer, 240 emergency_intr_timer_callback, &emergency_intr_thread, 241 (emergency_intr_enable ? emergency_intr_freq : 1)); 242 } 243 244 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 245 246 /* 247 * Create an interrupt thread if necessary, leave it in an unscheduled 248 * state. 249 */ 250 if (info->i_state == ISTATE_NOTHREAD) { 251 info->i_state = ISTATE_NORMAL; 252 lwkt_create((void *)ithread_handler, (void *)(intptr_t)intr, NULL, 253 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1, 254 "ithread %d", intr); 255 if (intr >= FIRST_SOFTINT) 256 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM); 257 else 258 lwkt_setpri(&info->i_thread, TDPRI_INT_MED); 259 info->i_thread.td_preemptable = lwkt_preempt; 260 } 261 262 list = &info->i_reclist; 263 264 /* 265 * Keep track of how many fast and slow interrupts we have. 266 * Set i_mplock_required if any handler in the chain requires 267 * the MP lock to operate. 268 */ 269 if ((intr_flags & INTR_MPSAFE) == 0) 270 info->i_mplock_required = 1; 271 if (intr_flags & INTR_FAST) 272 ++info->i_fast; 273 else 274 ++info->i_slow; 275 276 /* 277 * Enable random number generation keying off of this interrupt. 278 */ 279 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) { 280 info->i_random.sc_enabled = 1; 281 info->i_random.sc_intr = intr; 282 } 283 284 /* 285 * Add the record to the interrupt list. 286 */ 287 crit_enter(); 288 while (*list != NULL) 289 list = &(*list)->next; 290 *list = rec; 291 crit_exit(); 292 293 /* 294 * Update max_installed_hard_intr to make the emergency intr poll 295 * a bit more efficient. 296 */ 297 if (intr < FIRST_SOFTINT) { 298 if (max_installed_hard_intr <= intr) 299 max_installed_hard_intr = intr + 1; 300 } else { 301 if (max_installed_soft_intr <= intr) 302 max_installed_soft_intr = intr + 1; 303 } 304 305 /* 306 * Setup the machine level interrupt vector 307 * 308 * XXX temporary workaround for some ACPI brokedness. ACPI installs 309 * its interrupt too early, before the IOAPICs have been configured, 310 * which means the IOAPIC is not enabled by the registration of the 311 * ACPI interrupt. Anything else sharing that IRQ will wind up not 312 * being enabled. Temporarily work around the problem by always 313 * installing and enabling on every new interrupt handler, even 314 * if one has already been setup on that irq. 315 */ 316 if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) { 317 if (machintr_vector_setup(intr, intr_flags)) 318 kprintf("machintr_vector_setup: failed on irq %d\n", intr); 319 } 320 321 int_moveto_origcpu(orig_cpuid, cpuid); 322 323 return(rec); 324 } 325 326 void 327 unregister_swi(void *id) 328 { 329 unregister_int(id); 330 } 331 332 void 333 unregister_int(void *id) 334 { 335 struct intr_info *info; 336 struct intrec **list; 337 intrec_t rec; 338 int intr, orig_cpuid, cpuid; 339 340 intr = ((intrec_t)id)->intr; 341 342 if (intr < 0 || intr >= MAX_INTS) 343 panic("register_int: bad intr %d", intr); 344 345 info = &intr_info_ary[intr]; 346 347 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 348 349 /* 350 * Remove the interrupt descriptor, adjust the descriptor count, 351 * and teardown the machine level vector if this was the last interrupt. 352 */ 353 crit_enter(); 354 list = &info->i_reclist; 355 while ((rec = *list) != NULL) { 356 if (rec == id) 357 break; 358 list = &rec->next; 359 } 360 if (rec) { 361 intrec_t rec0; 362 363 *list = rec->next; 364 if (rec->intr_flags & INTR_FAST) 365 --info->i_fast; 366 else 367 --info->i_slow; 368 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0) 369 machintr_vector_teardown(intr); 370 371 /* 372 * Clear i_mplock_required if no handlers in the chain require the 373 * MP lock. 374 */ 375 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) { 376 if ((rec0->intr_flags & INTR_MPSAFE) == 0) 377 break; 378 } 379 if (rec0 == NULL) 380 info->i_mplock_required = 0; 381 } 382 383 crit_exit(); 384 385 int_moveto_origcpu(orig_cpuid, cpuid); 386 387 /* 388 * Free the record. 