xref: /dflybsd-src/sys/kern/kern_intr.c (revision 15a56cb3807bfc9539b6ac36cb59d42bd9af9659)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.38 2005/11/26 14:36:21 sephe Exp $
28  *
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/thread2.h>
39 #include <sys/random.h>
40 #include <sys/serialize.h>
41 #include <sys/bus.h>
42 #include <sys/machintr.h>
43 
44 #include <machine/ipl.h>
45 #include <machine/frame.h>
46 
47 #include <sys/interrupt.h>
48 
49 struct info_info;
50 
51 typedef struct intrec {
52     struct intrec *next;
53     struct intr_info *info;
54     inthand2_t	*handler;
55     void	*argument;
56     char	*name;
57     int		intr;
58     int		intr_flags;
59     struct lwkt_serialize *serializer;
60 } *intrec_t;
61 
62 struct intr_info {
63 	intrec_t	i_reclist;
64 	struct thread	i_thread;
65 	struct random_softc i_random;
66 	int		i_running;
67 	long		i_count;	/* interrupts dispatched */
68 	int		i_mplock_required;
69 	int		i_fast;
70 	int		i_slow;
71 	int		i_state;
72 } intr_info_ary[MAX_INTS];
73 
74 int max_installed_hard_intr;
75 int max_installed_soft_intr;
76 
77 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
78 
79 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
80 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
81 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
82 static void ithread_handler(void *arg);
83 static void ithread_emergency(void *arg);
84 
85 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
86 
87 static struct systimer emergency_intr_timer;
88 static struct thread emergency_intr_thread;
89 
90 #define ISTATE_NOTHREAD		0
91 #define ISTATE_NORMAL		1
92 #define ISTATE_LIVELOCKED	2
93 
94 #ifdef SMP
95 static int intr_mpsafe = 0;
96 TUNABLE_INT("kern.intr_mpsafe", &intr_mpsafe);
97 SYSCTL_INT(_kern, OID_AUTO, intr_mpsafe,
98         CTLFLAG_RW, &intr_mpsafe, 0, "Run INTR_MPSAFE handlers without the BGL");
99 #endif
100 static int livelock_limit = 50000;
101 static int livelock_lowater = 20000;
102 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
103         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
104 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
105         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
106 
107 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
108 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
109 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
110         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
111 
112 static int emergency_intr_freq = 10;	/* emergency polling frequency */
113 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
114 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
115         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
116 
117 /*
118  * Sysctl support routines
119  */
120 static int
121 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
122 {
123 	int error, enabled;
124 
125 	enabled = emergency_intr_enable;
126 	error = sysctl_handle_int(oidp, &enabled, 0, req);
127 	if (error || req->newptr == NULL)
128 		return error;
129 	emergency_intr_enable = enabled;
130 	if (emergency_intr_enable) {
131 		emergency_intr_timer.periodic =
132 			sys_cputimer->fromhz(emergency_intr_freq);
133 	} else {
134 		emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
135 	}
136 	return 0;
137 }
138 
139 static int
140 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
141 {
142         int error, phz;
143 
144         phz = emergency_intr_freq;
145         error = sysctl_handle_int(oidp, &phz, 0, req);
146         if (error || req->newptr == NULL)
147                 return error;
148         if (phz <= 0)
149                 return EINVAL;
150         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
151                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
152 
153         emergency_intr_freq = phz;
154 	if (emergency_intr_enable) {
155 		emergency_intr_timer.periodic =
156 			sys_cputimer->fromhz(emergency_intr_freq);
157 	} else {
158 		emergency_intr_timer.periodic = sys_cputimer->fromhz(1);
159 	}
160         return 0;
161 }
162 
163 /*
164  * Register an SWI or INTerrupt handler.
