1 /* 2 * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved. 3 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $ 27 * $DragonFly: src/sys/kern/kern_intr.c,v 1.38 2005/11/26 14:36:21 sephe Exp $ 28 * 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/malloc.h> 34 #include <sys/kernel.h> 35 #include <sys/sysctl.h> 36 #include <sys/thread.h> 37 #include <sys/proc.h> 38 #include <sys/thread2.h> 39 #include <sys/random.h> 40 #include <sys/serialize.h> 41 #include <sys/bus.h> 42 #include <sys/machintr.h> 43 44 #include <machine/ipl.h> 45 #include <machine/frame.h> 46 47 #include <sys/interrupt.h> 48 49 struct info_info; 50 51 typedef struct intrec { 52 struct intrec *next; 53 struct intr_info *info; 54 inthand2_t *handler; 55 void *argument; 56 char *name; 57 int intr; 58 int intr_flags; 59 struct lwkt_serialize *serializer; 60 } *intrec_t; 61 62 struct intr_info { 63 intrec_t i_reclist; 64 struct thread i_thread; 65 struct random_softc i_random; 66 int i_running; 67 long i_count; /* interrupts dispatched */ 68 int i_mplock_required; 69 int i_fast; 70 int i_slow; 71 int i_state; 72 } intr_info_ary[MAX_INTS]; 73 74 int max_installed_hard_intr; 75 int max_installed_soft_intr; 76 77 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000 78 79 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS); 80 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS); 81 static void emergency_intr_timer_callback(systimer_t, struct intrframe *); 82 static void ithread_handler(void *arg); 83 static void ithread_emergency(void *arg); 84 85 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]); 86 87 static struct systimer emergency_intr_timer; 88 static struct thread emergency_intr_thread; 89 90 #define ISTATE_NOTHREAD 0 91 #define ISTATE_NORMAL 1 92 #define ISTATE_LIVELOCKED 2 93 94 #ifdef SMP 95 static int intr_mpsafe = 0; 96 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe); 97 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe, 98 CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL"); 99 #endif 100 static int livelock_limit = 50000; 101 static int livelock_lowater = 20000; 102 SYSCTL_INT(_kern, OID_AUTO, livelock_limit, 103 CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit"); 104 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater, 105 CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore"); 106 107 static int emergency_intr_enable = 0; /* emergency interrupt polling */ 108 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable); 109 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW, 110 0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable"); 111 112 static int emergency_intr_freq = 10; /* emergency polling frequency */ 113 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq); 114 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW, 115 0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency"); 116 117 /* 118 * Sysctl support routines 119 */ 120 static int 121 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS) 122 { 123 int error, enabled; 124 125 enabled = emergency_intr_enable; 126 error = sysctl_handle_int(oidp, &enabled, 0, req); 127 if (error || req->newptr == NULL) 128 return error; 129 emergency_intr_enable = enabled; 130 if (emergency_intr_enable) { 131 emergency_intr_timer.periodic = 132 sys_cputimer->fromhz(emergency_intr_freq); 133 } else { 134 emergency_intr_timer.periodic = sys_cputimer->fromhz(1); 135 } 136 return 0; 137 } 138 139 static int 140 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS) 141 { 142 int error, phz; 143 144 phz = emergency_intr_freq; 145 error = sysctl_handle_int(oidp, &phz, 0, req); 146 if (error || req->newptr == NULL) 147 return error; 148 if (phz <= 0) 149 return EINVAL; 150 else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX) 151 phz = EMERGENCY_INTR_POLLING_FREQ_MAX; 152 153 emergency_intr_freq = phz; 154 if (emergency_intr_enable) { 155 emergency_intr_timer.periodic = 156 sys_cputimer->fromhz(emergency_intr_freq); 157 } else { 158 emergency_intr_timer.periodic = sys_cputimer->fromhz(1); 159 } 160 return 0; 161 } 162 163 /* 164 * Register an SWI or INTerrupt handler. 