389 */ 390 if (rec != NULL) { 391 kfree(rec->name, M_DEVBUF); 392 kfree(rec, M_DEVBUF); 393 } else { 394 kprintf("warning: unregister_int: int %d handler for %s not found\n", 395 intr, ((intrec_t)id)->name); 396 } 397 } 398 399 const char * 400 get_registered_name(int intr) 401 { 402 intrec_t rec; 403 404 if (intr < 0 || intr >= MAX_INTS) 405 panic("register_int: bad intr %d", intr); 406 407 if ((rec = intr_info_ary[intr].i_reclist) == NULL) 408 return(NULL); 409 else if (rec->next) 410 return("mux"); 411 else 412 return(rec->name); 413 } 414 415 int 416 count_registered_ints(int intr) 417 { 418 struct intr_info *info; 419 420 if (intr < 0 || intr >= MAX_INTS) 421 panic("register_int: bad intr %d", intr); 422 info = &intr_info_ary[intr]; 423 return(info->i_fast + info->i_slow); 424 } 425 426 long 427 get_interrupt_counter(int intr) 428 { 429 struct intr_info *info; 430 431 if (intr < 0 || intr >= MAX_INTS) 432 panic("register_int: bad intr %d", intr); 433 info = &intr_info_ary[intr]; 434 return(info->i_count); 435 } 436 437 438 void 439 swi_setpriority(int intr, int pri) 440 { 441 struct intr_info *info; 442 443 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 444 panic("register_swi: bad intr %d", intr); 445 info = &intr_info_ary[intr]; 446 if (info->i_state != ISTATE_NOTHREAD) 447 lwkt_setpri(&info->i_thread, pri); 448 } 449 450 void 451 register_randintr(int intr) 452 { 453 struct intr_info *info; 454 455 if (intr < 0 || intr >= MAX_INTS) 456 panic("register_randintr: bad intr %d", intr); 457 info = &intr_info_ary[intr]; 458 info->i_random.sc_intr = intr; 459 info->i_random.sc_enabled = 1; 460 } 461 462 void 463 unregister_randintr(int intr) 464 { 465 struct intr_info *info; 466 467 if (intr < 0 || intr >= MAX_INTS) 468 panic("register_swi: bad intr %d", intr); 469 info = &intr_info_ary[intr]; 470 info->i_random.sc_enabled = -1; 471 } 472 473 int 474 next_registered_randintr(int intr) 475 { 476 struct intr_info *info; 477 478 if (intr < 0 || intr >= MAX_INTS) 479 panic("register_swi: bad intr %d", intr); 480 while (intr < MAX_INTS) { 481 info = &intr_info_ary[intr]; 482 if (info->i_random.sc_enabled > 0) 483 break; 484 ++intr; 485 } 486 return(intr); 487 } 488 489 /* 490 * Dispatch an interrupt. If there's nothing to do we have a stray 491 * interrupt and can just return, leaving the interrupt masked. 492 * 493 * We need to schedule the interrupt and set its i_running bit. If 494 * we are not on the interrupt thread's cpu we have to send a message 495 * to the correct cpu that will issue the desired action (interlocking 496 * with the interrupt thread's critical section). We do NOT attempt to 497 * reschedule interrupts whos i_running bit is already set because 498 * this would prematurely wakeup a livelock-limited interrupt thread. 499 * 500 * i_running is only tested/set on the same cpu as the interrupt thread. 501 * 502 * We are NOT in a critical section, which will allow the scheduled 503 * interrupt to preempt us. The MP lock might *NOT* be held here. 504 */ 505 #ifdef SMP 506 507 static void 508 sched_ithd_remote(void *arg) 509 { 510 sched_ithd((int)(intptr_t)arg); 511 } 512 513 #endif 514 515 void 516 sched_ithd(int intr) 517 { 518 struct intr_info *info; 519 520 info = &intr_info_ary[intr]; 521 522 ++info->i_count; 523 if (info->i_state != ISTATE_NOTHREAD) { 524 if (info->i_reclist == NULL) { 525 report_stray_interrupt(intr, info); 526 } else { 527 #ifdef SMP 528 if (info->i_thread.td_gd == mycpu) { 529 if (info->i_running == 0) { 530 info->i_running = 1; 531 if (info->i_state != ISTATE_LIVELOCKED) 532 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 533 } 534 } else { 535 lwkt_send_ipiq(info->i_thread.td_gd, 536 sched_ithd_remote, (void *)(intptr_t)intr); 537 } 538 #else 539 if (info->i_running == 0) { 540 info->i_running = 1; 541 if (info->i_state != ISTATE_LIVELOCKED) 542 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 543 } 544 #endif 545 } 546 } else { 547 report_stray_interrupt(intr, info); 548 } 549 } 550 551 static void 552 report_stray_interrupt(int intr, struct intr_info *info) 553 { 554 ++info->i_straycount; 555 if (info->i_straycount < 10) { 556 if (info->i_errorticks == ticks) 557 return; 558 info->i_errorticks = ticks; 559 kprintf("sched_ithd: stray interrupt %d on cpu %d\n", 560 intr, mycpuid); 561 } else if (info->i_straycount == 10) { 562 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - " 563 "there will be no further reports\n", 564 info->i_straycount, intr, mycpuid); 565 } 566 } 567 568 /* 569 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL 570 * might not be held). 571 */ 572 static void 573 ithread_livelock_wakeup(systimer_t st) 574 { 575 struct intr_info *info; 576 577 info = &intr_info_ary[(int)(intptr_t)st->data]; 578 if (info->i_state != ISTATE_NOTHREAD) 579 lwkt_schedule(&info->i_thread); 580 } 581 582 /* 583 * Schedule ithread within fast intr handler 584 * 585 * XXX Protect sched_ithd() call with gd_intr_nesting_level? 586 * Interrupts aren't enabled, but still... 587 */ 588 static __inline void 589 ithread_fast_sched(int intr, thread_t td) 590 { 591 ++td->td_nest_count; 592 593 /* 594 * We are already in critical section, exit it now to 595 * allow preemption. 596 */ 597 crit_exit_quick(td); 598 sched_ithd(intr); 599 crit_enter_quick(td); 600 601 --td->td_nest_count; 602 } 603 604 /* 605 * This function is called directly from the ICU or APIC vector code assembly 606 * to process an interrupt. The critical section and interrupt deferral 607 * checks have already been done but the function is entered WITHOUT 608 * a critical section held. The BGL may or may not be held. 609 * 610 * Must return non-zero if we do not want the vector code to re-enable 611 * the interrupt (which we don't if we have to schedule the interrupt) 612 */ 613 int ithread_fast_handler(struct intrframe *frame); 614 615 int 616 ithread_fast_handler(struct intrframe *frame) 617 { 618 int intr; 619 struct intr_info *info; 620 struct intrec **list; 621 int must_schedule; 622 #ifdef SMP 623 int got_mplock; 624 #endif 625 intrec_t rec, next_rec; 626 globaldata_t gd; 627 thread_t td; 628 629 intr = frame->if_vec; 630 gd = mycpu; 631 td = curthread; 632 633 /* We must be in critical section. */ 634 KKASSERT(td->td_pri >= TDPRI_CRIT); 635 636 info = &intr_info_ary[intr]; 637 638 /* 639 * If we are not processing any FAST interrupts, just schedule the thing. 640 */ 641 if (info->i_fast == 0) { 642 ++gd->gd_cnt.v_intr; 643 ithread_fast_sched(intr, td); 644 return(1); 645 } 646 647 /* 648 * This should not normally occur since interrupts ought to be 649 * masked if the ithread has been scheduled or is running. 650 */ 651 if (info->i_running) 652 return(1); 653 654 /* 655 * Bump the interrupt nesting level to process any FAST interrupts. 656 * Obtain the MP lock as necessary. If the MP lock cannot be obtained, 657 * schedule the interrupt thread to deal with the issue instead. 658 * 659 * To reduce overhead, just leave the MP lock held once it has been 660 * obtained. 661 */ 662 ++gd->gd_intr_nesting_level; 663 ++gd->gd_cnt.v_intr; 664 must_schedule = info->i_slow; 665 #ifdef SMP 666 got_mplock = 0; 667 #endif 668 669 list = &info->i_reclist; 670 for (rec = *list; rec; rec = next_rec) { 671 next_rec = rec->next; /* rec may be invalid after call */ 672 673 if (rec->intr_flags & INTR_FAST) { 674 #ifdef SMP 675 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) { 676 if (try_mplock() == 0) { 677 /* Couldn't get the MP lock; just schedule it. */ 678 must_schedule = 1; 679 break; 680 } 681 got_mplock = 1; 682 } 683 #endif 684 if (rec->serializer) { 685 must_schedule += lwkt_serialize_handler_try( 686 rec->serializer, rec->handler, 687 rec->argument, frame); 688 } else { 689 rec->handler(rec->argument, frame); 690 } 691 } 692 } 693 694 /* 695 * Cleanup 696 */ 697 --gd->gd_intr_nesting_level; 698 #ifdef SMP 699 if (got_mplock) 700 rel_mplock(); 701 #endif 702 703 /* 704 * If we had a problem, or mixed fast and slow interrupt handlers are 705 * registered, schedule the ithread to catch the missed records (it 706 * will just re-run all of them). A return value of 0 indicates that 707 * all handlers have been run and the interrupt can be re-enabled, and 708 * a non-zero return indicates that the interrupt thread controls 709 * re-enablement. 