165  */
166 void *
167 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
168 		struct lwkt_serialize *serializer)
169 {
170     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
171 	panic("register_swi: bad intr %d", intr);
172     return(register_int(intr, handler, arg, name, serializer, 0));
173 }
174 
175 void *
176 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
177 		struct lwkt_serialize *serializer, int intr_flags)
178 {
179     struct intr_info *info;
180     struct intrec **list;
181     intrec_t rec;
182 
183     if (intr < 0 || intr >= MAX_INTS)
184 	panic("register_int: bad intr %d", intr);
185     if (name == NULL)
186 	name = "???";
187     info = &intr_info_ary[intr];
188 
189     /*
190      * Construct an interrupt handler record
191      */
192     rec = malloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
193     rec->name = malloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
194     strcpy(rec->name, name);
195 
196     rec->info = info;
197     rec->handler = handler;
198     rec->argument = arg;
199     rec->intr = intr;
200     rec->intr_flags = intr_flags;
201     rec->next = NULL;
202     rec->serializer = serializer;
203 
204     /*
205      * Create an emergency polling thread and set up a systimer to wake
206      * it up.
207      */
208     if (emergency_intr_thread.td_kstack == NULL) {
209 	lwkt_create(ithread_emergency, NULL, NULL,
210 		    &emergency_intr_thread, TDF_STOPREQ|TDF_INTTHREAD, -1,
211 		    "ithread emerg");
212 	systimer_init_periodic_nq(&emergency_intr_timer,
213 		    emergency_intr_timer_callback, &emergency_intr_thread,
214 		    (emergency_intr_enable ? emergency_intr_freq : 1));
215     }
216 
217     /*
218      * Create an interrupt thread if necessary, leave it in an unscheduled
219      * state.
220      */
221     if (info->i_state == ISTATE_NOTHREAD) {
222 	info->i_state = ISTATE_NORMAL;
223 	lwkt_create((void *)ithread_handler, (void *)intr, NULL,
224 	    &info->i_thread, TDF_STOPREQ|TDF_INTTHREAD|TDF_MPSAFE, -1,
225 	    "ithread %d", intr);
226 	if (intr >= FIRST_SOFTINT)
227 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
228 	else
229 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
230 	info->i_thread.td_preemptable = lwkt_preempt;
231     }
232 
233     list = &info->i_reclist;
234 
235     /*
236      * Keep track of how many fast and slow interrupts we have.
237      * Set i_mplock_required if any handler in the chain requires
238      * the MP lock to operate.
239      */
240     if ((intr_flags & INTR_MPSAFE) == 0)
241 	info->i_mplock_required = 1;
242     if (intr_flags & INTR_FAST)
243 	++info->i_fast;
244     else
245 	++info->i_slow;
246 
247     /*
248      * Add the record to the interrupt list.
249      */
250     crit_enter();
251     while (*list != NULL)
252 	list = &(*list)->next;
253     *list = rec;
254     crit_exit();
255 
256     /*
257      * Update max_installed_hard_intr to make the emergency intr poll
258      * a bit more efficient.
259      */
260     if (intr < FIRST_SOFTINT) {
261 	if (max_installed_hard_intr <= intr)
262 	    max_installed_hard_intr = intr + 1;
263     } else {
264 	if (max_installed_soft_intr <= intr)
265 	    max_installed_soft_intr = intr + 1;
266     }
267 
268     /*
269      * Setup the machine level interrupt vector
270      */
271     if (intr < FIRST_SOFTINT && info->i_slow + info->i_fast == 1) {
272 	if (machintr_vector_setup(intr, intr_flags))
273 	    printf("machintr_vector_setup: failed on irq %d\n", intr);
274     }
275 
276     return(rec);
277 }
278 
279 void
280 unregister_swi(void *id)
281 {
282     unregister_int(id);
283 }
284 
285 void
286 unregister_int(void *id)
287 {
288     struct intr_info *info;
289     struct intrec **list;
290     intrec_t rec;
291     int intr;
292 
293     intr = ((intrec_t)id)->intr;
294 
295     if (intr < 0 || intr >= MAX_INTS)
296 	panic("register_int: bad intr %d", intr);
297 
298     info = &intr_info_ary[intr];
299 
300     /*
301      * Remove the interrupt descriptor, adjust the descriptor count,
302      * and teardown the machine level vector if this was the last interrupt.