165 */ 166 void * 167 register_swi(int intr, inthand2_t *handler, void *arg, const char *name, 168 struct lwkt_serialize *serializer) 169 { 170 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 171 panic("register_swi: bad intr %d", intr); 172 return(register_int(intr, handler, arg, name, serializer, 0)); 173 } 174 175 void * 176 register_int(int intr, inthand2_t *handler, void *arg, const char *name, 177 struct lwkt_serialize *serializer, int intr_flags) 178 { 179 struct intr_info *info; 180 struct intrec **list; 181 intrec_t rec; 182 183 if (intr < 0 || intr >= MAX_INTS) 184 panic("register_int: bad intr %d", intr); 185 if (name == NULL) 186 name = "???"; 187 info = &intr_info_ary[intr]; 188 189 /* 190 * Construct an interrupt handler record 191 */ 192 rec = malloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT); 193 rec->name = malloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT); 194 strcpy(rec->name, name); 195 196 rec->info = info; 197 rec->handler = handler; 198 rec->argument = arg; 199 rec->intr = intr; 200 rec->intr_flags = intr_flags; 201 rec->next = NULL; 202 rec->serializer = serializer; 203 204 /* 205 * Create an emergency polling thread and set up a systimer to wake 206 * it up. 207 */ 208 if (emergency_intr_thread.td_kstack == NULL) { 209 lwkt_create(ithread_emergency, NULL, NULL, 210 &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1, 211 "ithread emerg"); 212 systimer_init_periodic_nq(&emergency_intr_timer, 213 emergency_intr_timer_callback, &emergency_intr_thread, 214 (emergency_intr_enable ? emergency_intr_freq : 1)); 215 } 216 217 /* 218 * Create an interrupt thread if necessary, leave it in an unscheduled 219 * state. 220 */ 221 if (info->i_state == ISTATE_NOTHREAD) { 222 info->i_state = ISTATE_NORMAL; 223 lwkt_create((void *)ithread_handler, (void *)intr, NULL, 224 &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1, 225 "ithread %d", intr); 226 if (intr >= FIRST_SOFTINT) 227 lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM); 228 else 229 lwkt_setpri(&info->i_thread, TDPRI_INT_MED); 230 info->i_thread.td_preemptable = lwkt_preempt; 231 } 232 233 list = &info->i_reclist; 234 235 /* 236 * Keep track of how many fast and slow interrupts we have. 237 * Set i_mplock_required if any handler in the chain requires 238 * the MP lock to operate. 239 */ 240 if ((intr_flags & INTR_MPSAFE) == 0) 241 info->i_mplock_required = 1; 242 if (intr_flags & INTR_FAST) 243 ++info->i_fast; 244 else 245 ++info->i_slow; 246 247 /* 248 * Add the record to the interrupt list. 249 */ 250 crit_enter(); 251 while (*list != NULL) 252 list = &(*list)->next; 253 *list = rec; 254 crit_exit(); 255 256 /* 257 * Update max_installed_hard_intr to make the emergency intr poll 258 * a bit more efficient. 259 */ 260 if (intr < FIRST_SOFTINT) { 261 if (max_installed_hard_intr <= intr) 262 max_installed_hard_intr = intr + 1; 263 } else { 264 if (max_installed_soft_intr <= intr) 265 max_installed_soft_intr = intr + 1; 266 } 267 268 /* 269 * Setup the machine level interrupt vector 270 */ 271 if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) { 272 if (machintr_vector_setup(intr, intr_flags)) 273 printf("machintr_vector_setup: failed on irq %d\n", intr); 274 } 275 276 return(rec); 277 } 278 279 void 280 unregister_swi(void *id) 281 { 282 unregister_int(id); 283 } 284 285 void 286 unregister_int(void *id) 287 { 288 struct intr_info *info; 289 struct intrec **list; 290 intrec_t rec; 291 int intr; 292 293 intr = ((intrec_t)id)->intr; 294 295 if (intr < 0 || intr >= MAX_INTS) 296 panic("register_int: bad intr %d", intr); 297 298 info = &intr_info_ary[intr]; 299 300 /* 301 * Remove the interrupt descriptor, adjust the descriptor count, 302 * and teardown the machine level vector if this was the last interrupt. 