710 */ 711 if (must_schedule > 0) 712 ithread_fast_sched(intr, td); 713 else if (must_schedule == 0) 714 ++info->i_count; 715 return(must_schedule); 716 } 717 718 /* 719 * Interrupt threads run this as their main loop. 720 * 721 * The handler begins execution outside a critical section and with the BGL 722 * held. 723 * 724 * The i_running state starts at 0. When an interrupt occurs, the hardware 725 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled 726 * until all routines have run. We then call ithread_done() to reenable 727 * the HW interrupt and deschedule us until the next interrupt. 728 * 729 * We are responsible for atomically checking i_running and ithread_done() 730 * is responsible for atomically checking for platform-specific delayed 731 * interrupts. i_running for our irq is only set in the context of our cpu, 732 * so a critical section is a sufficient interlock. 733 */ 734 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */ 735 736 static void 737 ithread_handler(void *arg) 738 { 739 struct intr_info *info; 740 int use_limit; 741 __uint32_t lseconds; 742 int intr; 743 int mpheld; 744 struct intrec **list; 745 intrec_t rec, nrec; 746 globaldata_t gd; 747 struct systimer ill_timer; /* enforced freq. timer */ 748 u_int ill_count; /* interrupt livelock counter */ 749 750 ill_count = 0; 751 intr = (int)(intptr_t)arg; 752 info = &intr_info_ary[intr]; 753 list = &info->i_reclist; 754 755 /* 756 * The loop must be entered with one critical section held. The thread 757 * is created with TDF_MPSAFE so the MP lock is not held on start. 758 */ 759 gd = mycpu; 760 lseconds = gd->gd_time_seconds; 761 crit_enter_gd(gd); 762 mpheld = 0; 763 764 for (;;) { 765 /* 766 * The chain is only considered MPSAFE if all its interrupt handlers 767 * are MPSAFE. However, if intr_mpsafe has been turned off we 768 * always operate with the BGL. 769 */ 770 #ifdef SMP 771 if (intr_mpsafe == 0) { 772 if (mpheld == 0) { 773 intr_get_mplock(); 774 mpheld = 1; 775 } 776 } else if (info->i_mplock_required != mpheld) { 777 if (info->i_mplock_required) { 778 KKASSERT(mpheld == 0); 779 intr_get_mplock(); 780 mpheld = 1; 781 } else { 782 KKASSERT(mpheld != 0); 783 rel_mplock(); 784 mpheld = 0; 785 } 786 } 787 788 /* 789 * scheduled cpu may have changed, see intr_get_mplock() 790 */ 791 gd = mycpu; 792 #endif 793 794 /* 795 * If an interrupt is pending, clear i_running and execute the 796 * handlers. Note that certain types of interrupts can re-trigger 797 * and set i_running again. 798 * 799 * Each handler is run in a critical section. Note that we run both 800 * FAST and SLOW designated service routines. 801 */ 802 if (info->i_running) { 803 ++ill_count; 804 info->i_running = 0; 805 806 if (*list == NULL) 807 report_stray_interrupt(intr, info); 808 809 for (rec = *list; rec; rec = nrec) { 810 nrec = rec->next; 811 if (rec->serializer) { 812 lwkt_serialize_handler_call(rec->serializer, rec->handler, 813 rec->argument, NULL); 814 } else { 815 rec->handler(rec->argument, NULL); 816 } 817 } 818 } 819 820 /* 821 * This is our interrupt hook to add rate randomness to the random 822 * number generator. 823 */ 824 if (info->i_random.sc_enabled > 0) 825 add_interrupt_randomness(intr); 826 827 /* 828 * Unmask the interrupt to allow it to trigger again. This only 829 * applies to certain types of interrupts (typ level interrupts). 