303      */
304     crit_enter();
305     list = &info->i_reclist;
306     while ((rec = *list) != NULL) {
307 	if (rec == id)
308 	    break;
309 	list = &rec->next;
310     }
311     if (rec) {
312 	intrec_t rec0;
313 
314 	*list = rec->next;
315 	if (rec->intr_flags & INTR_FAST)
316 	    --info->i_fast;
317 	else
318 	    --info->i_slow;
319 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
320 	    machintr_vector_teardown(intr);
321 
322 	/*
323 	 * Clear i_mplock_required if no handlers in the chain require the
324 	 * MP lock.
325 	 */
326 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
327 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
328 		break;
329 	}
330 	if (rec0 == NULL)
331 	    info->i_mplock_required = 0;
332     }
333 
334     crit_exit();
335 
336     /*
337      * Free the record.
338      */
339     if (rec != NULL) {
340 	free(rec->name, M_DEVBUF);
341 	free(rec, M_DEVBUF);
342     } else {
343 	printf("warning: unregister_int: int %d handler for %s not found\n",
344 		intr, ((intrec_t)id)->name);
345     }
346 }
347 
348 const char *
349 get_registered_name(int intr)
350 {
351     intrec_t rec;
352 
353     if (intr < 0 || intr >= MAX_INTS)
354 	panic("register_int: bad intr %d", intr);
355 
356     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
357 	return(NULL);
358     else if (rec->next)
359 	return("mux");
360     else
361 	return(rec->name);
362 }
363 
364 int
365 count_registered_ints(int intr)
366 {
367     struct intr_info *info;
368 
369     if (intr < 0 || intr >= MAX_INTS)
370 	panic("register_int: bad intr %d", intr);
371     info = &intr_info_ary[intr];
372     return(info->i_fast + info->i_slow);
373 }
374 
375 long
376 get_interrupt_counter(int intr)
377 {
378     struct intr_info *info;
379 
380     if (intr < 0 || intr >= MAX_INTS)
381 	panic("register_int: bad intr %d", intr);
382     info = &intr_info_ary[intr];
383     return(info->i_count);
384 }
385 
386 
387 void
388 swi_setpriority(int intr, int pri)
389 {
390     struct intr_info *info;
391 
392     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
393 	panic("register_swi: bad intr %d", intr);
394     info = &intr_info_ary[intr];
395     if (info->i_state != ISTATE_NOTHREAD)
396 	lwkt_setpri(&info->i_thread, pri);
397 }
398 
399 void
400 register_randintr(int intr)
401 {
402     struct intr_info *info;
403 
404     if (intr < 0 || intr >= MAX_INTS)
405 	panic("register_randintr: bad intr %d", intr);
406     info = &intr_info_ary[intr];
407     info->i_random.sc_intr = intr;
408     info->i_random.sc_enabled = 1;
409 }
410 
411 void
412 unregister_randintr(int intr)
413 {
414     struct intr_info *info;
415 
416     if (intr < 0 || intr >= MAX_INTS)
417 	panic("register_swi: bad intr %d", intr);
418     info = &intr_info_ary[intr];
419     info->i_random.sc_enabled = 0;
420 }
421 
422 int
423 next_registered_randintr(int intr)
424 {
425     struct intr_info *info;
426 
427     if (intr < 0 || intr >= MAX_INTS)
428 	panic("register_swi: bad intr %d", intr);
429     while (intr < MAX_INTS) {
430 	info = &intr_info_ary[intr];
431 	if (info->i_random.sc_enabled)
432 	    break;
433 	++intr;
434     }
435     return(intr);
436 }
437 
438 /*
439  * Dispatch an interrupt.  If there's nothing to do we have a stray
440  * interrupt and can just return, leaving the interrupt masked.
441  *
442  * We need to schedule the interrupt and set its i_running bit.  If
443  * we are not on the interrupt thread's cpu we have to send a message
444  * to the correct cpu that will issue the desired action (interlocking
445  * with the interrupt thread's critical section).  We do NOT attempt to
446  * reschedule interrupts whos i_running bit is already set because
447  * this would prematurely wakeup a livelock-limited interrupt thread.
448  *
449  * i_running is only tested/set on the same cpu as the interrupt thread.
450  *
451  * We are NOT in a critical section, which will allow the scheduled
452  * interrupt to preempt us.  The MP lock might *NOT* be held here.
