xref: /dflybsd-src/sys/kern/kern_fork.c (revision ece77bbaa23bf75f3b7bb9d110e2a795e3112878)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.18 2004/02/10 15:31:47 hmp Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 
60 #include <vm/vm.h>
61 #include <sys/lock.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_extern.h>
65 #include <vm/vm_zone.h>
66 
67 #include <sys/vmmeter.h>
68 #include <sys/user.h>
69 
70 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
71 
72 /*
73  * These are the stuctures used to create a callout list for things to do
74  * when forking a process
75  */
76 struct forklist {
77 	forklist_fn function;
78 	TAILQ_ENTRY(forklist) next;
79 };
80 
81 TAILQ_HEAD(forklist_head, forklist);
82 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
83 
84 int forksleep; /* Place for fork1() to sleep on. */
85 
86 /* ARGSUSED */
87 int
88 fork(struct fork_args *uap)
89 {
90 	struct proc *p = curproc;
91 	struct proc *p2;
92 	int error;
93 
94 	error = fork1(p, RFFDG | RFPROC, &p2);
95 	if (error == 0) {
96 		start_forked_proc(p, p2);
97 		uap->sysmsg_fds[0] = p2->p_pid;
98 		uap->sysmsg_fds[1] = 0;
99 	}
100 	return error;
101 }
102 
103 /* ARGSUSED */
104 int
105 vfork(struct vfork_args *uap)
106 {
107 	struct proc *p = curproc;
108 	struct proc *p2;
109 	int error;
110 
111 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
112 	if (error == 0) {
113 		start_forked_proc(p, p2);
114 		uap->sysmsg_fds[0] = p2->p_pid;
115 		uap->sysmsg_fds[1] = 0;
116 	}
117 	return error;
118 }
119 
120 int
121 rfork(struct rfork_args *uap)
122 {
123 	struct proc *p = curproc;
124 	struct proc *p2;
125 	int error;
126 
127 	/* Don't allow kernel only flags */
128 	if ((uap->flags & RFKERNELONLY) != 0)
129 		return (EINVAL);
130 
131 	error = fork1(p, uap->flags, &p2);
132 	if (error == 0) {
133 		start_forked_proc(p, p2);
134 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
135 		uap->sysmsg_fds[1] = 0;
136 	}
137 	return error;
138 }
139 
140 
141 int	nprocs = 1;		/* process 0 */
142 static int nextpid = 0;
143 
144 /*
145  * Random component to nextpid generation.  We mix in a random factor to make
146  * it a little harder to predict.  We sanity check the modulus value to avoid
147  * doing it in critical paths.  Don't let it be too small or we pointlessly
148  * waste randomness entropy, and don't let it be impossibly large.  Using a
149  * modulus that is too big causes a LOT more process table scans and slows
150  * down fork processing as the pidchecked caching is defeated.
151  */
152 static int randompid = 0;
153 
154 static int
155 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
156 {
157 		int error, pid;
158 
159 		pid = randompid;
160 		error = sysctl_handle_int(oidp, &pid, 0, req);
161 		if (error || !req->newptr)
162 			return (error);
163 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
164 			pid = PID_MAX - 100;
165 		else if (pid < 2)			/* NOP */
166 			pid = 0;
167 		else if (pid < 100)			/* Make it reasonable */
168 			pid = 100;
169 		randompid = pid;
170 		return (error);
171 }
172 
173 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
174     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
175 
176 int
177 fork1(p1, flags, procp)
178 	struct proc *p1;
179 	int flags;
180 	struct proc **procp;
181 {
182 	struct proc *p2, *pptr;
183 	uid_t uid;
184 	struct proc *newproc;
185 	int ok;
186 	static int curfail = 0, pidchecked = 0;
187 	static struct timeval lastfail;
188 	struct forklist *ep;
189 	struct filedesc_to_leader *fdtol;
190 
191 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
192 		return (EINVAL);
193 
194 	/*
195 	 * Here we don't create a new process, but we divorce
196 	 * certain parts of a process from itself.
197 	 */
198 	if ((flags & RFPROC) == 0) {
199 
200 		vm_fork(p1, 0, flags);
201 
202 		/*
203 		 * Close all file descriptors.
204 		 */
205 		if (flags & RFCFDG) {
206 			struct filedesc *fdtmp;
207 			fdtmp = fdinit(p1);
208 			fdfree(p1);
209 			p1->p_fd = fdtmp;
210 		}
211 
212 		/*
213 		 * Unshare file descriptors (from parent.)
