xref: /dflybsd-src/sys/kern/kern_intr.c (revision 14343ad3b815bafa1bcec3656de2d614fcc75bec)
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com> All rights reserved.
3  * Copyright (c) 1997, Stefan Esser <se@freebsd.org> All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/kern/kern_intr.c,v 1.24.2.1 2001/10/14 20:05:50 luigi Exp $
27  * $DragonFly: src/sys/kern/kern_intr.c,v 1.55 2008/09/01 12:49:00 sephe Exp $
28  *
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/malloc.h>
34 #include <sys/kernel.h>
35 #include <sys/sysctl.h>
36 #include <sys/thread.h>
37 #include <sys/proc.h>
38 #include <sys/random.h>
39 #include <sys/serialize.h>
40 #include <sys/interrupt.h>
41 #include <sys/bus.h>
42 #include <sys/machintr.h>
43 
44 #include <machine/frame.h>
45 
46 #include <sys/interrupt.h>
47 
48 #include <sys/thread2.h>
49 #include <sys/mplock2.h>
50 
51 struct info_info;
52 
53 typedef struct intrec {
54     struct intrec *next;
55     struct intr_info *info;
56     inthand2_t	*handler;
57     void	*argument;
58     char	*name;
59     int		intr;
60     int		intr_flags;
61     struct lwkt_serialize *serializer;
62 } *intrec_t;
63 
64 struct intr_info {
65 	intrec_t	i_reclist;
66 	struct thread	i_thread;
67 	struct random_softc i_random;
68 	int		i_running;
69 	long		i_count;	/* interrupts dispatched */
70 	int		i_mplock_required;
71 	int		i_fast;
72 	int		i_slow;
73 	int		i_state;
74 	int		i_errorticks;
75 	unsigned long	i_straycount;
76 } intr_info_ary[MAX_INTS];
77 
78 int max_installed_hard_intr;
79 int max_installed_soft_intr;
80 
81 #define EMERGENCY_INTR_POLLING_FREQ_MAX 20000
82 
83 /*
84  * Assert that callers into interrupt handlers don't return with
85  * dangling tokens, spinlocks, or mp locks.
86  */
87 #ifdef INVARIANTS
88 
89 #ifdef SMP
90 
91 #define SMP_INVARIANTS_DECLARE	\
92 	int mpcount;
93 
94 #define SMP_INVARIANTS_GET(td)		\
95 	mpcount = (td)->td_mpcount
96 
97 #define SMP_INVARIANTS_TEST(td, name)					\
98 		KASSERT(mpcount == (td)->td_mpcount,			\
99 			("mpcount mismatch after interrupt handler %s",	\
100 			name))
101 
102 #define SMP_INVARIANTS_ADJMP(count)	mpcount += (count)
103 
104 #else
105 
106 #define SMP_INVARIANTS_DECLARE
107 #define SMP_INVARIANTS_GET(td)
108 #define SMP_INVARIANTS_TEST(td, name)
109 
110 #endif
111 
112 #define TD_INVARIANTS_DECLARE	\
113 	SMP_INVARIANTS_DECLARE	\
114 	int spincount;		\
115 	lwkt_tokref_t curstop
116 
117 #define TD_INVARIANTS_GET(td)					\
118 	do {							\
119 		SMP_INVARIANTS_GET(td);				\
120 		spincount = (td)->td_gd->gd_spinlocks_wr;	\
121 		curstop = (td)->td_toks_stop;			\
122 	} while(0)
123 
124 #define TD_INVARIANTS_TEST(td, name)					\
125 	do {								\
126 		KASSERT(spincount == (td)->td_gd->gd_spinlocks_wr, 	\
127 			("spincount mismatch after interrupt handler %s", \
128 			name));						\
129 		KASSERT(curstop == (td)->td_toks_stop,			\
130 			("token count mismatch after interrupt handler %s", \
131 			name));						\
132 		SMP_INVARIANTS_TEST(td, name);				\
133 	} while(0)
134 
135 #else
136 
137 #define TD_INVARIANTS_DECLARE
138 #define TD_INVARIANTS_GET(td)
139 #define TD_INVARIANTS_TEST(td)
140 #define TD_INVARIANTS_ADJMP(count)
141 
142 #endif
143 
144 static int sysctl_emergency_freq(SYSCTL_HANDLER_ARGS);
145 static int sysctl_emergency_enable(SYSCTL_HANDLER_ARGS);
146 static void emergency_intr_timer_callback(systimer_t, struct intrframe *);
147 static void ithread_handler(void *arg);
148 static void ithread_emergency(void *arg);
149 static void report_stray_interrupt(int intr, struct intr_info *info);
150 static void int_moveto_destcpu(int *, int *, int);
151 static void int_moveto_origcpu(int, int);
152 
153 int intr_info_size = sizeof(intr_info_ary) / sizeof(intr_info_ary[0]);
154 
155 static struct systimer emergency_intr_timer;
156 static struct thread emergency_intr_thread;
157 
158 #define ISTATE_NOTHREAD		0
159 #define ISTATE_NORMAL		1
160 #define ISTATE_LIVELOCKED	2
161 
162 static int livelock_limit = 40000;
163 static int livelock_lowater = 20000;
164 static int livelock_debug = -1;
