xref: /dflybsd-src/sys/kern/kern_fork.c (revision c5541aee854b0d32586182b733a9ea4d4c92168b)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.21 2004/03/30 19:14:11 dillon Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/vmmeter.h>
69 #include <sys/user.h>
70 
71 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
72 
73 /*
74  * These are the stuctures used to create a callout list for things to do
75  * when forking a process
76  */
77 struct forklist {
78 	forklist_fn function;
79 	TAILQ_ENTRY(forklist) next;
80 };
81 
82 TAILQ_HEAD(forklist_head, forklist);
83 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
84 
85 int forksleep; /* Place for fork1() to sleep on. */
86 
87 /* ARGSUSED */
88 int
89 fork(struct fork_args *uap)
90 {
91 	struct proc *p = curproc;
92 	struct proc *p2;
93 	int error;
94 
95 	error = fork1(p, RFFDG | RFPROC, &p2);
96 	if (error == 0) {
97 		start_forked_proc(p, p2);
98 		uap->sysmsg_fds[0] = p2->p_pid;
99 		uap->sysmsg_fds[1] = 0;
100 	}
101 	return error;
102 }
103 
104 /* ARGSUSED */
105 int
106 vfork(struct vfork_args *uap)
107 {
108 	struct proc *p = curproc;
109 	struct proc *p2;
110 	int error;
111 
112 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
113 	if (error == 0) {
114 		start_forked_proc(p, p2);
115 		uap->sysmsg_fds[0] = p2->p_pid;
116 		uap->sysmsg_fds[1] = 0;
117 	}
118 	return error;
119 }
120 
121 int
122 rfork(struct rfork_args *uap)
123 {
124 	struct proc *p = curproc;
125 	struct proc *p2;
126 	int error;
127 
128 	/* Don't allow kernel only flags */
129 	if ((uap->flags & RFKERNELONLY) != 0)
130 		return (EINVAL);
131 
132 	error = fork1(p, uap->flags, &p2);
133 	if (error == 0) {
134 		start_forked_proc(p, p2);
135 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
136 		uap->sysmsg_fds[1] = 0;
137 	}
138 	return error;
139 }
140 
141 
142 int	nprocs = 1;		/* process 0 */
143 static int nextpid = 0;
144 
145 /*
146  * Random component to nextpid generation.  We mix in a random factor to make
147  * it a little harder to predict.  We sanity check the modulus value to avoid
148  * doing it in critical paths.  Don't let it be too small or we pointlessly
149  * waste randomness entropy, and don't let it be impossibly large.  Using a
150  * modulus that is too big causes a LOT more process table scans and slows
151  * down fork processing as the pidchecked caching is defeated.
152  */
153 static int randompid = 0;
154 
155 static int
156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
157 {
158 		int error, pid;
159 
160 		pid = randompid;
161 		error = sysctl_handle_int(oidp, &pid, 0, req);
162 		if (error || !req->newptr)
163 			return (error);
164 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
165 			pid = PID_MAX - 100;
166 		else if (pid < 2)			/* NOP */
167 			pid = 0;
168 		else if (pid < 100)			/* Make it reasonable */
169 			pid = 100;
170 		randompid = pid;
171 		return (error);
172 }
173 
174 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
175     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
176 
177 int
178 fork1(p1, flags, procp)
179 	struct proc *p1;
180 	int flags;
181 	struct proc **procp;
182 {
183 	struct proc *p2, *pptr;
184 	uid_t uid;
185 	struct proc *newproc;
186 	int ok;
187 	static int curfail = 0, pidchecked = 0;
188 	static struct timeval lastfail;
189 	struct forklist *ep;
190 	struct filedesc_to_leader *fdtol;
191 
192 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
193 		return (EINVAL);
194 
195 	/*
196 	 * Here we don't create a new process, but we divorce
197 	 * certain parts of a process from itself.
198 	 */
199 	if ((flags & RFPROC) == 0) {
200 
201 		vm_fork(p1, 0, flags);
202 
203 		/*
204 		 * Close all file descriptors.
205 		 */
206 		if (flags & RFCFDG) {
207 			struct filedesc *fdtmp;
208 			fdtmp = fdinit(p1);
209 			fdfree(p1);
210 			p1->p_fd = fdtmp;
211 		}
212 
213 		/*
214 		 * Unshare file descriptors (from parent.)
215 		 */
216 		if (flags & RFFDG) {
217 			if (p1->p_fd->fd_refcnt > 1) {
218 				struct filedesc *newfd;
219 				newfd = fdcopy(p1);
220 				fdfree(p1);
221 				p1->p_fd = newfd;
222 			}
223 		}
224 		*procp = NULL;
225 		return (0);
226 	}
227 
228 	/*
229 	 * Although process entries are dynamically created, we still keep
230 	 * a global limit on the maximum number we will create.  Don't allow
231 	 * a nonprivileged user to use the last ten processes; don't let root
232 	 * exceed the limit. The variable nprocs is the current number of
233 	 * processes, maxproc is the limit.