214 		 */
215 		if (flags & RFFDG) {
216 			if (p1->p_fd->fd_refcnt > 1) {
217 				struct filedesc *newfd;
218 				newfd = fdcopy(p1);
219 				fdfree(p1);
220 				p1->p_fd = newfd;
221 			}
222 		}
223 		*procp = NULL;
224 		return (0);
225 	}
226 
227 	/*
228 	 * Although process entries are dynamically created, we still keep
229 	 * a global limit on the maximum number we will create.  Don't allow
230 	 * a nonprivileged user to use the last ten processes; don't let root
231 	 * exceed the limit. The variable nprocs is the current number of
232 	 * processes, maxproc is the limit.
233 	 */
234 	uid = p1->p_ucred->cr_ruid;
235 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
236 		if (ppsratecheck(&lastfail, &curfail, 1))
237 			printf("maxproc limit exceeded by uid %d, please "
238 			       "see tuning(7) and login.conf(5).\n", uid);
239 		tsleep(&forksleep, 0, "fork", hz / 2);
240 		return (EAGAIN);
241 	}
242 	/*
243 	 * Increment the nprocs resource before blocking can occur.  There
244 	 * are hard-limits as to the number of processes that can run.
245 	 */
246 	nprocs++;
247 
248 	/*
249 	 * Increment the count of procs running with this uid. Don't allow
250 	 * a nonprivileged user to exceed their current limit.
251 	 */
252 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
253 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
254 	if (!ok) {
255 		/*
256 		 * Back out the process count
257 		 */
258 		nprocs--;
259 		if (ppsratecheck(&lastfail, &curfail, 1))
260 			printf("maxproc limit exceeded by uid %d, please "
261 			       "see tuning(7) and login.conf(5).\n", uid);
262 		tsleep(&forksleep, 0, "fork", hz / 2);
263 		return (EAGAIN);
264 	}
265 
266 	/* Allocate new proc. */
267 	newproc = zalloc(proc_zone);
268 
269 	/*
270 	 * Setup linkage for kernel based threading
271 	 */
272 	if((flags & RFTHREAD) != 0) {
273 		newproc->p_peers = p1->p_peers;
274 		p1->p_peers = newproc;
275 		newproc->p_leader = p1->p_leader;
276 	} else {
277 		newproc->p_peers = 0;
278 		newproc->p_leader = newproc;
279 	}
280 
281 	newproc->p_wakeup = 0;
282 	newproc->p_vmspace = NULL;
283 
284 	/*
285 	 * Find an unused process ID.  We remember a range of unused IDs
286 	 * ready to use (from nextpid+1 through pidchecked-1).
287 	 */
288 	nextpid++;
289 	if (randompid)
290 		nextpid += arc4random() % randompid;
291 retry:
292 	/*
293 	 * If the process ID prototype has wrapped around,
294 	 * restart somewhat above 0, as the low-numbered procs
295 	 * tend to include daemons that don't exit.
296 	 */
297 	if (nextpid >= PID_MAX) {
298 		nextpid = nextpid % PID_MAX;
299 		if (nextpid < 100)
300 			nextpid += 100;
301 		pidchecked = 0;
302 	}
303 	if (nextpid >= pidchecked) {
304 		int doingzomb = 0;
305 
306 		pidchecked = PID_MAX;
307 		/*
308 		 * Scan the active and zombie procs to check whether this pid
309 		 * is in use.  Remember the lowest pid that's greater
310 		 * than nextpid, so we can avoid checking for a while.
311 		 */
312 		p2 = LIST_FIRST(&allproc);
313 again:
314 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
315 			while (p2->p_pid == nextpid ||
316 			    p2->p_pgrp->pg_id == nextpid ||
317 			    p2->p_session->s_sid == nextpid) {
318 				nextpid++;
319 				if (nextpid >= pidchecked)
320 					goto retry;
321 			}
322 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
323 				pidchecked = p2->p_pid;
324 			if (p2->p_pgrp->pg_id > nextpid &&
325 			    pidchecked > p2->p_pgrp->pg_id)
326 				pidchecked = p2->p_pgrp->pg_id;
327 			if (p2->p_session->s_sid > nextpid &&
328 			    pidchecked > p2->p_session->s_sid)
329 				pidchecked = p2->p_session->s_sid;
330 		}
331 		if (!doingzomb) {
332 			doingzomb = 1;
333 			p2 = LIST_FIRST(&zombproc);
334 			goto again;
335 		}
336 	}
337 
338 	p2 = newproc;
339 	p2->p_stat = SIDL;			/* protect against others */
340 	p2->p_pid = nextpid;
341 	LIST_INSERT_HEAD(&allproc, p2, p_list);
342 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
343 
344 	/*
345 	 * Make a proc table entry for the new process.
346 	 * Start by zeroing the section of proc that is zero-initialized,
347 	 * then copy the section that is copied directly from the parent.