165 SYSCTL_INT(_kern, OID_AUTO, livelock_limit,
166         CTLFLAG_RW, &livelock_limit, 0, "Livelock interrupt rate limit");
167 SYSCTL_INT(_kern, OID_AUTO, livelock_lowater,
168         CTLFLAG_RW, &livelock_lowater, 0, "Livelock low-water mark restore");
169 SYSCTL_INT(_kern, OID_AUTO, livelock_debug,
170         CTLFLAG_RW, &livelock_debug, 0, "Livelock debug intr#");
171 
172 static int emergency_intr_enable = 0;	/* emergency interrupt polling */
173 TUNABLE_INT("kern.emergency_intr_enable", &emergency_intr_enable);
174 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_enable, CTLTYPE_INT | CTLFLAG_RW,
175         0, 0, sysctl_emergency_enable, "I", "Emergency Interrupt Poll Enable");
176 
177 static int emergency_intr_freq = 10;	/* emergency polling frequency */
178 TUNABLE_INT("kern.emergency_intr_freq", &emergency_intr_freq);
179 SYSCTL_PROC(_kern, OID_AUTO, emergency_intr_freq, CTLTYPE_INT | CTLFLAG_RW,
180         0, 0, sysctl_emergency_freq, "I", "Emergency Interrupt Poll Frequency");
181 
182 /*
183  * Sysctl support routines
184  */
185 static int
186 sysctl_emergency_enable(SYSCTL_HANDLER_ARGS)
187 {
188 	int error, enabled;
189 
190 	enabled = emergency_intr_enable;
191 	error = sysctl_handle_int(oidp, &enabled, 0, req);
192 	if (error || req->newptr == NULL)
193 		return error;
194 	emergency_intr_enable = enabled;
195 	if (emergency_intr_enable) {
196 		systimer_adjust_periodic(&emergency_intr_timer,
197 					 emergency_intr_freq);
198 	} else {
199 		systimer_adjust_periodic(&emergency_intr_timer, 1);
200 	}
201 	return 0;
202 }
203 
204 static int
205 sysctl_emergency_freq(SYSCTL_HANDLER_ARGS)
206 {
207         int error, phz;
208 
209         phz = emergency_intr_freq;
210         error = sysctl_handle_int(oidp, &phz, 0, req);
211         if (error || req->newptr == NULL)
212                 return error;
213         if (phz <= 0)
214                 return EINVAL;
215         else if (phz > EMERGENCY_INTR_POLLING_FREQ_MAX)
216                 phz = EMERGENCY_INTR_POLLING_FREQ_MAX;
217 
218         emergency_intr_freq = phz;
219 	if (emergency_intr_enable) {
220 		systimer_adjust_periodic(&emergency_intr_timer,
221 					 emergency_intr_freq);
222 	} else {
223 		systimer_adjust_periodic(&emergency_intr_timer, 1);
224 	}
225         return 0;
226 }
227 
228 /*
229  * Register an SWI or INTerrupt handler.
230  */
231 void *
232 register_swi(int intr, inthand2_t *handler, void *arg, const char *name,
233 		struct lwkt_serialize *serializer)
234 {
235     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
236 	panic("register_swi: bad intr %d", intr);
237     return(register_int(intr, handler, arg, name, serializer, 0));
238 }
239 
240 void *
241 register_swi_mp(int intr, inthand2_t *handler, void *arg, const char *name,
242 		struct lwkt_serialize *serializer)
243 {
244     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
245 	panic("register_swi: bad intr %d", intr);
246     return(register_int(intr, handler, arg, name, serializer, INTR_MPSAFE));
247 }
248 
249 void *
250 register_int(int intr, inthand2_t *handler, void *arg, const char *name,
251 		struct lwkt_serialize *serializer, int intr_flags)
252 {
253     struct intr_info *info;
254     struct intrec **list;
255     intrec_t rec;
256     int orig_cpuid, cpuid;
257 
258     if (intr < 0 || intr >= MAX_INTS)
259 	panic("register_int: bad intr %d", intr);
260     if (name == NULL)
261 	name = "???";
262     info = &intr_info_ary[intr];
263 
264     /*
265      * Construct an interrupt handler record
266      */
267     rec = kmalloc(sizeof(struct intrec), M_DEVBUF, M_INTWAIT);
268     rec->name = kmalloc(strlen(name) + 1, M_DEVBUF, M_INTWAIT);
269     strcpy(rec->name, name);
270 
271     rec->info = info;
272     rec->handler = handler;
273     rec->argument = arg;
274     rec->intr = intr;
275     rec->intr_flags = intr_flags;
276     rec->next = NULL;
277     rec->serializer = serializer;
278 
279     /*
280      * Create an emergency polling thread and set up a systimer to wake
281      * it up.