453  */
454 #ifdef SMP
455 
456 static void
457 sched_ithd_remote(void *arg)
458 {
459     sched_ithd((int)arg);
460 }
461 
462 #endif
463 
464 void
465 sched_ithd(int intr)
466 {
467     struct intr_info *info;
468 
469     info = &intr_info_ary[intr];
470 
471     ++info->i_count;
472     if (info->i_state != ISTATE_NOTHREAD) {
473 	if (info->i_reclist == NULL) {
474 	    printf("sched_ithd: stray interrupt %d\n", intr);
475 	} else {
476 #ifdef SMP
477 	    if (info->i_thread.td_gd == mycpu) {
478 		if (info->i_running == 0) {
479 		    info->i_running = 1;
480 		    if (info->i_state != ISTATE_LIVELOCKED)
481 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
482 		}
483 	    } else {
484 		lwkt_send_ipiq(info->i_thread.td_gd,
485 				sched_ithd_remote, (void *)intr);
486 	    }
487 #else
488 	    if (info->i_running == 0) {
489 		info->i_running = 1;
490 		if (info->i_state != ISTATE_LIVELOCKED)
491 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
492 	    }
493 #endif
494 	}
495     } else {
496 	printf("sched_ithd: stray interrupt %d\n", intr);
497     }
498 }
499 
500 /*
501  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
502  * might not be held).
503  */
504 static void
505 ithread_livelock_wakeup(systimer_t st)
506 {
507     struct intr_info *info;
508 
509     info = &intr_info_ary[(int)st->data];
510     if (info->i_state != ISTATE_NOTHREAD)
511 	lwkt_schedule(&info->i_thread);
512 }
513 
514 /*
515  * This function is called drectly from the ICU or APIC vector code assembly
516  * to process an interrupt.  The critical section and interrupt deferral
517  * checks have already been done but the function is entered WITHOUT
518  * a critical section held.  The BGL may or may not be held.
519  *
520  * Must return non-zero if we do not want the vector code to re-enable
521  * the interrupt (which we don't if we have to schedule the interrupt)
522  */
523 int ithread_fast_handler(struct intrframe frame);
524 
525 int
526 ithread_fast_handler(struct intrframe frame)
527 {
528     int intr;
529     struct intr_info *info;
530     struct intrec **list;
531     int must_schedule;
532 #ifdef SMP
533     int got_mplock;
534 #endif
535     intrec_t rec, next_rec;
536     globaldata_t gd;
537 
538     intr = frame.if_vec;
539     gd = mycpu;
540 
541     info = &intr_info_ary[intr];
542 
543     /*
544      * If we are not processing any FAST interrupts, just schedule the thing.
545      * (since we aren't in a critical section, this can result in a
546      * preemption)
547      */
548     if (info->i_fast == 0) {
549 	sched_ithd(intr);
550 	return(1);
551     }
552 
553     /*
554      * This should not normally occur since interrupts ought to be
555      * masked if the ithread has been scheduled or is running.
556      */
557     if (info->i_running)
558 	return(1);
559 
560     /*
561      * Bump the interrupt nesting level to process any FAST interrupts.
562      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
563      * schedule the interrupt thread to deal with the issue instead.
564      *
565      * To reduce overhead, just leave the MP lock held once it has been
566      * obtained.
567      */
568     crit_enter_gd(gd);
569     ++gd->gd_intr_nesting_level;
570     ++gd->gd_cnt.v_intr;
571     must_schedule = info->i_slow;
572 #ifdef SMP
573     got_mplock = 0;
574 #endif
575 
576     list = &info->i_reclist;
577     for (rec = *list; rec; rec = next_rec) {
578 	next_rec = rec->next;	/* rec may be invalid after call */
579 
580 	if (rec->intr_flags & INTR_FAST) {
581 #ifdef SMP
582 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
583 		if (try_mplock() == 0) {
584 		    int owner;
585 
586 		    /*
587 		     * If we couldn't get the MP lock try to forward it
588 		     * to the cpu holding the MP lock, setting must_schedule
589 		     * to -1 so we do not schedule and also do not unmask
590 		     * the interrupt.  Otherwise just schedule it.
