1 /* 2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved. 3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $ 27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $ 28 * 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/kernel.h> 35 #include <sys/sysctl.h> 36 #include <sys/thread.h> 37 #include <sys/proc.h> 38 #include <sys/random.h> 39 #include <sys/serialize.h> 40 #include <sys/interrupt.h> 41 #include <sys/bus.h> 42 #include <sys/machintr.h> 43 44 #include <machine/frame.h> 45 46 #include <sys/interrupt.h> 47 48 #include <sys/thread2.h> 49 #include <sys/mplock2.h> 50 51 struct info_info; 52 53 typedef struct intrec { 54 struct intrec *next; 55 struct intr_info *info; 56 inthand2_t *handler; 57 void *argument; 58 char *name; 59 int intr; 60 int intr_flags; 61 struct lwkt_serialize *serializer; 62 } *intrec_t; 63 64 struct intr_info { 65 intrec_t i_reclist; 66 struct thread i_thread; 67 struct random_softc i_random; 68 int i_running; 69 long i_count; /* interrupts dispatched */ 70 int i_mplock_required; 71 int i_fast; 72 int i_slow; 73 int i_state; 74 int i_errorticks; 75 unsigned long i_straycount; 76 } intr_info_ary[MAX_INTS]; 77 78 int max_installed_hard_intr; 79 int max_installed_soft_intr; 80 81 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000 82 83 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS); 84 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS); 85 static void emergency_intr_timer_callback(systimer_t, struct intrframe *); 86 static void ithread_handler(void *arg); 87 static void ithread_emergency(void *arg); 88 static void report_stray_interrupt(int intr, struct intr_info *info); 89 static void int_moveto_destcpu(int *, int *, int); 90 static void int_moveto_origcpu(int, int); 91 92 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]); 93 94 static struct systimer emergency_intr_timer; 95 static struct thread emergency_intr_thread; 96 97 #define ISTATE_NOTHREAD 0 98 #define ISTATE_NORMAL 1 99 #define ISTATE_LIVELOCKED 2 100 101 static int livelock_limit = 40000; 102 static int livelock_lowater = 20000; 103 static int livelock_debug = -1; 104 SYSCTL_INT(_kern, OID_AUTO, livelock_limit, 105 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit"); 106 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater, 107 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore"); 108 SYSCTL_INT(_kern, OID_AUTO, livelock_debug, 109 CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#"); 110 111 static int emergency_intr_enable = 0; /* emergency interrupt polling */ 112 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable); 113 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW, 114 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable"); 115 116 static int emergency_intr_freq = 10; /* emergency polling frequency */ 117 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq); 118 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW, 119 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency"); 120 121 /* 122 * Sysctl support routines 123 */ 124 static int 125 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS) 126 { 127 int error, enabled; 128 129 enabled = emergency_intr_enable; 130 error = sysctl_handle_int(oidp, &enabled, 0, req); 131 if (error || req->newptr == NULL) 132 return error; 133 emergency_intr_enable = enabled; 134 if (emergency_intr_enable) { 135 systimer_adjust_periodic(&emergency_intr_timer, 136 emergency_intr_freq); 137 } else { 138 systimer_adjust_periodic(&emergency_intr_timer, 1); 139 } 140 return 0; 141 } 142 143 static int 144 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS) 145 { 146 int error, phz; 147 148 phz = emergency_intr_freq; 149 error = sysctl_handle_int(oidp, &phz, 0, req); 150 if (error || req->newptr == NULL) 151 return error; 152 if (phz <= 0) 153 return EINVAL; 154 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX) 155 phz = EMERGENCY_INTR_POLLING_FREQ_MAX; 156 157 emergency_intr_freq = phz; 158 if (emergency_intr_enable) { 159 systimer_adjust_periodic(&emergency_intr_timer, 160 emergency_intr_freq); 161 } else { 162 systimer_adjust_periodic(&emergency_intr_timer, 1); 163 } 164 return 0; 165 } 166 167 /* 168 * Register an SWI or INTerrupt handler. 