234 	 */
235 	uid = p1->p_ucred->cr_ruid;
236 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
237 		if (ppsratecheck(&lastfail, &curfail, 1))
238 			printf("maxproc limit exceeded by uid %d, please "
239 			       "see tuning(7) and login.conf(5).\n", uid);
240 		tsleep(&forksleep, 0, "fork", hz / 2);
241 		return (EAGAIN);
242 	}
243 	/*
244 	 * Increment the nprocs resource before blocking can occur.  There
245 	 * are hard-limits as to the number of processes that can run.
246 	 */
247 	nprocs++;
248 
249 	/*
250 	 * Increment the count of procs running with this uid. Don't allow
251 	 * a nonprivileged user to exceed their current limit.
252 	 */
253 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
254 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
255 	if (!ok) {
256 		/*
257 		 * Back out the process count
258 		 */
259 		nprocs--;
260 		if (ppsratecheck(&lastfail, &curfail, 1))
261 			printf("maxproc limit exceeded by uid %d, please "
262 			       "see tuning(7) and login.conf(5).\n", uid);
263 		tsleep(&forksleep, 0, "fork", hz / 2);
264 		return (EAGAIN);
265 	}
266 
267 	/* Allocate new proc. */
268 	newproc = zalloc(proc_zone);
269 
270 	/*
271 	 * Setup linkage for kernel based threading
272 	 */
273 	if((flags & RFTHREAD) != 0) {
274 		newproc->p_peers = p1->p_peers;
275 		p1->p_peers = newproc;
276 		newproc->p_leader = p1->p_leader;
277 	} else {
278 		newproc->p_peers = 0;
279 		newproc->p_leader = newproc;
280 	}
281 
282 	newproc->p_wakeup = 0;
283 	newproc->p_vmspace = NULL;
284 
285 	/*
286 	 * Find an unused process ID.  We remember a range of unused IDs
287 	 * ready to use (from nextpid+1 through pidchecked-1).
288 	 */
289 	nextpid++;
290 	if (randompid)
291 		nextpid += arc4random() % randompid;
292 retry:
293 	/*
294 	 * If the process ID prototype has wrapped around,
295 	 * restart somewhat above 0, as the low-numbered procs
296 	 * tend to include daemons that don't exit.
297 	 */
298 	if (nextpid >= PID_MAX) {
299 		nextpid = nextpid % PID_MAX;
300 		if (nextpid < 100)
301 			nextpid += 100;
302 		pidchecked = 0;
303 	}
304 	if (nextpid >= pidchecked) {
305 		int doingzomb = 0;
306 
307 		pidchecked = PID_MAX;
308 		/*
309 		 * Scan the active and zombie procs to check whether this pid
310 		 * is in use.  Remember the lowest pid that's greater
311 		 * than nextpid, so we can avoid checking for a while.
312 		 */
313 		p2 = LIST_FIRST(&allproc);
314 again:
315 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
316 			while (p2->p_pid == nextpid ||
317 			    p2->p_pgrp->pg_id == nextpid ||
318 			    p2->p_session->s_sid == nextpid) {
319 				nextpid++;
320 				if (nextpid >= pidchecked)
321 					goto retry;
322 			}
323 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
324 				pidchecked = p2->p_pid;
325 			if (p2->p_pgrp->pg_id > nextpid &&
326 			    pidchecked > p2->p_pgrp->pg_id)
327 				pidchecked = p2->p_pgrp->pg_id;
328 			if (p2->p_session->s_sid > nextpid &&
329 			    pidchecked > p2->p_session->s_sid)
330 				pidchecked = p2->p_session->s_sid;
331 		}
332 		if (!doingzomb) {
333 			doingzomb = 1;
334 			p2 = LIST_FIRST(&zombproc);
335 			goto again;
336 		}
337 	}
338 
339 	p2 = newproc;
340 	p2->p_stat = SIDL;			/* protect against others */
341 	p2->p_pid = nextpid;
342 	LIST_INSERT_HEAD(&allproc, p2, p_list);
343 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
344 
345 	/*
346 	 * Make a proc table entry for the new process.
347 	 * Start by zeroing the section of proc that is zero-initialized,
348 	 * then copy the section that is copied directly from the parent.
349 	 */
350 	bzero(&p2->p_startzero,
351 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
352 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
353 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
354 
355 	p2->p_aioinfo = NULL;
356 
357 	/*
358 	 * Duplicate sub-structures as needed.
359 	 * Increase reference counts on shared objects.