591 		     */
592 		    owner = owner_mplock();
593 		    if (owner >= 0 && owner != gd->gd_cpuid) {
594 			lwkt_send_ipiq_bycpu(owner, forward_fastint_remote,
595 						(void *)intr);
596 			must_schedule = -1;
597 			++gd->gd_cnt.v_forwarded_ints;
598 		    } else {
599 			must_schedule = 1;
600 		    }
601 		    break;
602 		}
603 		got_mplock = 1;
604 	    }
605 #endif
606 	    if (rec->serializer) {
607 		must_schedule += lwkt_serialize_handler_try(
608 					rec->serializer, rec->handler,
609 					rec->argument, &frame);
610 	    } else {
611 		rec->handler(rec->argument, &frame);
612 	    }
613 	}
614     }
615 
616     /*
617      * Cleanup
618      */
619     --gd->gd_intr_nesting_level;
620 #ifdef SMP
621     if (got_mplock)
622 	rel_mplock();
623 #endif
624     crit_exit_gd(gd);
625 
626     /*
627      * If we had a problem, schedule the thread to catch the missed
628      * records (it will just re-run all of them).  A return value of 0
629      * indicates that all handlers have been run and the interrupt can
630      * be re-enabled, and a non-zero return indicates that the interrupt
631      * thread controls re-enablement.
632      */
633     if (must_schedule > 0)
634 	sched_ithd(intr);
635     else if (must_schedule == 0)
636 	++info->i_count;
637     return(must_schedule);
638 }
639 
640 #if 0
641 
642 6: ;                                                                    \
643         /* could not get the MP lock, forward the interrupt */          \
644         movl    mp_lock, %eax ;          /* check race */               \
645         cmpl    $MP_FREE_LOCK,%eax ;                                    \
646         je      2b ;                                                    \
647         incl    PCPU(cnt)+V_FORWARDED_INTS ;                            \
648         subl    $12,%esp ;                                              \
649         movl    $irq_num,8(%esp) ;                                      \
650         movl    $forward_fastint_remote,4(%esp) ;                       \
651         movl    %eax,(%esp) ;                                           \
652         call    lwkt_send_ipiq_bycpu ;                                  \
653         addl    $12,%esp ;                                              \
654         jmp     5f ;
655 
656 #endif
657 
658 
659 /*
660  * Interrupt threads run this as their main loop.
661  *
662  * The handler begins execution outside a critical section and with the BGL
663  * held.
664  *
665  * The i_running state starts at 0.  When an interrupt occurs, the hardware
666  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
667  * until all routines have run.  We then call ithread_done() to reenable
668  * the HW interrupt and deschedule us until the next interrupt.
669  *
670  * We are responsible for atomically checking i_running and ithread_done()
671  * is responsible for atomically checking for platform-specific delayed
672  * interrupts.  i_running for our irq is only set in the context of our cpu,
673  * so a critical section is a sufficient interlock.
674  */
675 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
676 
677 static void
678 ithread_handler(void *arg)
679 {
680     struct intr_info *info;
681     int use_limit;
682     int lticks;
683     int lcount;
684     int intr;
685     int mpheld;
686     struct intrec **list;
687     intrec_t rec, nrec;
688     globaldata_t gd;
689     struct systimer ill_timer;	/* enforced freq. timer */
690     u_int ill_count;		/* interrupt livelock counter */
691 
692     ill_count = 0;
693     lticks = ticks;
694     lcount = 0;
695     intr = (int)arg;
696     info = &intr_info_ary[intr];
697     list = &info->i_reclist;
698     gd = mycpu;
699 
700     /*
701      * The loop must be entered with one critical section held.  The thread
702      * is created with TDF_MPSAFE so the MP lock is not held on start.
703      */
704     crit_enter_gd(gd);
705     mpheld = 0;
706 
707     for (;;) {
708 	/*
709 	 * The chain is only considered MPSAFE if all its interrupt handlers
710 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
711 	 * always operate with the BGL.