169 */ 170 void * 171 register_swi(int intr, inthand2_t *handler, void *arg, const char *name, 172 struct lwkt_serialize *serializer) 173 { 174 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 175 panic("register_swi: bad intr %d", intr); 176 return(register_int(intr, handler, arg, name, serializer, 0)); 177 } 178 179 void * 180 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name, 181 struct lwkt_serialize *serializer) 182 { 183 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 184 panic("register_swi: bad intr %d", intr); 185 return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE)); 186 } 187 188 void * 189 register_int(int intr, inthand2_t *handler, void *arg, const char *name, 190 struct lwkt_serialize *serializer, int intr_flags) 191 { 192 struct intr_info *info; 193 struct intrec **list; 194 intrec_t rec; 195 int orig_cpuid, cpuid; 196 197 if (intr < 0 || intr >= MAX_INTS) 198 panic("register_int: bad intr %d", intr); 199 if (name == NULL) 200 name = "???"; 201 info = &intr_info_ary[intr]; 202 203 /* 204 * Construct an interrupt handler record 205 */ 206 rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT); 207 rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT); 208 strcpy(rec->name, name); 209 210 rec->info = info; 211 rec->handler = handler; 212 rec->argument = arg; 213 rec->intr = intr; 214 rec->intr_flags = intr_flags; 215 rec->next = NULL; 216 rec->serializer = serializer; 217 218 /* 219 * Create an emergency polling thread and set up a systimer to wake 220 * it up. 221 */ 222 if (emergency_intr_thread.td_kstack == NULL) { 223 lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread, 224 TDF_STOPREQ | TDF_INTTHREAD, -1, "ithread emerg"); 225 systimer_init_periodic_nq(&emergency_intr_timer, 226 emergency_intr_timer_callback, &emergency_intr_thread, 227 (emergency_intr_enable ? emergency_intr_freq : 1)); 228 } 229 230 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 231 232 /* 233 * Create an interrupt thread if necessary, leave it in an unscheduled 234 * state. 235 */ 236 if (info->i_state == ISTATE_NOTHREAD) { 237 info->i_state = ISTATE_NORMAL; 238 lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL, 239 &info->i_thread, TDF_STOPREQ | TDF_INTTHREAD, -1, 240 "ithread %d", intr); 241 if (intr >= FIRST_SOFTINT) 242 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM); 243 else 244 lwkt_setpri(&info->i_thread, TDPRI_INT_MED); 245 info->i_thread.td_preemptable = lwkt_preempt; 246 } 247 248 list = &info->i_reclist; 249 250 /* 251 * Keep track of how many fast and slow interrupts we have. 252 * Set i_mplock_required if any handler in the chain requires 253 * the MP lock to operate. 254 */ 255 if ((intr_flags & INTR_MPSAFE) == 0) 256 info->i_mplock_required = 1; 257 if (intr_flags & INTR_CLOCK) 258 ++info->i_fast; 259 else 260 ++info->i_slow; 261 262 /* 263 * Enable random number generation keying off of this interrupt. 264 */ 265 if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) { 266 info->i_random.sc_enabled = 1; 267 info->i_random.sc_intr = intr; 268 } 269 270 /* 271 * Add the record to the interrupt list. 272 */ 273 crit_enter(); 274 while (*list != NULL) 275 list = &(*list)->next; 276 *list = rec; 277 crit_exit(); 278 279 /* 280 * Update max_installed_hard_intr to make the emergency intr poll 281 * a bit more efficient. 