360 	 * The p_stats and p_sigacts substructs are set in vm_fork.
361 	 *
362 	 * P_CP_RELEASED indicates that the process is starting out in
363 	 * the kernel (in the fork trampoline).  The flag will be cleared
364 	 * when the new process calls userret() and acquires its current
365 	 * process designation for the return to userland.
366 	 */
367 	p2->p_flag = P_INMEM | P_CP_RELEASED;
368 	if (p1->p_flag & P_PROFIL)
369 		startprofclock(p2);
370 	p2->p_ucred = crhold(p1->p_ucred);
371 
372 	if (p2->p_ucred->cr_prison) {
373 		p2->p_ucred->cr_prison->pr_ref++;
374 		p2->p_flag |= P_JAILED;
375 	}
376 
377 	if (p2->p_args)
378 		p2->p_args->ar_ref++;
379 
380 	if (flags & RFSIGSHARE) {
381 		p2->p_procsig = p1->p_procsig;
382 		p2->p_procsig->ps_refcnt++;
383 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
384 			struct sigacts *newsigacts;
385 			int s;
386 
387 			/* Create the shared sigacts structure */
388 			MALLOC(newsigacts, struct sigacts *,
389 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
390 			s = splhigh();
391 			/*
392 			 * Set p_sigacts to the new shared structure.
393 			 * Note that this is updating p1->p_sigacts at the
394 			 * same time, since p_sigacts is just a pointer to
395 			 * the shared p_procsig->ps_sigacts.
396 			 */
397 			p2->p_sigacts  = newsigacts;
398 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
399 			    sizeof(*p2->p_sigacts));
400 			*p2->p_sigacts = p1->p_addr->u_sigacts;
401 			splx(s);
402 		}
403 	} else {
404 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
405 		    M_SUBPROC, M_WAITOK);
406 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
407 		p2->p_procsig->ps_refcnt = 1;
408 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
409 	}
410 	if (flags & RFLINUXTHPN)
411 	        p2->p_sigparent = SIGUSR1;
412 	else
413 	        p2->p_sigparent = SIGCHLD;
414 
415 	/* bump references to the text vnode (for procfs) */
416 	p2->p_textvp = p1->p_textvp;
417 	if (p2->p_textvp)
418 		VREF(p2->p_textvp);
419 
420 	if (flags & RFCFDG) {
421 		p2->p_fd = fdinit(p1);
422 		fdtol = NULL;
423 	} else if (flags & RFFDG) {
424 		p2->p_fd = fdcopy(p1);
425 		fdtol = NULL;
426 	} else {
427 		p2->p_fd = fdshare(p1);
428 		if (p1->p_fdtol == NULL)
429 			p1->p_fdtol =
430 				filedesc_to_leader_alloc(NULL,
431 							 p1->p_leader);
432 		if ((flags & RFTHREAD) != 0) {
433 			/*
434 			 * Shared file descriptor table and
435 			 * shared process leaders.
436 			 */
437 			fdtol = p1->p_fdtol;
438 			fdtol->fdl_refcount++;
439 		} else {
440 			/*
441 			 * Shared file descriptor table, and
442 			 * different process leaders
443 			 */
444 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
445 		}
446 	}
447 	p2->p_fdtol = fdtol;
448 
449 	/*
450 	 * If p_limit is still copy-on-write, bump refcnt,
451 	 * otherwise get a copy that won't be modified.
452 	 * (If PL_SHAREMOD is clear, the structure is shared
453 	 * copy-on-write.)
454 	 */
455 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
456 		p2->p_limit = limcopy(p1->p_limit);
457 	else {
458 		p2->p_limit = p1->p_limit;
459 		p2->p_limit->p_refcnt++;
460 	}
461 
462 	/*
463 	 * Preserve some more flags in subprocess.  P_PROFIL has already
464 	 * been preserved.
465 	 */
466 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
467 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
468 		p2->p_flag |= P_CONTROLT;
469 	if (flags & RFPPWAIT)
470 		p2->p_flag |= P_PPWAIT;
471 
472 	LIST_INSERT_AFTER(p1, p2, p_pglist);
473 
474 	/*
475 	 * Attach the new process to its parent.
476 	 *
477 	 * If RFNOWAIT is set, the newly created process becomes a child
478 	 * of init.  This effectively disassociates the child from the
479 	 * parent.
480 	 */
481 	if (flags & RFNOWAIT)
482 		pptr = initproc;
483 	else
484 		pptr = p1;
485 	p2->p_pptr = pptr;
486 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
487 	LIST_INIT(&p2->p_children);
488 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
489 
490 #ifdef KTRACE
491 	/*
492 	 * Copy traceflag and tracefile if enabled.  If not inherited,
493 	 * these were zeroed above but we still could have a trace race
494 	 * so make sure p2's p_tracep is NULL.