282      */
283     if (emergency_intr_thread.td_kstack == NULL) {
284 	lwkt_create(ithread_emergency, NULL, NULL, &emergency_intr_thread,
285 		    TDF_STOPREQ | TDF_INTTHREAD, -1, "ithread emerg");
286 	systimer_init_periodic_nq(&emergency_intr_timer,
287 		    emergency_intr_timer_callback, &emergency_intr_thread,
288 		    (emergency_intr_enable ? emergency_intr_freq : 1));
289     }
290 
291     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
292 
293     /*
294      * Create an interrupt thread if necessary, leave it in an unscheduled
295      * state.
296      */
297     if (info->i_state == ISTATE_NOTHREAD) {
298 	info->i_state = ISTATE_NORMAL;
299 	lwkt_create(ithread_handler, (void *)(intptr_t)intr, NULL,
300 		    &info->i_thread, TDF_STOPREQ | TDF_INTTHREAD, -1,
301 		    "ithread %d", intr);
302 	if (intr >= FIRST_SOFTINT)
303 	    lwkt_setpri(&info->i_thread, TDPRI_SOFT_NORM);
304 	else
305 	    lwkt_setpri(&info->i_thread, TDPRI_INT_MED);
306 	info->i_thread.td_preemptable = lwkt_preempt;
307     }
308 
309     list = &info->i_reclist;
310 
311     /*
312      * Keep track of how many fast and slow interrupts we have.
313      * Set i_mplock_required if any handler in the chain requires
314      * the MP lock to operate.
315      */
316     if ((intr_flags & INTR_MPSAFE) == 0)
317 	info->i_mplock_required = 1;
318     if (intr_flags & INTR_CLOCK)
319 	++info->i_fast;
320     else
321 	++info->i_slow;
322 
323     /*
324      * Enable random number generation keying off of this interrupt.
325      */
326     if ((intr_flags & INTR_NOENTROPY) == 0 && info->i_random.sc_enabled == 0) {
327 	info->i_random.sc_enabled = 1;
328 	info->i_random.sc_intr = intr;
329     }
330 
331     /*
332      * Add the record to the interrupt list.
333      */
334     crit_enter();
335     while (*list != NULL)
336 	list = &(*list)->next;
337     *list = rec;
338     crit_exit();
339 
340     /*
341      * Update max_installed_hard_intr to make the emergency intr poll
342      * a bit more efficient.
343      */
344     if (intr < FIRST_SOFTINT) {
345 	if (max_installed_hard_intr <= intr)
346 	    max_installed_hard_intr = intr + 1;
347     } else {
348 	if (max_installed_soft_intr <= intr)
349 	    max_installed_soft_intr = intr + 1;
350     }
351 
352     /*
353      * Setup the machine level interrupt vector
354      *
355      * XXX temporary workaround for some ACPI brokedness.  ACPI installs
356      * its interrupt too early, before the IOAPICs have been configured,
357      * which means the IOAPIC is not enabled by the registration of the
358      * ACPI interrupt.  Anything else sharing that IRQ will wind up not
359      * being enabled.  Temporarily work around the problem by always
360      * installing and enabling on every new interrupt handler, even
361      * if one has already been setup on that irq.
362      */
363     if (intr < FIRST_SOFTINT /* && info->i_slow + info->i_fast == 1*/) {
364 	if (machintr_vector_setup(intr, intr_flags))
365 	    kprintf("machintr_vector_setup: failed on irq %d\n", intr);
366     }
367 
368     int_moveto_origcpu(orig_cpuid, cpuid);
369 
370     return(rec);
371 }
372 
373 void
374 unregister_swi(void *id)
375 {
376     unregister_int(id);
377 }
378 
379 void
380 unregister_int(void *id)
381 {
382     struct intr_info *info;
383     struct intrec **list;
384     intrec_t rec;
385     int intr, orig_cpuid, cpuid;
386 
387     intr = ((intrec_t)id)->intr;
388 
389     if (intr < 0 || intr >= MAX_INTS)
390 	panic("register_int: bad intr %d", intr);
391 
392     info = &intr_info_ary[intr];
393 
394     int_moveto_destcpu(&orig_cpuid, &cpuid, intr);
395 
396     /*
397      * Remove the interrupt descriptor, adjust the descriptor count,
398      * and teardown the machine level vector if this was the last interrupt.
399      */
400     crit_enter();
401     list = &info->i_reclist;
402     while ((rec = *list) != NULL) {
403 	if (rec == id)
404 	    break;
405 	list = &rec->next;
406     }
407     if (rec) {
408 	intrec_t rec0;
409 
410 	*list = rec->next;
411 	if (rec->intr_flags & INTR_CLOCK)
412 	    --info->i_fast;
413 	else
414 	    --info->i_slow;
415 	if (intr < FIRST_SOFTINT && info->i_fast + info->i_slow == 0)
416 	    machintr_vector_teardown(intr);
417 
418 	/*
419 	 * Clear i_mplock_required if no handlers in the chain require the
420 	 * MP lock.