282 */ 283 if (intr < FIRST_SOFTINT) { 284 if (max_installed_hard_intr <= intr) 285 max_installed_hard_intr = intr + 1; 286 } else { 287 if (max_installed_soft_intr <= intr) 288 max_installed_soft_intr = intr + 1; 289 } 290 291 /* 292 * Setup the machine level interrupt vector 293 * 294 * XXX temporary workaround for some ACPI brokedness. ACPI installs 295 * its interrupt too early, before the IOAPICs have been configured, 296 * which means the IOAPIC is not enabled by the registration of the 297 * ACPI interrupt. Anything else sharing that IRQ will wind up not 298 * being enabled. Temporarily work around the problem by always 299 * installing and enabling on every new interrupt handler, even 300 * if one has already been setup on that irq. 301 */ 302 if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) { 303 if (machintr_vector_setup(intr, intr_flags)) 304 kprintf("machintr_vector_setup: failed on irq %d\n", intr); 305 } 306 307 int_moveto_origcpu(orig_cpuid, cpuid); 308 309 return(rec); 310 } 311 312 void 313 unregister_swi(void *id) 314 { 315 unregister_int(id); 316 } 317 318 void 319 unregister_int(void *id) 320 { 321 struct intr_info *info; 322 struct intrec **list; 323 intrec_t rec; 324 int intr, orig_cpuid, cpuid; 325 326 intr = ((intrec_t)id)->intr; 327 328 if (intr < 0 || intr >= MAX_INTS) 329 panic("register_int: bad intr %d", intr); 330 331 info = &intr_info_ary[intr]; 332 333 int_moveto_destcpu(&orig_cpuid, &cpuid, intr); 334 335 /* 336 * Remove the interrupt descriptor, adjust the descriptor count, 337 * and teardown the machine level vector if this was the last interrupt. 338 */ 339 crit_enter(); 340 list = &info->i_reclist; 341 while ((rec = *list) != NULL) { 342 if (rec == id) 343 break; 344 list = &rec->next; 345 } 346 if (rec) { 347 intrec_t rec0; 348 349 *list = rec->next; 350 if (rec->intr_flags & INTR_CLOCK) 351 --info->i_fast; 352 else 353 --info->i_slow; 354 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0) 355 machintr_vector_teardown(intr); 356 357 /* 358 * Clear i_mplock_required if no handlers in the chain require the 359 * MP lock. 360 */ 361 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) { 362 if ((rec0->intr_flags & INTR_MPSAFE) == 0) 363 break; 364 } 365 if (rec0 == NULL) 366 info->i_mplock_required = 0; 367 } 368 369 crit_exit(); 370 371 int_moveto_origcpu(orig_cpuid, cpuid); 372 373 /* 374 * Free the record. 375 */ 376 if (rec != NULL) { 377 kfree(rec->name, M_DEVBUF); 378 kfree(rec, M_DEVBUF); 379 } else { 380 kprintf("warning: unregister_int: int %d handler for %s not found\n", 381 intr, ((intrec_t)id)->name); 382 } 383 } 384 385 const char * 386 get_registered_name(int intr) 387 { 388 intrec_t rec; 389 390 if (intr < 0 || intr >= MAX_INTS) 391 panic("register_int: bad intr %d", intr); 392 393 if ((rec = intr_info_ary[intr].i_reclist) == NULL) 394 return(NULL); 395 else if (rec->next) 396 return("mux"); 397 else 398 return(rec->name); 399 } 400 401 int 402 count_registered_ints(int intr) 403 { 404 struct intr_info *info; 405 406 if (intr < 0 || intr >= MAX_INTS) 407 panic("register_int: bad intr %d", intr); 408 info = &intr_info_ary[intr]; 409 return(info->i_fast + info->i_slow); 410 } 411 412 long 413 get_interrupt_counter(int intr) 414 { 415 struct intr_info *info; 416 417 if (intr < 0 || intr >= MAX_INTS) 418 panic("register_int: bad intr %d", intr); 419 info = &intr_info_ary[intr]; 420 return(info->i_count); 421 } 422 423 424 void 425 swi_setpriority(int intr, int pri) 426 { 427 struct intr_info *info; 428 429 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 430 panic("register_swi: bad intr %d", intr); 431 info = &intr_info_ary[intr]; 432 if (info->i_state != ISTATE_NOTHREAD) 433 lwkt_setpri(&info->i_thread, pri); 434 } 435 436 void 437 register_randintr(int intr) 438 { 439 struct intr_info *info; 440 441 if (intr < 0 || intr >= MAX_INTS) 442 panic("register_randintr: bad intr %d", intr); 443 info = &intr_info_ary[intr]; 444 info->i_random.sc_intr = intr; 445 info->i_random.sc_enabled = 1; 446 } 447 448 void 449 unregister_randintr(int intr) 450 { 451 struct intr_info *info; 452 453 if (intr < 0 || intr >= MAX_INTS) 454 panic("register_swi: bad intr %d", intr); 455 info = &intr_info_ary[intr]; 456 info->i_random.sc_enabled = -1; 457 } 458 459 int 460 next_registered_randintr(int intr) 461 { 462 struct intr_info *info; 463 464 if (intr < 0 || intr >= MAX_INTS) 465 panic("register_swi: bad intr %d", intr); 466 while (intr < MAX_INTS) { 467 info = &intr_info_ary[intr]; 468 if (info->i_random.sc_enabled > 0) 469 break; 470 ++intr; 471 } 472 return(intr); 473 } 474 475 /* 476 * Dispatch an interrupt. If there's nothing to do we have a stray 477 * interrupt and can just return, leaving the interrupt masked. 