712 	 */
713 #ifdef SMP
714 	if (intr_mpsafe == 0) {
715 	    if (mpheld == 0) {
716 		get_mplock();
717 		mpheld = 1;
718 	    }
719 	} else if (info->i_mplock_required != mpheld) {
720 	    if (info->i_mplock_required) {
721 		KKASSERT(mpheld == 0);
722 		get_mplock();
723 		mpheld = 1;
724 	    } else {
725 		KKASSERT(mpheld != 0);
726 		rel_mplock();
727 		mpheld = 0;
728 	    }
729 	}
730 #endif
731 
732 	/*
733 	 * If an interrupt is pending, clear i_running and execute the
734 	 * handlers.  Note that certain types of interrupts can re-trigger
735 	 * and set i_running again.
736 	 *
737 	 * Each handler is run in a critical section.  Note that we run both
738 	 * FAST and SLOW designated service routines.
739 	 */
740 	if (info->i_running) {
741 	    ++ill_count;
742 	    info->i_running = 0;
743 
744 	    for (rec = *list; rec; rec = nrec) {
745 		nrec = rec->next;
746 		if (rec->serializer) {
747 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
748 						rec->argument, NULL);
749 		} else {
750 		    rec->handler(rec->argument, NULL);
751 		}
752 	    }
753 	}
754 
755 	/*
756 	 * This is our interrupt hook to add rate randomness to the random
757 	 * number generator.
758 	 */
759 	if (info->i_random.sc_enabled)
760 	    add_interrupt_randomness(intr);
761 
762 	/*
763 	 * Unmask the interrupt to allow it to trigger again.  This only
764 	 * applies to certain types of interrupts (typ level interrupts).
765 	 * This can result in the interrupt retriggering, but the retrigger
766 	 * will not be processed until we cycle our critical section.
767 	 *
768 	 * Only unmask interrupts while handlers are installed.  It is
769 	 * possible to hit a situation where no handlers are installed
770 	 * due to a device driver livelocking and then tearing down its
771 	 * interrupt on close (the parallel bus being a good example).
772 	 */
773 	if (*list)
774 	    machintr_intren(intr);
775 
776 	/*
777 	 * Do a quick exit/enter to catch any higher-priority interrupt
778 	 * sources, such as the statclock, so thread time accounting
779 	 * will still work.  This may also cause an interrupt to re-trigger.
780 	 */
781 	crit_exit_gd(gd);
782 	crit_enter_gd(gd);
783 
784 	/*
785 	 * LIVELOCK STATE MACHINE
786 	 */
787 	switch(info->i_state) {
788 	case ISTATE_NORMAL:
789 	    /*
790 	     * Calculate a running average every tick.
791 	     */
792 	    if (lticks != ticks) {
793 		lticks = ticks;
794 		ill_count -= ill_count / hz;
795 	    }
796 
797 	    /*
798 	     * If we did not exceed the frequency limit, we are done.
799 	     * If the interrupt has not retriggered we deschedule ourselves.
800 	     */
801 	    if (ill_count <= livelock_limit) {
802 		if (info->i_running == 0) {
803 		    lwkt_deschedule_self(gd->gd_curthread);
804 		    lwkt_switch();
805 		}
806 		break;
807 	    }
808 
809 	    /*
810 	     * Otherwise we are livelocked.  Set up a periodic systimer
811 	     * to wake the thread up at the limit frequency.
812 	     */
813 	    printf("intr %d at %d > %d hz, livelocked limit engaged!\n",
814 		   intr, livelock_limit, ill_count);
815 	    info->i_state = ISTATE_LIVELOCKED;
816 	    if ((use_limit = livelock_limit) < 100)
817 		use_limit = 100;
818 	    else if (use_limit > 500000)
819 		use_limit = 500000;
820 	    systimer_init_periodic(&ill_timer, ithread_livelock_wakeup,
821 				   (void *)intr, use_limit);
822 	    lcount = 0;
823 	    /* fall through */
824 	case ISTATE_LIVELOCKED:
825 	    /*
826 	     * Wait for our periodic timer to go off.  Since the interrupt
827 	     * has re-armed it can still set i_running, but it will not
828 	     * reschedule us while we are in a livelocked state.