303 */ 304 crit_enter(); 305 list = &info->i_reclist; 306 while ((rec = *list) != NULL) { 307 if (rec == id) 308 break; 309 list = &rec->next; 310 } 311 if (rec) { 312 intrec_t rec0; 313 314 *list = rec->next; 315 if (rec->intr_flags & INTR_FAST) 316 --info->i_fast; 317 else 318 --info->i_slow; 319 if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0) 320 machintr_vector_teardown(intr); 321 322 /* 323 * Clear i_mplock_required if no handlers in the chain require the 324 * MP lock. 325 */ 326 for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) { 327 if ((rec0->intr_flags & INTR_MPSAFE) == 0) 328 break; 329 } 330 if (rec0 == NULL) 331 info->i_mplock_required = 0; 332 } 333 334 crit_exit(); 335 336 /* 337 * Free the record. 338 */ 339 if (rec != NULL) { 340 free(rec->name, M_DEVBUF); 341 free(rec, M_DEVBUF); 342 } else { 343 printf("warning: unregister_int: int %d handler for %s not found\n", 344 intr, ((intrec_t)id)->name); 345 } 346 } 347 348 const char * 349 get_registered_name(int intr) 350 { 351 intrec_t rec; 352 353 if (intr < 0 || intr >= MAX_INTS) 354 panic("register_int: bad intr %d", intr); 355 356 if ((rec = intr_info_ary[intr].i_reclist) == NULL) 357 return(NULL); 358 else if (rec->next) 359 return("mux"); 360 else 361 return(rec->name); 362 } 363 364 int 365 count_registered_ints(int intr) 366 { 367 struct intr_info *info; 368 369 if (intr < 0 || intr >= MAX_INTS) 370 panic("register_int: bad intr %d", intr); 371 info = &intr_info_ary[intr]; 372 return(info->i_fast + info->i_slow); 373 } 374 375 long 376 get_interrupt_counter(int intr) 377 { 378 struct intr_info *info; 379 380 if (intr < 0 || intr >= MAX_INTS) 381 panic("register_int: bad intr %d", intr); 382 info = &intr_info_ary[intr]; 383 return(info->i_count); 384 } 385 386 387 void 388 swi_setpriority(int intr, int pri) 389 { 390 struct intr_info *info; 391 392 if (intr < FIRST_SOFTINT || intr >= MAX_INTS) 393 panic("register_swi: bad intr %d", intr); 394 info = &intr_info_ary[intr]; 395 if (info->i_state != ISTATE_NOTHREAD) 396 lwkt_setpri(&info->i_thread, pri); 397 } 398 399 void 400 register_randintr(int intr) 401 { 402 struct intr_info *info; 403 404 if (intr < 0 || intr >= MAX_INTS) 405 panic("register_randintr: bad intr %d", intr); 406 info = &intr_info_ary[intr]; 407 info->i_random.sc_intr = intr; 408 info->i_random.sc_enabled = 1; 409 } 410 411 void 412 unregister_randintr(int intr) 413 { 414 struct intr_info *info; 415 416 if (intr < 0 || intr >= MAX_INTS) 417 panic("register_swi: bad intr %d", intr); 418 info = &intr_info_ary[intr]; 419 info->i_random.sc_enabled = 0; 420 } 421 422 int 423 next_registered_randintr(int intr) 424 { 425 struct intr_info *info; 426 427 if (intr < 0 || intr >= MAX_INTS) 428 panic("register_swi: bad intr %d", intr); 429 while (intr < MAX_INTS) { 430 info = &intr_info_ary[intr]; 431 if (info->i_random.sc_enabled) 432 break; 433 ++intr; 434 } 435 return(intr); 436 } 437 438 /* 439 * Dispatch an interrupt. If there's nothing to do we have a stray 440 * interrupt and can just return, leaving the interrupt masked. 