478 * 479 * We need to schedule the interrupt and set its i_running bit. If 480 * we are not on the interrupt thread's cpu we have to send a message 481 * to the correct cpu that will issue the desired action (interlocking 482 * with the interrupt thread's critical section). We do NOT attempt to 483 * reschedule interrupts whos i_running bit is already set because 484 * this would prematurely wakeup a livelock-limited interrupt thread. 485 * 486 * i_running is only tested/set on the same cpu as the interrupt thread. 487 * 488 * We are NOT in a critical section, which will allow the scheduled 489 * interrupt to preempt us. The MP lock might *NOT* be held here. 490 */ 491 #ifdef SMP 492 493 static void 494 sched_ithd_remote(void *arg) 495 { 496 sched_ithd((int)(intptr_t)arg); 497 } 498 499 #endif 500 501 void 502 sched_ithd(int intr) 503 { 504 struct intr_info *info; 505 506 info = &intr_info_ary[intr]; 507 508 ++info->i_count; 509 if (info->i_state != ISTATE_NOTHREAD) { 510 if (info->i_reclist == NULL) { 511 report_stray_interrupt(intr, info); 512 } else { 513 #ifdef SMP 514 if (info->i_thread.td_gd == mycpu) { 515 if (info->i_running == 0) { 516 info->i_running = 1; 517 if (info->i_state != ISTATE_LIVELOCKED) 518 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 519 } 520 } else { 521 lwkt_send_ipiq(info->i_thread.td_gd, 522 sched_ithd_remote, (void *)(intptr_t)intr); 523 } 524 #else 525 if (info->i_running == 0) { 526 info->i_running = 1; 527 if (info->i_state != ISTATE_LIVELOCKED) 528 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 529 } 530 #endif 531 } 532 } else { 533 report_stray_interrupt(intr, info); 534 } 535 } 536 537 static void 538 report_stray_interrupt(int intr, struct intr_info *info) 539 { 540 ++info->i_straycount; 541 if (info->i_straycount < 10) { 542 if (info->i_errorticks == ticks) 543 return; 544 info->i_errorticks = ticks; 545 kprintf("sched_ithd: stray interrupt %d on cpu %d\n", 546 intr, mycpuid); 547 } else if (info->i_straycount == 10) { 548 kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - " 549 "there will be no further reports\n", 550 info->i_straycount, intr, mycpuid); 551 } 552 } 553 554 /* 555 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL 556 * might not be held). 557 */ 558 static void 559 ithread_livelock_wakeup(systimer_t st) 560 { 561 struct intr_info *info; 562 563 info = &intr_info_ary[(int)(intptr_t)st->data]; 564 if (info->i_state != ISTATE_NOTHREAD) 565 lwkt_schedule(&info->i_thread); 566 } 567 568 /* 569 * Schedule ithread within fast intr handler 570 * 571 * XXX Protect sched_ithd() call with gd_intr_nesting_level? 572 * Interrupts aren't enabled, but still... 573 */ 574 static __inline void 575 ithread_fast_sched(int intr, thread_t td) 576 { 577 ++td->td_nest_count; 578 579 /* 580 * We are already in critical section, exit it now to 581 * allow preemption. 582 */ 583 crit_exit_quick(td); 584 sched_ithd(intr); 585 crit_enter_quick(td); 586 587 --td->td_nest_count; 588 } 589 590 /* 591 * This function is called directly from the ICU or APIC vector code assembly 592 * to process an interrupt. The critical section and interrupt deferral 593 * checks have already been done but the function is entered WITHOUT 594 * a critical section held. The BGL may or may not be held. 595 * 596 * Must return non-zero if we do not want the vector code to re-enable 597 * the interrupt (which we don't if we have to schedule the interrupt) 598 */ 599 int ithread_fast_handler(struct intrframe *frame); 600 601 int 602 ithread_fast_handler(struct intrframe *frame) 603 { 604 int intr; 605 struct intr_info *info; 606 struct intrec **list; 607 int must_schedule; 608 #ifdef SMP 609 int got_mplock; 610 #endif 611 intrec_t rec, next_rec; 612 globaldata_t gd; 613 thread_t td; 614 615 intr = frame->if_vec; 616 gd = mycpu; 617 td = curthread; 618 619 /* We must be in critical section. */ 620 KKASSERT(td->td_critcount); 621 622 info = &intr_info_ary[intr]; 623 624 /* 625 * If we are not processing any FAST interrupts, just schedule the thing. 