829 	     */
830 	    lwkt_deschedule_self(gd->gd_curthread);
831 	    lwkt_switch();
832 
833 	    /*
834 	     * Check to see if the livelock condition no longer applies.
835 	     * The interrupt must be able to operate normally for one
836 	     * full second before we restore normal operation.
837 	     */
838 	    if (lticks != ticks) {
839 		lticks = ticks;
840 		if (ill_count < livelock_lowater) {
841 		    if (++lcount >= hz) {
842 			info->i_state = ISTATE_NORMAL;
843 			systimer_del(&ill_timer);
844 			printf("intr %d at %d < %d hz, livelock removed\n",
845 			       intr, ill_count, livelock_lowater);
846 		    }
847 		} else {
848 		    lcount = 0;
849 		}
850 		ill_count -= ill_count / hz;
851 	    }
852 	    break;
853 	}
854     }
855     /* not reached */
856 }
857 
858 /*
859  * Emergency interrupt polling thread.  The thread begins execution
860  * outside a critical section with the BGL held.
861  *
862  * If emergency interrupt polling is enabled, this thread will
863  * execute all system interrupts not marked INTR_NOPOLL at the
864  * specified polling frequency.
865  *
866  * WARNING!  This thread runs *ALL* interrupt service routines that
867  * are not marked INTR_NOPOLL, which basically means everything except
868  * the 8254 clock interrupt and the ATA interrupt.  It has very high
869  * overhead and should only be used in situations where the machine
870  * cannot otherwise be made to work.  Due to the severe performance
871  * degredation, it should not be enabled on production machines.
872  */
873 static void
874 ithread_emergency(void *arg __unused)
875 {
876     struct intr_info *info;
877     intrec_t rec, nrec;
878     int intr;
879 
880     for (;;) {
881 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
882 	    info = &intr_info_ary[intr];
883 	    for (rec = info->i_reclist; rec; rec = nrec) {
884 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
885 		    if (rec->serializer) {
886 			lwkt_serialize_handler_call(rec->serializer,
887 						rec->handler, rec->argument, NULL);
888 		    } else {
889 			rec->handler(rec->argument, NULL);
890 		    }
891 		}
892 		nrec = rec->next;
893 	    }
894 	}
895 	lwkt_deschedule_self(curthread);
896 	lwkt_switch();
897     }
898 }
899 
900 /*
901  * Systimer callback - schedule the emergency interrupt poll thread
902  * 		       if emergency polling is enabled.
903  */
904 static
905 void
906 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
907 {
908     if (emergency_intr_enable)
909 	lwkt_schedule(info->data);
910 }
911 
912 /*
913  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
914  * The data for this machine dependent, and the declarations are in machine
915  * dependent code.  The layout of intrnames and intrcnt however is machine
916  * independent.
917  *
918  * We do not know the length of intrcnt and intrnames at compile time, so
919  * calculate things at run time.
920  */
921 
922 static int
923 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
924 {
925     struct intr_info *info;
926     intrec_t rec;
927     int error = 0;
928     int len;
929     int intr;
930     char buf[64];
931 
932     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
933 	info = &intr_info_ary[intr];
934 
935 	len = 0;
936 	buf[0] = 0;
937 	for (rec = info->i_reclist; rec; rec = rec->next) {
938 	    snprintf(buf + len, sizeof(buf) - len, "%s%s",
939 		(len ? "/" : ""), rec->name);
940 	    len += strlen(buf + len);
941 	}
942 	if (len == 0) {
943 	    snprintf(buf, sizeof(buf), "irq%d", intr);
944 	    len = strlen(buf);
945 	}
946 	error = SYSCTL_OUT(req, buf, len + 1);
947     }
948     return (error);
949 }
950 
951 
952 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
953 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
954 
955 static int
956 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
957 {
958     struct intr_info *info;
959     int error = 0;
960     int intr;
961 
962     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
963 	info = &intr_info_ary[intr];
964 
965 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
966 	if (error)
967 		goto failed;
968     }
969     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
970 	info = &intr_info_ary[intr];
971 
972 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
973 	if (error)
974 		goto failed;
975     }
976 failed:
977     return(error);
978 }
979 
980 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
981 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
982 
983