441 * 442 * We need to schedule the interrupt and set its i_running bit. If 443 * we are not on the interrupt thread's cpu we have to send a message 444 * to the correct cpu that will issue the desired action (interlocking 445 * with the interrupt thread's critical section). We do NOT attempt to 446 * reschedule interrupts whos i_running bit is already set because 447 * this would prematurely wakeup a livelock-limited interrupt thread. 448 * 449 * i_running is only tested/set on the same cpu as the interrupt thread. 450 * 451 * We are NOT in a critical section, which will allow the scheduled 452 * interrupt to preempt us. The MP lock might *NOT* be held here. 453 */ 454 #ifdef SMP 455 456 static void 457 sched_ithd_remote(void *arg) 458 { 459 sched_ithd((int)arg); 460 } 461 462 #endif 463 464 void 465 sched_ithd(int intr) 466 { 467 struct intr_info *info; 468 469 info = &intr_info_ary[intr]; 470 471 ++info->i_count; 472 if (info->i_state != ISTATE_NOTHREAD) { 473 if (info->i_reclist == NULL) { 474 printf("sched_ithd: stray interrupt %d\n", intr); 475 } else { 476 #ifdef SMP 477 if (info->i_thread.td_gd == mycpu) { 478 if (info->i_running == 0) { 479 info->i_running = 1; 480 if (info->i_state != ISTATE_LIVELOCKED) 481 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 482 } 483 } else { 484 lwkt_send_ipiq(info->i_thread.td_gd, 485 sched_ithd_remote, (void *)intr); 486 } 487 #else 488 if (info->i_running == 0) { 489 info->i_running = 1; 490 if (info->i_state != ISTATE_LIVELOCKED) 491 lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */ 492 } 493 #endif 494 } 495 } else { 496 printf("sched_ithd: stray interrupt %d\n", intr); 497 } 498 } 499 500 /* 501 * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL 502 * might not be held). 503 */ 504 static void 505 ithread_livelock_wakeup(systimer_t st) 506 { 507 struct intr_info *info; 508 509 info = &intr_info_ary[(int)st->data]; 510 if (info->i_state != ISTATE_NOTHREAD) 511 lwkt_schedule(&info->i_thread); 512 } 513 514 /* 515 * This function is called drectly from the ICU or APIC vector code assembly 516 * to process an interrupt. The critical section and interrupt deferral 517 * checks have already been done but the function is entered WITHOUT 518 * a critical section held. The BGL may or may not be held. 519 * 520 * Must return non-zero if we do not want the vector code to re-enable 521 * the interrupt (which we don't if we have to schedule the interrupt) 522 */ 523 int ithread_fast_handler(struct intrframe frame); 524 525 int 526 ithread_fast_handler(struct intrframe frame) 527 { 528 int intr; 529 struct intr_info *info; 530 struct intrec **list; 531 int must_schedule; 532 #ifdef SMP 533 int got_mplock; 534 #endif 535 intrec_t rec, next_rec; 536 globaldata_t gd; 537 538 intr = frame.if_vec; 539 gd = mycpu; 540 541 info = &intr_info_ary[intr]; 542 543 /* 544 * If we are not processing any FAST interrupts, just schedule the thing. 545 * (since we aren't in a critical section, this can result in a 546 * preemption) 547 */ 548 if (info->i_fast == 0) { 549 sched_ithd(intr); 550 return(1); 551 } 552 553 /* 554 * This should not normally occur since interrupts ought to be 555 * masked if the ithread has been scheduled or is running. 556 */ 557 if (info->i_running) 558 return(1); 559 560 /* 561 * Bump the interrupt nesting level to process any FAST interrupts. 562 * Obtain the MP lock as necessary. If the MP lock cannot be obtained, 563 * schedule the interrupt thread to deal with the issue instead. 564 * 565 * To reduce overhead, just leave the MP lock held once it has been 566 * obtained. 