626 */ 627 if (info->i_fast == 0) { 628 ++gd->gd_cnt.v_intr; 629 ithread_fast_sched(intr, td); 630 return(1); 631 } 632 633 /* 634 * This should not normally occur since interrupts ought to be 635 * masked if the ithread has been scheduled or is running. 636 */ 637 if (info->i_running) 638 return(1); 639 640 /* 641 * Bump the interrupt nesting level to process any FAST interrupts. 642 * Obtain the MP lock as necessary. If the MP lock cannot be obtained, 643 * schedule the interrupt thread to deal with the issue instead. 644 * 645 * To reduce overhead, just leave the MP lock held once it has been 646 * obtained. 647 */ 648 ++gd->gd_intr_nesting_level; 649 ++gd->gd_cnt.v_intr; 650 must_schedule = info->i_slow; 651 #ifdef SMP 652 got_mplock = 0; 653 #endif 654 655 list = &info->i_reclist; 656 for (rec = *list; rec; rec = next_rec) { 657 next_rec = rec->next; /* rec may be invalid after call */ 658 659 if (rec->intr_flags & INTR_CLOCK) { 660 #ifdef SMP 661 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) { 662 if (try_mplock() == 0) { 663 /* Couldn't get the MP lock; just schedule it. */ 664 must_schedule = 1; 665 break; 666 } 667 got_mplock = 1; 668 } 669 #endif 670 if (rec->serializer) { 671 must_schedule += lwkt_serialize_handler_try( 672 rec->serializer, rec->handler, 673 rec->argument, frame); 674 } else { 675 rec->handler(rec->argument, frame); 676 } 677 } 678 } 679 680 /* 681 * Cleanup 682 */ 683 --gd->gd_intr_nesting_level; 684 #ifdef SMP 685 if (got_mplock) 686 rel_mplock(); 687 #endif 688 689 /* 690 * If we had a problem, or mixed fast and slow interrupt handlers are 691 * registered, schedule the ithread to catch the missed records (it 692 * will just re-run all of them). A return value of 0 indicates that 693 * all handlers have been run and the interrupt can be re-enabled, and 694 * a non-zero return indicates that the interrupt thread controls 695 * re-enablement. 696 */ 697 if (must_schedule > 0) 698 ithread_fast_sched(intr, td); 699 else if (must_schedule == 0) 700 ++info->i_count; 701 return(must_schedule); 702 } 703 704 /* 705 * Interrupt threads run this as their main loop. 706 * 707 * The handler begins execution outside a critical section and no MP lock. 708 * 709 * The i_running state starts at 0. When an interrupt occurs, the hardware 710 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled 711 * until all routines have run. We then call ithread_done() to reenable 712 * the HW interrupt and deschedule us until the next interrupt. 713 * 714 * We are responsible for atomically checking i_running and ithread_done() 715 * is responsible for atomically checking for platform-specific delayed 716 * interrupts. i_running for our irq is only set in the context of our cpu, 717 * so a critical section is a sufficient interlock. 718 */ 719 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */ 720 721 static void 722 ithread_handler(void *arg) 723 { 724 struct intr_info *info; 725 int use_limit; 726 __uint32_t lseconds; 727 int intr; 728 int mpheld; 729 struct intrec **list; 730 intrec_t rec, nrec; 731 globaldata_t gd; 732 struct systimer ill_timer; /* enforced freq. timer */ 733 u_int ill_count; /* interrupt livelock counter */ 734 735 ill_count = 0; 736 intr = (int)(intptr_t)arg; 737 info = &intr_info_ary[intr]; 738 list = &info->i_reclist; 739 740 /* 741 * The loop must be entered with one critical section held. The thread 742 * does not hold the mplock on startup. 743 */ 744 gd = mycpu; 745 lseconds = gd->gd_time_seconds; 746 crit_enter_gd(gd); 747 mpheld = 0; 748 749 for (;;) { 750 /* 751 * The chain is only considered MPSAFE if all its interrupt handlers 752 * are MPSAFE. However, if intr_mpsafe has been turned off we 753 * always operate with the BGL. 754 */ 755 #ifdef SMP 756 if (info->i_mplock_required != mpheld) { 757 if (info->i_mplock_required) { 758 KKASSERT(mpheld == 0); 759 get_mplock(); 760 mpheld = 1; 761 } else { 762 KKASSERT(mpheld != 0); 763 rel_mplock(); 764 mpheld = 0; 765 } 766 } 767 #endif 768 769 /* 770 * If an interrupt is pending, clear i_running and execute the 771 * handlers. Note that certain types of interrupts can re-trigger 772 * and set i_running again. 