421 	 */
422 	for (rec0 = info->i_reclist; rec0; rec0 = rec0->next) {
423 	    if ((rec0->intr_flags & INTR_MPSAFE) == 0)
424 		break;
425 	}
426 	if (rec0 == NULL)
427 	    info->i_mplock_required = 0;
428     }
429 
430     crit_exit();
431 
432     int_moveto_origcpu(orig_cpuid, cpuid);
433 
434     /*
435      * Free the record.
436      */
437     if (rec != NULL) {
438 	kfree(rec->name, M_DEVBUF);
439 	kfree(rec, M_DEVBUF);
440     } else {
441 	kprintf("warning: unregister_int: int %d handler for %s not found\n",
442 		intr, ((intrec_t)id)->name);
443     }
444 }
445 
446 const char *
447 get_registered_name(int intr)
448 {
449     intrec_t rec;
450 
451     if (intr < 0 || intr >= MAX_INTS)
452 	panic("register_int: bad intr %d", intr);
453 
454     if ((rec = intr_info_ary[intr].i_reclist) == NULL)
455 	return(NULL);
456     else if (rec->next)
457 	return("mux");
458     else
459 	return(rec->name);
460 }
461 
462 int
463 count_registered_ints(int intr)
464 {
465     struct intr_info *info;
466 
467     if (intr < 0 || intr >= MAX_INTS)
468 	panic("register_int: bad intr %d", intr);
469     info = &intr_info_ary[intr];
470     return(info->i_fast + info->i_slow);
471 }
472 
473 long
474 get_interrupt_counter(int intr)
475 {
476     struct intr_info *info;
477 
478     if (intr < 0 || intr >= MAX_INTS)
479 	panic("register_int: bad intr %d", intr);
480     info = &intr_info_ary[intr];
481     return(info->i_count);
482 }
483 
484 
485 void
486 swi_setpriority(int intr, int pri)
487 {
488     struct intr_info *info;
489 
490     if (intr < FIRST_SOFTINT || intr >= MAX_INTS)
491 	panic("register_swi: bad intr %d", intr);
492     info = &intr_info_ary[intr];
493     if (info->i_state != ISTATE_NOTHREAD)
494 	lwkt_setpri(&info->i_thread, pri);
495 }
496 
497 void
498 register_randintr(int intr)
499 {
500     struct intr_info *info;
501 
502     if (intr < 0 || intr >= MAX_INTS)
503 	panic("register_randintr: bad intr %d", intr);
504     info = &intr_info_ary[intr];
505     info->i_random.sc_intr = intr;
506     info->i_random.sc_enabled = 1;
507 }
508 
509 void
510 unregister_randintr(int intr)
511 {
512     struct intr_info *info;
513 
514     if (intr < 0 || intr >= MAX_INTS)
515 	panic("register_swi: bad intr %d", intr);
516     info = &intr_info_ary[intr];
517     info->i_random.sc_enabled = -1;
518 }
519 
520 int
521 next_registered_randintr(int intr)
522 {
523     struct intr_info *info;
524 
525     if (intr < 0 || intr >= MAX_INTS)
526 	panic("register_swi: bad intr %d", intr);
527     while (intr < MAX_INTS) {
528 	info = &intr_info_ary[intr];
529 	if (info->i_random.sc_enabled > 0)
530 	    break;
531 	++intr;
532     }
533     return(intr);
534 }
535 
536 /*
537  * Dispatch an interrupt.  If there's nothing to do we have a stray
538  * interrupt and can just return, leaving the interrupt masked.
539  *
540  * We need to schedule the interrupt and set its i_running bit.  If
541  * we are not on the interrupt thread's cpu we have to send a message
542  * to the correct cpu that will issue the desired action (interlocking
543  * with the interrupt thread's critical section).  We do NOT attempt to
544  * reschedule interrupts whos i_running bit is already set because
545  * this would prematurely wakeup a livelock-limited interrupt thread.
546  *
547  * i_running is only tested/set on the same cpu as the interrupt thread.
548  *
549  * We are NOT in a critical section, which will allow the scheduled
550  * interrupt to preempt us.  The MP lock might *NOT* be held here.