830 * This can result in the interrupt retriggering, but the retrigger 831 * will not be processed until we cycle our critical section. 832 * 833 * Only unmask interrupts while handlers are installed. It is 834 * possible to hit a situation where no handlers are installed 835 * due to a device driver livelocking and then tearing down its 836 * interrupt on close (the parallel bus being a good example). 837 */ 838 if (*list) 839 machintr_intren(intr); 840 841 /* 842 * Do a quick exit/enter to catch any higher-priority interrupt 843 * sources, such as the statclock, so thread time accounting 844 * will still work. This may also cause an interrupt to re-trigger. 845 */ 846 crit_exit_gd(gd); 847 crit_enter_gd(gd); 848 849 /* 850 * LIVELOCK STATE MACHINE 851 */ 852 switch(info->i_state) { 853 case ISTATE_NORMAL: 854 /* 855 * Reset the count each second. 856 */ 857 if (lseconds != gd->gd_time_seconds) { 858 lseconds = gd->gd_time_seconds; 859 ill_count = 0; 860 } 861 862 /* 863 * If we did not exceed the frequency limit, we are done. 864 * If the interrupt has not retriggered we deschedule ourselves. 865 */ 866 if (ill_count <= livelock_limit) { 867 if (info->i_running == 0) { 868 #ifdef SMP 869 if (mpheld && intr_migrate) { 870 rel_mplock(); 871 mpheld = 0; 872 } 873 #endif 874 lwkt_deschedule_self(gd->gd_curthread); 875 lwkt_switch(); 876 } 877 break; 878 } 879 880 /* 881 * Otherwise we are livelocked. Set up a periodic systimer 882 * to wake the thread up at the limit frequency. 883 */ 884 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n", 885 intr, ill_count, livelock_limit); 886 info->i_state = ISTATE_LIVELOCKED; 887 if ((use_limit = livelock_limit) < 100) 888 use_limit = 100; 889 else if (use_limit > 500000) 890 use_limit = 500000; 891 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup, 892 (void *)(intptr_t)intr, use_limit); 893 /* fall through */ 894 case ISTATE_LIVELOCKED: 895 /* 896 * Wait for our periodic timer to go off. Since the interrupt 897 * has re-armed it can still set i_running, but it will not 898 * reschedule us while we are in a livelocked state. 899 */ 900 lwkt_deschedule_self(gd->gd_curthread); 901 lwkt_switch(); 902 903 /* 904 * Check once a second to see if the livelock condition no 905 * longer applies. 906 */ 907 if (lseconds != gd->gd_time_seconds) { 908 lseconds = gd->gd_time_seconds; 909 if (ill_count < livelock_lowater) { 910 info->i_state = ISTATE_NORMAL; 911 systimer_del(&ill_timer); 912 kprintf("intr %d at %d/%d hz, livelock removed\n", 913 intr, ill_count, livelock_lowater); 914 } else if (livelock_debug == intr || 915 (bootverbose && cold)) { 916 kprintf("intr %d at %d/%d hz, in livelock\n", 917 intr, ill_count, livelock_lowater); 918 } 919 ill_count = 0; 920 } 921 break; 922 } 923 } 924 /* not reached */ 925 } 926 927 #ifdef SMP 928 929 /* 930 * An interrupt thread is trying to get the MP lock. To avoid cpu-bound 931 * code in the kernel on cpu X from interfering we chase the MP lock. 932 */ 933 static void 934 intr_get_mplock(void) 935 { 936 int owner; 937 938 if (intr_migrate == 0) { 939 get_mplock(); 940 return; 941 } 942 while (try_mplock() == 0) { 943 owner = owner_mplock(); 944 if (owner >= 0 && owner != mycpu->gd_cpuid) { 945 lwkt_migratecpu(owner); 946 ++intr_migrate_count; 947 } else { 948 lwkt_switch(); 949 } 950 } 951 } 952 953 #endif 954 955 /* 956 * Emergency interrupt polling thread. The thread begins execution 957 * outside a critical section with the BGL held. 958 * 959 * If emergency interrupt polling is enabled, this thread will 960 * execute all system interrupts not marked INTR_NOPOLL at the 961 * specified polling frequency. 962 * 963 * WARNING! This thread runs *ALL* interrupt service routines that 964 * are not marked INTR_NOPOLL, which basically means everything except 965 * the 8254 clock interrupt and the ATA interrupt. It has very high 966 * overhead and should only be used in situations where the machine 967 * cannot otherwise be made to work. Due to the severe performance 968 * degredation, it should not be enabled on production machines. 