773 * 774 * Each handler is run in a critical section. Note that we run both 775 * FAST and SLOW designated service routines. 776 */ 777 if (info->i_running) { 778 ++ill_count; 779 info->i_running = 0; 780 781 if (*list == NULL) 782 report_stray_interrupt(intr, info); 783 784 for (rec = *list; rec; rec = nrec) { 785 nrec = rec->next; 786 if (rec->serializer) { 787 lwkt_serialize_handler_call(rec->serializer, rec->handler, 788 rec->argument, NULL); 789 } else { 790 rec->handler(rec->argument, NULL); 791 } 792 } 793 } 794 795 /* 796 * This is our interrupt hook to add rate randomness to the random 797 * number generator. 798 */ 799 if (info->i_random.sc_enabled > 0) 800 add_interrupt_randomness(intr); 801 802 /* 803 * Unmask the interrupt to allow it to trigger again. This only 804 * applies to certain types of interrupts (typ level interrupts). 805 * This can result in the interrupt retriggering, but the retrigger 806 * will not be processed until we cycle our critical section. 807 * 808 * Only unmask interrupts while handlers are installed. It is 809 * possible to hit a situation where no handlers are installed 810 * due to a device driver livelocking and then tearing down its 811 * interrupt on close (the parallel bus being a good example). 812 */ 813 if (*list) 814 machintr_intren(intr); 815 816 /* 817 * Do a quick exit/enter to catch any higher-priority interrupt 818 * sources, such as the statclock, so thread time accounting 819 * will still work. This may also cause an interrupt to re-trigger. 820 */ 821 crit_exit_gd(gd); 822 crit_enter_gd(gd); 823 824 /* 825 * LIVELOCK STATE MACHINE 826 */ 827 switch(info->i_state) { 828 case ISTATE_NORMAL: 829 /* 830 * Reset the count each second. 831 */ 832 if (lseconds != gd->gd_time_seconds) { 833 lseconds = gd->gd_time_seconds; 834 ill_count = 0; 835 } 836 837 /* 838 * If we did not exceed the frequency limit, we are done. 839 * If the interrupt has not retriggered we deschedule ourselves. 840 */ 841 if (ill_count <= livelock_limit) { 842 if (info->i_running == 0) { 843 lwkt_deschedule_self(gd->gd_curthread); 844 lwkt_switch(); 845 } 846 break; 847 } 848 849 /* 850 * Otherwise we are livelocked. Set up a periodic systimer 851 * to wake the thread up at the limit frequency. 852 */ 853 kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n", 854 intr, ill_count, livelock_limit); 855 info->i_state = ISTATE_LIVELOCKED; 856 if ((use_limit = livelock_limit) < 100) 857 use_limit = 100; 858 else if (use_limit > 500000) 859 use_limit = 500000; 860 systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup, 861 (void *)(intptr_t)intr, use_limit); 862 /* fall through */ 863 case ISTATE_LIVELOCKED: 864 /* 865 * Wait for our periodic timer to go off. Since the interrupt 866 * has re-armed it can still set i_running, but it will not 867 * reschedule us while we are in a livelocked state. 868 */ 869 lwkt_deschedule_self(gd->gd_curthread); 870 lwkt_switch(); 871 872 /* 873 * Check once a second to see if the livelock condition no 874 * longer applies. 875 */ 876 if (lseconds != gd->gd_time_seconds) { 877 lseconds = gd->gd_time_seconds; 878 if (ill_count < livelock_lowater) { 879 info->i_state = ISTATE_NORMAL; 880 systimer_del(&ill_timer); 881 kprintf("intr %d at %d/%d hz, livelock removed\n", 882 intr, ill_count, livelock_lowater); 883 } else if (livelock_debug == intr || 884 (bootverbose && cold)) { 885 kprintf("intr %d at %d/%d hz, in livelock\n", 886 intr, ill_count, livelock_lowater); 887 } 888 ill_count = 0; 889 } 890 break; 891 } 892 } 893 /* not reached */ 894 } 895 896 /* 897 * Emergency interrupt polling thread. The thread begins execution 898 * outside a critical section with the BGL held. 899 * 900 * If emergency interrupt polling is enabled, this thread will 901 * execute all system interrupts not marked INTR_NOPOLL at the 902 * specified polling frequency. 