551  */
552 #ifdef SMP
553 
554 static void
555 sched_ithd_remote(void *arg)
556 {
557     sched_ithd((int)(intptr_t)arg);
558 }
559 
560 #endif
561 
562 void
563 sched_ithd(int intr)
564 {
565     struct intr_info *info;
566 
567     info = &intr_info_ary[intr];
568 
569     ++info->i_count;
570     if (info->i_state != ISTATE_NOTHREAD) {
571 	if (info->i_reclist == NULL) {
572 	    report_stray_interrupt(intr, info);
573 	} else {
574 #ifdef SMP
575 	    if (info->i_thread.td_gd == mycpu) {
576 		if (info->i_running == 0) {
577 		    info->i_running = 1;
578 		    if (info->i_state != ISTATE_LIVELOCKED)
579 			lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
580 		}
581 	    } else {
582 		lwkt_send_ipiq(info->i_thread.td_gd,
583 				sched_ithd_remote, (void *)(intptr_t)intr);
584 	    }
585 #else
586 	    if (info->i_running == 0) {
587 		info->i_running = 1;
588 		if (info->i_state != ISTATE_LIVELOCKED)
589 		    lwkt_schedule(&info->i_thread); /* MIGHT PREEMPT */
590 	    }
591 #endif
592 	}
593     } else {
594 	report_stray_interrupt(intr, info);
595     }
596 }
597 
598 static void
599 report_stray_interrupt(int intr, struct intr_info *info)
600 {
601 	++info->i_straycount;
602 	if (info->i_straycount < 10) {
603 		if (info->i_errorticks == ticks)
604 			return;
605 		info->i_errorticks = ticks;
606 		kprintf("sched_ithd: stray interrupt %d on cpu %d\n",
607 			intr, mycpuid);
608 	} else if (info->i_straycount == 10) {
609 		kprintf("sched_ithd: %ld stray interrupts %d on cpu %d - "
610 			"there will be no further reports\n",
611 			info->i_straycount, intr, mycpuid);
612 	}
613 }
614 
615 /*
616  * This is run from a periodic SYSTIMER (and thus must be MP safe, the BGL
617  * might not be held).
618  */
619 static void
620 ithread_livelock_wakeup(systimer_t st)
621 {
622     struct intr_info *info;
623 
624     info = &intr_info_ary[(int)(intptr_t)st->data];
625     if (info->i_state != ISTATE_NOTHREAD)
626 	lwkt_schedule(&info->i_thread);
627 }
628 
629 /*
630  * Schedule ithread within fast intr handler
631  *
632  * XXX Protect sched_ithd() call with gd_intr_nesting_level?
633  * Interrupts aren't enabled, but still...
634  */
635 static __inline void
636 ithread_fast_sched(int intr, thread_t td)
637 {
638     ++td->td_nest_count;
639 
640     /*
641      * We are already in critical section, exit it now to
642      * allow preemption.
643      */
644     crit_exit_quick(td);
645     sched_ithd(intr);
646     crit_enter_quick(td);
647 
648     --td->td_nest_count;
649 }
650 
651 /*
652  * This function is called directly from the ICU or APIC vector code assembly
653  * to process an interrupt.  The critical section and interrupt deferral
654  * checks have already been done but the function is entered WITHOUT
655  * a critical section held.  The BGL may or may not be held.
656  *
657  * Must return non-zero if we do not want the vector code to re-enable
658  * the interrupt (which we don't if we have to schedule the interrupt)
659  */
660 int ithread_fast_handler(struct intrframe *frame);
661 
662 int
663 ithread_fast_handler(struct intrframe *frame)
664 {
665     int intr;
666     struct intr_info *info;
667     struct intrec **list;
668     int must_schedule;
669 #ifdef SMP
670     int got_mplock;
671 #endif
672     TD_INVARIANTS_DECLARE;
673     intrec_t rec, next_rec;
674     globaldata_t gd;
675     thread_t td;
676 
677     intr = frame->if_vec;
678     gd = mycpu;
679     td = curthread;
680 
681     /* We must be in critical section. */
682     KKASSERT(td->td_critcount);
683 
684     info = &intr_info_ary[intr];
685 
686     /*
687      * If we are not processing any FAST interrupts, just schedule the thing.
688      */
689     if (info->i_fast == 0) {
690     	++gd->gd_cnt.v_intr;
691 	ithread_fast_sched(intr, td);
692 	return(1);
693     }
694 
695     /*
696      * This should not normally occur since interrupts ought to be
697      * masked if the ithread has been scheduled or is running.
698      */
699     if (info->i_running)
700 	return(1);
701 
702     /*
703      * Bump the interrupt nesting level to process any FAST interrupts.
704      * Obtain the MP lock as necessary.  If the MP lock cannot be obtained,
705      * schedule the interrupt thread to deal with the issue instead.
706      *
707      * To reduce overhead, just leave the MP lock held once it has been
708      * obtained.