567 */ 568 crit_enter_gd(gd); 569 ++gd->gd_intr_nesting_level; 570 ++gd->gd_cnt.v_intr; 571 must_schedule = info->i_slow; 572 #ifdef SMP 573 got_mplock = 0; 574 #endif 575 576 list = &info->i_reclist; 577 for (rec = *list; rec; rec = next_rec) { 578 next_rec = rec->next; /* rec may be invalid after call */ 579 580 if (rec->intr_flags & INTR_FAST) { 581 #ifdef SMP 582 if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) { 583 if (try_mplock() == 0) { 584 int owner; 585 586 /* 587 * If we couldn't get the MP lock try to forward it 588 * to the cpu holding the MP lock, setting must_schedule 589 * to -1 so we do not schedule and also do not unmask 590 * the interrupt. Otherwise just schedule it. 591 */ 592 owner = owner_mplock(); 593 if (owner >= 0 && owner != gd->gd_cpuid) { 594 lwkt_send_ipiq_bycpu(owner, forward_fastint_remote, 595 (void *)intr); 596 must_schedule = -1; 597 ++gd->gd_cnt.v_forwarded_ints; 598 } else { 599 must_schedule = 1; 600 } 601 break; 602 } 603 got_mplock = 1; 604 } 605 #endif 606 if (rec->serializer) { 607 must_schedule += lwkt_serialize_handler_try( 608 rec->serializer, rec->handler, 609 rec->argument, &frame); 610 } else { 611 rec->handler(rec->argument, &frame); 612 } 613 } 614 } 615 616 /* 617 * Cleanup 618 */ 619 --gd->gd_intr_nesting_level; 620 #ifdef SMP 621 if (got_mplock) 622 rel_mplock(); 623 #endif 624 crit_exit_gd(gd); 625 626 /* 627 * If we had a problem, schedule the thread to catch the missed 628 * records (it will just re-run all of them). A return value of 0 629 * indicates that all handlers have been run and the interrupt can 630 * be re-enabled, and a non-zero return indicates that the interrupt 631 * thread controls re-enablement. 632 */ 633 if (must_schedule > 0) 634 sched_ithd(intr); 635 else if (must_schedule == 0) 636 ++info->i_count; 637 return(must_schedule); 638 } 639 640 #if 0 641 642 6: ; \ 643 /* could not get the MP lock, forward the interrupt */ \ 644 movl mp_lock, %eax ; /* check race */ \ 645 cmpl $MP_FREE_LOCK,%eax ; \ 646 je 2b ; \ 647 incl PCPU(cnt)+V_FORWARDED_INTS ; \ 648 subl $12,%esp ; \ 649 movl $irq_num,8(%esp) ; \ 650 movl $forward_fastint_remote,4(%esp) ; \ 651 movl %eax,(%esp) ; \ 652 call lwkt_send_ipiq_bycpu ; \ 653 addl $12,%esp ; \ 654 jmp 5f ; 655 656 #endif 657 658 659 /* 660 * Interrupt threads run this as their main loop. 661 * 662 * The handler begins execution outside a critical section and with the BGL 663 * held. 664 * 665 * The i_running state starts at 0. When an interrupt occurs, the hardware 666 * interrupt is disabled and sched_ithd() The HW interrupt remains disabled 667 * until all routines have run. We then call ithread_done() to reenable 668 * the HW interrupt and deschedule us until the next interrupt. 669 * 670 * We are responsible for atomically checking i_running and ithread_done() 671 * is responsible for atomically checking for platform-specific delayed 672 * interrupts. i_running for our irq is only set in the context of our cpu, 673 * so a critical section is a sufficient interlock. 674 */ 675 #define LIVELOCK_TIMEFRAME(freq) ((freq) >> 2) /* 1/4 second */ 676 677 static void 678 ithread_handler(void *arg) 679 { 680 struct intr_info *info; 681 int use_limit; 682 int lticks; 683 int lcount; 684 int intr; 685 int mpheld; 686 struct intrec **list; 687 intrec_t rec, nrec; 688 globaldata_t gd; 689 struct systimer ill_timer; /* enforced freq. timer */ 690 u_int ill_count; /* interrupt livelock counter */ 691 692 ill_count = 0; 693 lticks = ticks; 694 lcount = 0; 695 intr = (int)arg; 696 info = &intr_info_ary[intr]; 697 list = &info->i_reclist; 698 gd = mycpu; 699 700 /* 701 * The loop must be entered with one critical section held. The thread 702 * is created with TDF_MPSAFE so the MP lock is not held on start. 