903 * 904 * WARNING! This thread runs *ALL* interrupt service routines that 905 * are not marked INTR_NOPOLL, which basically means everything except 906 * the 8254 clock interrupt and the ATA interrupt. It has very high 907 * overhead and should only be used in situations where the machine 908 * cannot otherwise be made to work. Due to the severe performance 909 * degredation, it should not be enabled on production machines. 910 */ 911 static void 912 ithread_emergency(void *arg __unused) 913 { 914 struct intr_info *info; 915 intrec_t rec, nrec; 916 int intr; 917 918 get_mplock(); 919 920 for (;;) { 921 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 922 info = &intr_info_ary[intr]; 923 for (rec = info->i_reclist; rec; rec = nrec) { 924 if ((rec->intr_flags & INTR_NOPOLL) == 0) { 925 if (rec->serializer) { 926 lwkt_serialize_handler_call(rec->serializer, 927 rec->handler, rec->argument, NULL); 928 } else { 929 rec->handler(rec->argument, NULL); 930 } 931 } 932 nrec = rec->next; 933 } 934 } 935 lwkt_deschedule_self(curthread); 936 lwkt_switch(); 937 } 938 } 939 940 /* 941 * Systimer callback - schedule the emergency interrupt poll thread 942 * if emergency polling is enabled. 943 */ 944 static 945 void 946 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused) 947 { 948 if (emergency_intr_enable) 949 lwkt_schedule(info->data); 950 } 951 952 int 953 ithread_cpuid(int intr) 954 { 955 const struct intr_info *info; 956 957 KKASSERT(intr >= 0 && intr < MAX_INTS); 958 info = &intr_info_ary[intr]; 959 960 if (info->i_state == ISTATE_NOTHREAD) 961 return -1; 962 return info->i_thread.td_gd->gd_cpuid; 963 } 964 965 /* 966 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 967 * The data for this machine dependent, and the declarations are in machine 968 * dependent code. The layout of intrnames and intrcnt however is machine 969 * independent. 970 * 971 * We do not know the length of intrcnt and intrnames at compile time, so 972 * calculate things at run time. 973 */ 974 975 static int 976 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 977 { 978 struct intr_info *info; 979 intrec_t rec; 980 int error = 0; 981 int len; 982 int intr; 983 char buf[64]; 984 985 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) { 986 info = &intr_info_ary[intr]; 987 988 len = 0; 989 buf[0] = 0; 990 for (rec = info->i_reclist; rec; rec = rec->next) { 991 ksnprintf(buf + len, sizeof(buf) - len, "%s%s", 992 (len ? "/" : ""), rec->name); 993 len += strlen(buf + len); 994 } 995 if (len == 0) { 996 ksnprintf(buf, sizeof(buf), "irq%d", intr); 997 len = strlen(buf); 998 } 999 error = SYSCTL_OUT(req, buf, len + 1); 1000 } 1001 return (error); 1002 } 1003 1004 1005 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1006 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1007 1008 static int 1009 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1010 { 1011 struct intr_info *info; 1012 int error = 0; 1013 int intr; 1014 1015 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 1016 info = &intr_info_ary[intr]; 1017 1018 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1019 if (error) 1020 goto failed; 1021 } 1022 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) { 1023 info = &intr_info_ary[intr]; 1024 1025 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 1026 if (error) 1027 goto failed; 1028 } 1029 failed: 1030 return(error); 1031 } 1032 1033 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1034 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1035 1036 static void 1037 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr) 1038 { 1039 int orig_cpuid = mycpuid, cpuid; 1040 char envpath[32]; 1041 1042 cpuid = orig_cpuid; 1043 ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr); 1044 kgetenv_int(envpath, &cpuid); 1045 if (cpuid >= ncpus) 1046 cpuid = orig_cpuid; 1047 1048 if (cpuid != orig_cpuid) 1049 lwkt_migratecpu(cpuid); 1050 1051 *orig_cpuid0 = orig_cpuid; 1052 *cpuid0 = cpuid; 1053 } 1054 1055 static void 1056 int_moveto_origcpu(int orig_cpuid, int cpuid) 1057 { 1058 if (cpuid != orig_cpuid) 1059 lwkt_migratecpu(orig_cpuid); 1060 } 1061