709      */
710     ++gd->gd_intr_nesting_level;
711     ++gd->gd_cnt.v_intr;
712     must_schedule = info->i_slow;
713 #ifdef SMP
714     got_mplock = 0;
715 #endif
716 
717     TD_INVARIANTS_GET(td);
718     list = &info->i_reclist;
719 
720     for (rec = *list; rec; rec = next_rec) {
721 	next_rec = rec->next;	/* rec may be invalid after call */
722 
723 	if (rec->intr_flags & INTR_CLOCK) {
724 #ifdef SMP
725 	    if ((rec->intr_flags & INTR_MPSAFE) == 0 && got_mplock == 0) {
726 		if (try_mplock() == 0) {
727 		    /* Couldn't get the MP lock; just schedule it. */
728 		    must_schedule = 1;
729 		    break;
730 		}
731 		got_mplock = 1;
732 		SMP_INVARIANTS_ADJMP(1);
733 	    }
734 #endif
735 	    if (rec->serializer) {
736 		must_schedule += lwkt_serialize_handler_try(
737 					rec->serializer, rec->handler,
738 					rec->argument, frame);
739 	    } else {
740 		rec->handler(rec->argument, frame);
741 	    }
742 	    TD_INVARIANTS_TEST(td, rec->name);
743 	}
744     }
745 
746     /*
747      * Cleanup
748      */
749     --gd->gd_intr_nesting_level;
750 #ifdef SMP
751     if (got_mplock)
752 	rel_mplock();
753 #endif
754 
755     /*
756      * If we had a problem, or mixed fast and slow interrupt handlers are
757      * registered, schedule the ithread to catch the missed records (it
758      * will just re-run all of them).  A return value of 0 indicates that
759      * all handlers have been run and the interrupt can be re-enabled, and
760      * a non-zero return indicates that the interrupt thread controls
761      * re-enablement.
762      */
763     if (must_schedule > 0)
764 	ithread_fast_sched(intr, td);
765     else if (must_schedule == 0)
766 	++info->i_count;
767     return(must_schedule);
768 }
769 
770 /*
771  * Interrupt threads run this as their main loop.
772  *
773  * The handler begins execution outside a critical section and no MP lock.
774  *
775  * The i_running state starts at 0.  When an interrupt occurs, the hardware
776  * interrupt is disabled and sched_ithd() The HW interrupt remains disabled
777  * until all routines have run.  We then call ithread_done() to reenable
778  * the HW interrupt and deschedule us until the next interrupt.
779  *
780  * We are responsible for atomically checking i_running and ithread_done()
781  * is responsible for atomically checking for platform-specific delayed
782  * interrupts.  i_running for our irq is only set in the context of our cpu,
783  * so a critical section is a sufficient interlock.
784  */
785 #define LIVELOCK_TIMEFRAME(freq)	((freq) >> 2)	/* 1/4 second */
786 
787 static void
788 ithread_handler(void *arg)
789 {
790     struct intr_info *info;
791     int use_limit;
792     __uint32_t lseconds;
793     int intr;
794     int mpheld;
795     struct intrec **list;
796     intrec_t rec, nrec;
797     globaldata_t gd;
798     struct systimer ill_timer;	/* enforced freq. timer */
799     u_int ill_count;		/* interrupt livelock counter */
800     TD_INVARIANTS_DECLARE;
801 
802     ill_count = 0;
803     intr = (int)(intptr_t)arg;
804     info = &intr_info_ary[intr];
805     list = &info->i_reclist;
806 
807     /*
808      * The loop must be entered with one critical section held.  The thread
809      * does not hold the mplock on startup.
810      */
811     gd = mycpu;
812     lseconds = gd->gd_time_seconds;
813     crit_enter_gd(gd);
814     mpheld = 0;
815 
816     for (;;) {
817 	/*
818 	 * The chain is only considered MPSAFE if all its interrupt handlers
819 	 * are MPSAFE.  However, if intr_mpsafe has been turned off we
820 	 * always operate with the BGL.
821 	 */
822 #ifdef SMP
823 	if (info->i_mplock_required != mpheld) {
824 	    if (info->i_mplock_required) {
825 		KKASSERT(mpheld == 0);
826 		get_mplock();
827 		mpheld = 1;
828 	    } else {
829 		KKASSERT(mpheld != 0);
830 		rel_mplock();
831 		mpheld = 0;
832 	    }
833 	}
834 #endif
835 
836 	TD_INVARIANTS_GET(gd->gd_curthread);
837 
838 	/*
839 	 * If an interrupt is pending, clear i_running and execute the
840 	 * handlers.  Note that certain types of interrupts can re-trigger
841 	 * and set i_running again.
842 	 *
843 	 * Each handler is run in a critical section.  Note that we run both
844 	 * FAST and SLOW designated service routines.
845 	 */
846 	if (info->i_running) {
847 	    ++ill_count;
848 	    info->i_running = 0;
849 
850 	    if (*list == NULL)
851 		report_stray_interrupt(intr, info);
852 
853 	    for (rec = *list; rec; rec = nrec) {
854 		nrec = rec->next;
855 		if (rec->serializer) {
856 		    lwkt_serialize_handler_call(rec->serializer, rec->handler,
857 						rec->argument, NULL);
858 		} else {
859 		    rec->handler(rec->argument, NULL);
860 		}
861 		TD_INVARIANTS_TEST(gd->gd_curthread, rec->name);
862 	    }
863 	}
864 
865 	/*
866 	 * This is our interrupt hook to add rate randomness to the random
867 	 * number generator.