348 	 */
349 	bzero(&p2->p_startzero,
350 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
351 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
352 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
353 
354 	p2->p_aioinfo = NULL;
355 
356 	/*
357 	 * Duplicate sub-structures as needed.
358 	 * Increase reference counts on shared objects.
359 	 * The p_stats and p_sigacts substructs are set in vm_fork.
360 	 *
361 	 * P_CP_RELEASED indicates that the process is starting out in
362 	 * the kernel (in the fork trampoline).  The flag will be converted
363 	 * to P_CURPROC when the new process calls userret() and attempts
364 	 * to return to userland
365 	 */
366 	p2->p_flag = P_INMEM | P_CP_RELEASED;
367 	if (p1->p_flag & P_PROFIL)
368 		startprofclock(p2);
369 	p2->p_ucred = crhold(p1->p_ucred);
370 
371 	if (p2->p_ucred->cr_prison) {
372 		p2->p_ucred->cr_prison->pr_ref++;
373 		p2->p_flag |= P_JAILED;
374 	}
375 
376 	if (p2->p_args)
377 		p2->p_args->ar_ref++;
378 
379 	if (flags & RFSIGSHARE) {
380 		p2->p_procsig = p1->p_procsig;
381 		p2->p_procsig->ps_refcnt++;
382 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
383 			struct sigacts *newsigacts;
384 			int s;
385 
386 			/* Create the shared sigacts structure */
387 			MALLOC(newsigacts, struct sigacts *,
388 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
389 			s = splhigh();
390 			/*
391 			 * Set p_sigacts to the new shared structure.
392 			 * Note that this is updating p1->p_sigacts at the
393 			 * same time, since p_sigacts is just a pointer to
394 			 * the shared p_procsig->ps_sigacts.
395 			 */
396 			p2->p_sigacts  = newsigacts;
397 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
398 			    sizeof(*p2->p_sigacts));
399 			*p2->p_sigacts = p1->p_addr->u_sigacts;
400 			splx(s);
401 		}
402 	} else {
403 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
404 		    M_SUBPROC, M_WAITOK);
405 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
406 		p2->p_procsig->ps_refcnt = 1;
407 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
408 	}
409 	if (flags & RFLINUXTHPN)
410 	        p2->p_sigparent = SIGUSR1;
411 	else
412 	        p2->p_sigparent = SIGCHLD;
413 
414 	/* bump references to the text vnode (for procfs) */
415 	p2->p_textvp = p1->p_textvp;
416 	if (p2->p_textvp)
417 		VREF(p2->p_textvp);
418 
419 	if (flags & RFCFDG) {
420 		p2->p_fd = fdinit(p1);
421 		fdtol = NULL;
422 	} else if (flags & RFFDG) {
423 		p2->p_fd = fdcopy(p1);
424 		fdtol = NULL;
425 	} else {
426 		p2->p_fd = fdshare(p1);
427 		if (p1->p_fdtol == NULL)
428 			p1->p_fdtol =
429 				filedesc_to_leader_alloc(NULL,
430 							 p1->p_leader);
431 		if ((flags & RFTHREAD) != 0) {
432 			/*
433 			 * Shared file descriptor table and
434 			 * shared process leaders.
435 			 */
436 			fdtol = p1->p_fdtol;
437 			fdtol->fdl_refcount++;
438 		} else {
439 			/*
440 			 * Shared file descriptor table, and
441 			 * different process leaders
442 			 */
443 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
444 		}
445 	}
446 	p2->p_fdtol = fdtol;
447 
448 	/*
449 	 * If p_limit is still copy-on-write, bump refcnt,
450 	 * otherwise get a copy that won't be modified.
451 	 * (If PL_SHAREMOD is clear, the structure is shared
452 	 * copy-on-write.)
453 	 */
454 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
455 		p2->p_limit = limcopy(p1->p_limit);
456 	else {
457 		p2->p_limit = p1->p_limit;
458 		p2->p_limit->p_refcnt++;
459 	}
460 
461 	/*
462 	 * Preserve some more flags in subprocess.  P_PROFIL has already
463 	 * been preserved.
464 	 */
465 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
466 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
467 		p2->p_flag |= P_CONTROLT;
468 	if (flags & RFPPWAIT)
469 		p2->p_flag |= P_PPWAIT;
470 
471 	LIST_INSERT_AFTER(p1, p2, p_pglist);
472 
473 	/*
474 	 * Attach the new process to its parent.
475 	 *
476 	 * If RFNOWAIT is set, the newly created process becomes a child
477 	 * of init.  This effectively disassociates the child from the
478 	 * parent.