703 */ 704 crit_enter_gd(gd); 705 mpheld = 0; 706 707 for (;;) { 708 /* 709 * The chain is only considered MPSAFE if all its interrupt handlers 710 * are MPSAFE. However, if intr_mpsafe has been turned off we 711 * always operate with the BGL. 712 */ 713 #ifdef SMP 714 if (intr_mpsafe == 0) { 715 if (mpheld == 0) { 716 get_mplock(); 717 mpheld = 1; 718 } 719 } else if (info->i_mplock_required != mpheld) { 720 if (info->i_mplock_required) { 721 KKASSERT(mpheld == 0); 722 get_mplock(); 723 mpheld = 1; 724 } else { 725 KKASSERT(mpheld != 0); 726 rel_mplock(); 727 mpheld = 0; 728 } 729 } 730 #endif 731 732 /* 733 * If an interrupt is pending, clear i_running and execute the 734 * handlers. Note that certain types of interrupts can re-trigger 735 * and set i_running again. 736 * 737 * Each handler is run in a critical section. Note that we run both 738 * FAST and SLOW designated service routines. 739 */ 740 if (info->i_running) { 741 ++ill_count; 742 info->i_running = 0; 743 744 for (rec = *list; rec; rec = nrec) { 745 nrec = rec->next; 746 if (rec->serializer) { 747 lwkt_serialize_handler_call(rec->serializer, rec->handler, 748 rec->argument, NULL); 749 } else { 750 rec->handler(rec->argument, NULL); 751 } 752 } 753 } 754 755 /* 756 * This is our interrupt hook to add rate randomness to the random 757 * number generator. 758 */ 759 if (info->i_random.sc_enabled) 760 add_interrupt_randomness(intr); 761 762 /* 763 * Unmask the interrupt to allow it to trigger again. This only 764 * applies to certain types of interrupts (typ level interrupts). 765 * This can result in the interrupt retriggering, but the retrigger 766 * will not be processed until we cycle our critical section. 767 * 768 * Only unmask interrupts while handlers are installed. It is 769 * possible to hit a situation where no handlers are installed 770 * due to a device driver livelocking and then tearing down its 771 * interrupt on close (the parallel bus being a good example). 772 */ 773 if (*list) 774 machintr_intren(intr); 775 776 /* 777 * Do a quick exit/enter to catch any higher-priority interrupt 778 * sources, such as the statclock, so thread time accounting 779 * will still work. This may also cause an interrupt to re-trigger. 780 */ 781 crit_exit_gd(gd); 782 crit_enter_gd(gd); 783 784 /* 785 * LIVELOCK STATE MACHINE 786 */ 787 switch(info->i_state) { 788 case ISTATE_NORMAL: 789 /* 790 * Calculate a running average every tick. 791 */ 792 if (lticks != ticks) { 793 lticks = ticks; 794 ill_count -= ill_count / hz; 795 } 796 797 /* 798 * If we did not exceed the frequency limit, we are done. 799 * If the interrupt has not retriggered we deschedule ourselves. 800 */ 801 if (ill_count <= livelock_limit) { 802 if (info->i_running == 0) { 803 lwkt_deschedule_self(gd->gd_curthread); 804 lwkt_switch(); 805 } 806 break; 807 } 808 809 /* 810 * Otherwise we are livelocked. Set up a periodic systimer 811 * to wake the thread up at the limit frequency. 812 */ 813 printf("intr %d at %d > %d hz, livelocked limit engaged!\n", 814 intr, livelock_limit, ill_count); 815 info->i_state = ISTATE_LIVELOCKED; 816 if ((use_limit = livelock_limit) < 100) 817 use_limit = 100; 818 else if (use_limit > 500000) 819 use_limit = 500000; 820 systimer_init_periodic(&ill_timer, ithread_livelock_wakeup, 821 (void *)intr, use_limit); 822 lcount = 0; 823 /* fall through */ 824 case ISTATE_LIVELOCKED: 825 /* 826 * Wait for our periodic timer to go off. Since the interrupt 827 * has re-armed it can still set i_running, but it will not 828 * reschedule us while we are in a livelocked state. 829 */ 830 lwkt_deschedule_self(gd->gd_curthread); 831 lwkt_switch(); 832 833 /* 834 * Check to see if the livelock condition no longer applies. 835 * The interrupt must be able to operate normally for one 836 * full second before we restore normal operation. 