868 	 */
869 	if (info->i_random.sc_enabled > 0)
870 	    add_interrupt_randomness(intr);
871 
872 	/*
873 	 * Unmask the interrupt to allow it to trigger again.  This only
874 	 * applies to certain types of interrupts (typ level interrupts).
875 	 * This can result in the interrupt retriggering, but the retrigger
876 	 * will not be processed until we cycle our critical section.
877 	 *
878 	 * Only unmask interrupts while handlers are installed.  It is
879 	 * possible to hit a situation where no handlers are installed
880 	 * due to a device driver livelocking and then tearing down its
881 	 * interrupt on close (the parallel bus being a good example).
882 	 */
883 	if (*list)
884 	    machintr_intren(intr);
885 
886 	/*
887 	 * Do a quick exit/enter to catch any higher-priority interrupt
888 	 * sources, such as the statclock, so thread time accounting
889 	 * will still work.  This may also cause an interrupt to re-trigger.
890 	 */
891 	crit_exit_gd(gd);
892 	crit_enter_gd(gd);
893 
894 	/*
895 	 * LIVELOCK STATE MACHINE
896 	 */
897 	switch(info->i_state) {
898 	case ISTATE_NORMAL:
899 	    /*
900 	     * Reset the count each second.
901 	     */
902 	    if (lseconds != gd->gd_time_seconds) {
903 		lseconds = gd->gd_time_seconds;
904 		ill_count = 0;
905 	    }
906 
907 	    /*
908 	     * If we did not exceed the frequency limit, we are done.
909 	     * If the interrupt has not retriggered we deschedule ourselves.
910 	     */
911 	    if (ill_count <= livelock_limit) {
912 		if (info->i_running == 0) {
913 		    lwkt_deschedule_self(gd->gd_curthread);
914 		    lwkt_switch();
915 		}
916 		break;
917 	    }
918 
919 	    /*
920 	     * Otherwise we are livelocked.  Set up a periodic systimer
921 	     * to wake the thread up at the limit frequency.
922 	     */
923 	    kprintf("intr %d at %d/%d hz, livelocked limit engaged!\n",
924 		   intr, ill_count, livelock_limit);
925 	    info->i_state = ISTATE_LIVELOCKED;
926 	    if ((use_limit = livelock_limit) < 100)
927 		use_limit = 100;
928 	    else if (use_limit > 500000)
929 		use_limit = 500000;
930 	    systimer_init_periodic_nq(&ill_timer, ithread_livelock_wakeup,
931 				      (void *)(intptr_t)intr, use_limit);
932 	    /* fall through */
933 	case ISTATE_LIVELOCKED:
934 	    /*
935 	     * Wait for our periodic timer to go off.  Since the interrupt
936 	     * has re-armed it can still set i_running, but it will not
937 	     * reschedule us while we are in a livelocked state.
938 	     */
939 	    lwkt_deschedule_self(gd->gd_curthread);
940 	    lwkt_switch();
941 
942 	    /*
943 	     * Check once a second to see if the livelock condition no
944 	     * longer applies.
945 	     */
946 	    if (lseconds != gd->gd_time_seconds) {
947 		lseconds = gd->gd_time_seconds;
948 		if (ill_count < livelock_lowater) {
949 		    info->i_state = ISTATE_NORMAL;
950 		    systimer_del(&ill_timer);
951 		    kprintf("intr %d at %d/%d hz, livelock removed\n",
952 			   intr, ill_count, livelock_lowater);
953 		} else if (livelock_debug == intr ||
954 			   (bootverbose && cold)) {
955 		    kprintf("intr %d at %d/%d hz, in livelock\n",
956 			   intr, ill_count, livelock_lowater);
957 		}
958 		ill_count = 0;
959 	    }
960 	    break;
961 	}
962     }
963     /* not reached */
964 }
965 
966 /*
967  * Emergency interrupt polling thread.  The thread begins execution
968  * outside a critical section with the BGL held.
969  *
970  * If emergency interrupt polling is enabled, this thread will
971  * execute all system interrupts not marked INTR_NOPOLL at the
972  * specified polling frequency.
973  *
974  * WARNING!  This thread runs *ALL* interrupt service routines that
975  * are not marked INTR_NOPOLL, which basically means everything except
976  * the 8254 clock interrupt and the ATA interrupt.  It has very high
977  * overhead and should only be used in situations where the machine
978  * cannot otherwise be made to work.  Due to the severe performance
979  * degredation, it should not be enabled on production machines.