479 	 */
480 	if (flags & RFNOWAIT)
481 		pptr = initproc;
482 	else
483 		pptr = p1;
484 	p2->p_pptr = pptr;
485 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
486 	LIST_INIT(&p2->p_children);
487 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
488 
489 #ifdef KTRACE
490 	/*
491 	 * Copy traceflag and tracefile if enabled.  If not inherited,
492 	 * these were zeroed above but we still could have a trace race
493 	 * so make sure p2's p_tracep is NULL.
494 	 */
495 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
496 		p2->p_traceflag = p1->p_traceflag;
497 		if ((p2->p_tracep = p1->p_tracep) != NULL)
498 			VREF(p2->p_tracep);
499 	}
500 #endif
501 
502 	/*
503 	 * set priority of child to be that of parent
504 	 */
505 	p2->p_estcpu = p1->p_estcpu;
506 
507 	/*
508 	 * This begins the section where we must prevent the parent
509 	 * from being swapped.
510 	 */
511 	PHOLD(p1);
512 
513 	/*
514 	 * Finish creating the child process.  It will return via a different
515 	 * execution path later.  (ie: directly into user mode)
516 	 */
517 	vm_fork(p1, p2, flags);
518 
519 	if (flags == (RFFDG | RFPROC)) {
520 		mycpu->gd_cnt.v_forks++;
521 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
522 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
523 		mycpu->gd_cnt.v_vforks++;
524 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
525 	} else if (p1 == &proc0) {
526 		mycpu->gd_cnt.v_kthreads++;
527 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
528 	} else {
529 		mycpu->gd_cnt.v_rforks++;
530 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
531 	}
532 
533 	/*
534 	 * Both processes are set up, now check if any loadable modules want
535 	 * to adjust anything.
536 	 *   What if they have an error? XXX
537 	 */
538 	TAILQ_FOREACH(ep, &fork_list, next) {
539 		(*ep->function)(p1, p2, flags);
540 	}
541 
542 	/*
543 	 * Make child runnable and add to run queue.
544 	 */
545 	microtime(&(p2->p_stats->p_start));
546 	p2->p_acflag = AFORK;
547 
548 	/*
549 	 * tell any interested parties about the new process
550 	 */
551 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
552 
553 	/*
554 	 * Return child proc pointer to parent.
555 	 */
556 	*procp = p2;
557 	return (0);
558 }
559 
560 /*
561  * The next two functionms are general routines to handle adding/deleting
562  * items on the fork callout list.
563  *
564  * at_fork():
565  * Take the arguments given and put them onto the fork callout list,
566  * However first make sure that it's not already there.
567  * Returns 0 on success or a standard error number.
568  */
569 
570 int
571 at_fork(function)
572 	forklist_fn function;
573 {
574 	struct forklist *ep;
575 
576 #ifdef INVARIANTS
577 	/* let the programmer know if he's been stupid */
578 	if (rm_at_fork(function))
579 		printf("WARNING: fork callout entry (%p) already present\n",
580 		    function);
581 #endif
582 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
583 	if (ep == NULL)
584 		return (ENOMEM);
585 	ep->function = function;
586 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
587 	return (0);
588 }
589 
590 /*
591  * Scan the exit callout list for the given item and remove it..
592  * Returns the number of items removed (0 or 1)
593  */
594 
595 int
596 rm_at_fork(function)
597 	forklist_fn function;
598 {
599 	struct forklist *ep;
600 
601 	TAILQ_FOREACH(ep, &fork_list, next) {
602 		if (ep->function == function) {
603 			TAILQ_REMOVE(&fork_list, ep, next);
604 			free(ep, M_ATFORK);
605 			return(1);
606 		}
607 	}
608 	return (0);
609 }
610 
611 /*
612  * Add a forked process to the run queue after any remaining setup, such
613  * as setting the fork handler, has been completed.
614  */
615 
616 void
617 start_forked_proc(struct proc *p1, struct proc *p2)
618 {
619 	/*
620 	 * Move from SIDL to RUN queue, and activate the process's thread.
621 	 * Activation of the thread effectively makes the process "a"
622 	 * current process, so we do not setrunqueue().
623 	 */
624 	KASSERT(p2->p_stat == SIDL,
625 	    ("cannot start forked process, bad status: %p", p2));
626 	(void) splhigh();
627 	p2->p_stat = SRUN;
628 	setrunqueue(p2);
629 	(void) spl0();
630 
631 	/*
632 	 * Now can be swapped.
633 	 */
634 	PRELE(p1);
635 
636 	/*
637 	 * Preserve synchronization semantics of vfork.  If waiting for
638 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
639 	 * proc (in case of exit).
640 	 */
641 	while (p2->p_flag & P_PPWAIT)
642 		tsleep(p1, 0, "ppwait", 0);
643 }
644 
645