837 */ 838 if (lticks != ticks) { 839 lticks = ticks; 840 if (ill_count < livelock_lowater) { 841 if (++lcount >= hz) { 842 info->i_state = ISTATE_NORMAL; 843 systimer_del(&ill_timer); 844 printf("intr %d at %d < %d hz, livelock removed\n", 845 intr, ill_count, livelock_lowater); 846 } 847 } else { 848 lcount = 0; 849 } 850 ill_count -= ill_count / hz; 851 } 852 break; 853 } 854 } 855 /* not reached */ 856 } 857 858 /* 859 * Emergency interrupt polling thread. The thread begins execution 860 * outside a critical section with the BGL held. 861 * 862 * If emergency interrupt polling is enabled, this thread will 863 * execute all system interrupts not marked INTR_NOPOLL at the 864 * specified polling frequency. 865 * 866 * WARNING! This thread runs *ALL* interrupt service routines that 867 * are not marked INTR_NOPOLL, which basically means everything except 868 * the 8254 clock interrupt and the ATA interrupt. It has very high 869 * overhead and should only be used in situations where the machine 870 * cannot otherwise be made to work. Due to the severe performance 871 * degredation, it should not be enabled on production machines. 872 */ 873 static void 874 ithread_emergency(void *arg __unused) 875 { 876 struct intr_info *info; 877 intrec_t rec, nrec; 878 int intr; 879 880 for (;;) { 881 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 882 info = &intr_info_ary[intr]; 883 for (rec = info->i_reclist; rec; rec = nrec) { 884 if ((rec->intr_flags & INTR_NOPOLL) == 0) { 885 if (rec->serializer) { 886 lwkt_serialize_handler_call(rec->serializer, 887 rec->handler, rec->argument, NULL); 888 } else { 889 rec->handler(rec->argument, NULL); 890 } 891 } 892 nrec = rec->next; 893 } 894 } 895 lwkt_deschedule_self(curthread); 896 lwkt_switch(); 897 } 898 } 899 900 /* 901 * Systimer callback - schedule the emergency interrupt poll thread 902 * if emergency polling is enabled. 903 */ 904 static 905 void 906 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused) 907 { 908 if (emergency_intr_enable) 909 lwkt_schedule(info->data); 910 } 911 912 /* 913 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 914 * The data for this machine dependent, and the declarations are in machine 915 * dependent code. The layout of intrnames and intrcnt however is machine 916 * independent. 917 * 918 * We do not know the length of intrcnt and intrnames at compile time, so 919 * calculate things at run time. 920 */ 921 922 static int 923 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 924 { 925 struct intr_info *info; 926 intrec_t rec; 927 int error = 0; 928 int len; 929 int intr; 930 char buf[64]; 931 932 for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) { 933 info = &intr_info_ary[intr]; 934 935 len = 0; 936 buf[0] = 0; 937 for (rec = info->i_reclist; rec; rec = rec->next) { 938 snprintf(buf + len, sizeof(buf) - len, "%s%s", 939 (len ? "/" : ""), rec->name); 940 len += strlen(buf + len); 941 } 942 if (len == 0) { 943 snprintf(buf, sizeof(buf), "irq%d", intr); 944 len = strlen(buf); 945 } 946 error = SYSCTL_OUT(req, buf, len + 1); 947 } 948 return (error); 949 } 950 951 952 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 953 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 954 955 static int 956 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 957 { 958 struct intr_info *info; 959 int error = 0; 960 int intr; 961 962 for (intr = 0; intr < max_installed_hard_intr; ++intr) { 963 info = &intr_info_ary[intr]; 964 965 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 966 if (error) 967 goto failed; 968 } 969 for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) { 970 info = &intr_info_ary[intr]; 971 972 error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count)); 973 if (error) 974 goto failed; 975 } 976 failed: 977 return(error); 978 } 979 980 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 981 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 982 983