980  */
981 static void
982 ithread_emergency(void *arg __unused)
983 {
984     struct intr_info *info;
985     intrec_t rec, nrec;
986     int intr;
987     thread_t td __debugvar = curthread;
988     TD_INVARIANTS_DECLARE;
989 
990     get_mplock();
991     TD_INVARIANTS_GET(td);
992 
993     for (;;) {
994 	for (intr = 0; intr < max_installed_hard_intr; ++intr) {
995 	    info = &intr_info_ary[intr];
996 	    for (rec = info->i_reclist; rec; rec = nrec) {
997 		if ((rec->intr_flags & INTR_NOPOLL) == 0) {
998 		    if (rec->serializer) {
999 			lwkt_serialize_handler_call(rec->serializer,
1000 						rec->handler, rec->argument, NULL);
1001 		    } else {
1002 			rec->handler(rec->argument, NULL);
1003 		    }
1004 		    TD_INVARIANTS_TEST(td, rec->name);
1005 		}
1006 		nrec = rec->next;
1007 	    }
1008 	}
1009 	lwkt_deschedule_self(curthread);
1010 	lwkt_switch();
1011     }
1012 }
1013 
1014 /*
1015  * Systimer callback - schedule the emergency interrupt poll thread
1016  * 		       if emergency polling is enabled.
1017  */
1018 static
1019 void
1020 emergency_intr_timer_callback(systimer_t info, struct intrframe *frame __unused)
1021 {
1022     if (emergency_intr_enable)
1023 	lwkt_schedule(info->data);
1024 }
1025 
1026 int
1027 ithread_cpuid(int intr)
1028 {
1029 	const struct intr_info *info;
1030 
1031 	KKASSERT(intr >= 0 && intr < MAX_INTS);
1032 	info = &intr_info_ary[intr];
1033 
1034 	if (info->i_state == ISTATE_NOTHREAD)
1035 		return -1;
1036 	return info->i_thread.td_gd->gd_cpuid;
1037 }
1038 
1039 /*
1040  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1041  * The data for this machine dependent, and the declarations are in machine
1042  * dependent code.  The layout of intrnames and intrcnt however is machine
1043  * independent.
1044  *
1045  * We do not know the length of intrcnt and intrnames at compile time, so
1046  * calculate things at run time.
1047  */
1048 
1049 static int
1050 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1051 {
1052     struct intr_info *info;
1053     intrec_t rec;
1054     int error = 0;
1055     int len;
1056     int intr;
1057     char buf[64];
1058 
1059     for (intr = 0; error == 0 && intr < MAX_INTS; ++intr) {
1060 	info = &intr_info_ary[intr];
1061 
1062 	len = 0;
1063 	buf[0] = 0;
1064 	for (rec = info->i_reclist; rec; rec = rec->next) {
1065 	    ksnprintf(buf + len, sizeof(buf) - len, "%s%s",
1066 		(len ? "/" : ""), rec->name);
1067 	    len += strlen(buf + len);
1068 	}
1069 	if (len == 0) {
1070 	    ksnprintf(buf, sizeof(buf), "irq%d", intr);
1071 	    len = strlen(buf);
1072 	}
1073 	error = SYSCTL_OUT(req, buf, len + 1);
1074     }
1075     return (error);
1076 }
1077 
1078 
1079 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1080 	NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1081 
1082 static int
1083 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1084 {
1085     struct intr_info *info;
1086     int error = 0;
1087     int intr;
1088 
1089     for (intr = 0; intr < max_installed_hard_intr; ++intr) {
1090 	info = &intr_info_ary[intr];
1091 
1092 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1093 	if (error)
1094 		goto failed;
1095     }
1096     for (intr = FIRST_SOFTINT; intr < max_installed_soft_intr; ++intr) {
1097 	info = &intr_info_ary[intr];
1098 
1099 	error = SYSCTL_OUT(req, &info->i_count, sizeof(info->i_count));
1100 	if (error)
1101 		goto failed;
1102     }
1103 failed:
1104     return(error);
1105 }
1106 
1107 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1108 	NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1109 
1110 static void
1111 int_moveto_destcpu(int *orig_cpuid0, int *cpuid0, int intr)
1112 {
1113     int orig_cpuid = mycpuid, cpuid;
1114     char envpath[32];
1115 
1116     cpuid = orig_cpuid;
1117     ksnprintf(envpath, sizeof(envpath), "hw.irq.%d.dest", intr);
1118     kgetenv_int(envpath, &cpuid);
1119     if (cpuid >= ncpus)
1120 	cpuid = orig_cpuid;
1121 
1122     if (cpuid != orig_cpuid)
1123 	lwkt_migratecpu(cpuid);
1124 
1125     *orig_cpuid0 = orig_cpuid;
1126     *cpuid0 = cpuid;
1127 }
1128 
1129 static void
1130 int_moveto_origcpu(int orig_cpuid, int cpuid)
1131 {
1132     if (cpuid != orig_cpuid)
1133 	lwkt_migratecpu(orig_cpuid);
1134 }
1135