969 */ 970 static void 971 ithread_emergency(void *arg __unused) 972 { 973 struct intr_info *info; 974 intrec_t rec, nrec; 975 int intr; 976 977 for (;;) { 978 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 979 info = &intr_info_ary[intr]; 980 for (rec = info->i_reclist; rec; rec = nrec) { 981 if ((rec->intr_flags & INTR_NOPOLL) == 0) { 982 if (rec->serializer) { 983 lwkt_serialize_handler_call(rec->serializer, 984 rec->handler, rec->argument, NULL); 985 } else { 986 rec->handler(rec->argument, NULL); 987 } 988 } 989 nrec = rec->next; 990 } 991 } 992 lwkt_deschedule_self(curthread); 993 lwkt_switch(); 994 } 995 } 996 997 /* 998 * Systimer callback - schedule the emergency interrupt poll thread 999 * if emergency polling is enabled. 1000 */ 1001 static 1002 void 1003 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused) 1004 { 1005 if (emergency_intr_enable) 1006 lwkt_schedule(info->data); 1007 } 1008 1009 int 1010 ithread_cpuid(int intr) 1011 { 1012 const struct intr_info *info; 1013 1014 KKASSERT(intr >= 0 && intr < MAX_INTS); 1015 info = &intr_info_ary[intr]; 1016 1017 if (info->i_state == ISTATE_NOTHREAD) 1018 return -1; 1019 return info->i_thread.td_gd->gd_cpuid; 1020 } 1021 1022 /* 1023 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 1024 * The data for this machine dependent, and the declarations are in machine 1025 * dependent code. The layout of intrnames and intrcnt however is machine 1026 * independent. 1027 * 1028 * We do not know the length of intrcnt and intrnames at compile time, so 1029 * calculate things at run time. 1030 */ 1031 1032 static int 1033 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 1034 { 1035 struct intr_info *info; 1036 intrec_t rec; 1037 int error = 0; 1038 int len; 1039 int intr; 1040 char buf[64]; 1041 1042 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) { 1043 info = &intr_info_ary[intr]; 1044 1045 len = 0; 1046 buf[0] = 0; 1047 for (rec = info->i_reclist; rec; rec = rec->next) { 1048 ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 1049 (len ? "/" : ""), rec->name); 1050 len += strlen(buf + len); 1051 } 1052 if (len == 0) { 1053 ksnprintf(buf, sizeof(buf), "irq%d", intr); 1054 len = strlen(buf); 1055 } 1056 error = SYSCTL_OUT(req, buf, len + 1); 1057 } 1058 return (error); 1059 } 1060 1061 1062 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1063 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1064 1065 static int 1066 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1067 { 1068 struct intr_info *info; 1069 int error = 0; 1070 int intr; 1071 1072 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 1073 info = &intr_info_ary[intr]; 1074 1075 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1076 if (error) 1077 goto failed; 1078 } 1079 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) { 1080 info = &intr_info_ary[intr]; 1081 1082 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1083 if (error) 1084 goto failed; 1085 } 1086 failed: 1087 return(error); 1088 } 1089 1090 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1091 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1092 1093 static void 1094 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr) 1095 { 1096 int orig_cpuid = mycpuid, cpuid; 1097 char envpath[32]; 1098 1099 cpuid = orig_cpuid; 1100 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr); 1101 kgetenv_int(envpath, &cpuid); 1102 if (cpuid >= ncpus) 1103 cpuid = orig_cpuid; 1104 1105 if (cpuid != orig_cpuid) 1106 lwkt_migratecpu(cpuid); 1107 1108 *orig_cpuid0 = orig_cpuid; 1109 *cpuid0 = cpuid; 1110 } 1111 1112 static void 1113 int_moveto_origcpu(int orig_cpuid, int cpuid) 1114 { 1115 if (cpuid != orig_cpuid) 1116 lwkt_migratecpu(orig_cpuid); 1117 } 1118