495 	 */
496 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
497 		p2->p_traceflag = p1->p_traceflag;
498 		if ((p2->p_tracep = p1->p_tracep) != NULL)
499 			VREF(p2->p_tracep);
500 	}
501 #endif
502 
503 	/*
504 	 * Give the child process an estcpu skewed towards the batch side
505 	 * of the parent.  This prevents batch programs from glitching
506 	 * interactive programs when they are first started.  If the child
507 	 * is not a batch program it's priority will be corrected by the
508 	 * scheduler.
509 	 */
510 	p2->p_estcpu_fork = p2->p_estcpu =
511 		ESTCPULIM(p1->p_estcpu + ESTCPURAMP);
512 
513 	/*
514 	 * This begins the section where we must prevent the parent
515 	 * from being swapped.
516 	 */
517 	PHOLD(p1);
518 
519 	/*
520 	 * Finish creating the child process.  It will return via a different
521 	 * execution path later.  (ie: directly into user mode)
522 	 */
523 	vm_fork(p1, p2, flags);
524 	caps_fork(p1, p2, flags);
525 
526 	if (flags == (RFFDG | RFPROC)) {
527 		mycpu->gd_cnt.v_forks++;
528 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
529 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
530 		mycpu->gd_cnt.v_vforks++;
531 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
532 	} else if (p1 == &proc0) {
533 		mycpu->gd_cnt.v_kthreads++;
534 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
535 	} else {
536 		mycpu->gd_cnt.v_rforks++;
537 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
538 	}
539 
540 	/*
541 	 * Both processes are set up, now check if any loadable modules want
542 	 * to adjust anything.
543 	 *   What if they have an error? XXX
544 	 */
545 	TAILQ_FOREACH(ep, &fork_list, next) {
546 		(*ep->function)(p1, p2, flags);
547 	}
548 
549 	/*
550 	 * Make child runnable and add to run queue.
551 	 */
552 	microtime(&(p2->p_stats->p_start));
553 	p2->p_acflag = AFORK;
554 
555 	/*
556 	 * tell any interested parties about the new process
557 	 */
558 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
559 
560 	/*
561 	 * Return child proc pointer to parent.
562 	 */
563 	*procp = p2;
564 	return (0);
565 }
566 
567 /*
568  * The next two functionms are general routines to handle adding/deleting
569  * items on the fork callout list.
570  *
571  * at_fork():
572  * Take the arguments given and put them onto the fork callout list,
573  * However first make sure that it's not already there.
574  * Returns 0 on success or a standard error number.
575  */
576 
577 int
578 at_fork(function)
579 	forklist_fn function;
580 {
581 	struct forklist *ep;
582 
583 #ifdef INVARIANTS
584 	/* let the programmer know if he's been stupid */
585 	if (rm_at_fork(function))
586 		printf("WARNING: fork callout entry (%p) already present\n",
587 		    function);
588 #endif
589 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
590 	if (ep == NULL)
591 		return (ENOMEM);
592 	ep->function = function;
593 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
594 	return (0);
595 }
596 
597 /*
598  * Scan the exit callout list for the given item and remove it..
599  * Returns the number of items removed (0 or 1)
600  */
601 
602 int
603 rm_at_fork(function)
604 	forklist_fn function;
605 {
606 	struct forklist *ep;
607 
608 	TAILQ_FOREACH(ep, &fork_list, next) {
609 		if (ep->function == function) {
610 			TAILQ_REMOVE(&fork_list, ep, next);
611 			free(ep, M_ATFORK);
612 			return(1);
613 		}
614 	}
615 	return (0);
616 }
617 
618 /*
619  * Add a forked process to the run queue after any remaining setup, such
620  * as setting the fork handler, has been completed.
621  */
622 
623 void
624 start_forked_proc(struct proc *p1, struct proc *p2)
625 {
626 	/*
627 	 * Move from SIDL to RUN queue, and activate the process's thread.
628 	 * Activation of the thread effectively makes the process "a"
629 	 * current process, so we do not setrunqueue().
630 	 */
631 	KASSERT(p2->p_stat == SIDL,
632 	    ("cannot start forked process, bad status: %p", p2));
633 	resetpriority(p2);
634 	(void) splhigh();
635 	p2->p_stat = SRUN;
636 	setrunqueue(p2);
637 	(void) spl0();
638 
639 	/*
640 	 * Now can be swapped.
641 	 */
642 	PRELE(p1);
643 
644 	/*
645 	 * Preserve synchronization semantics of vfork.  If waiting for
646 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
647 	 * proc (in case of exit).
648 	 */
649 	while (p2->p_flag & P_PPWAIT)
650 		tsleep(p1, 0, "ppwait", 0);
651 }
652 
653