xref: /dflybsd-src/sys/kern/kern_fork.c (revision bf22d4c1f95f57623b2b3030738e116d3a547284)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.24 2004/04/24 04:32:03 drhodus Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_zone.h>
67 
68 #include <sys/vmmeter.h>
69 #include <sys/user.h>
70 
71 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
72 
73 /*
74  * These are the stuctures used to create a callout list for things to do
75  * when forking a process
76  */
77 struct forklist {
78 	forklist_fn function;
79 	TAILQ_ENTRY(forklist) next;
80 };
81 
82 TAILQ_HEAD(forklist_head, forklist);
83 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
84 
85 int forksleep; /* Place for fork1() to sleep on. */
86 
87 /* ARGSUSED */
88 int
89 fork(struct fork_args *uap)
90 {
91 	struct proc *p = curproc;
92 	struct proc *p2;
93 	int error;
94 
95 	error = fork1(p, RFFDG | RFPROC, &p2);
96 	if (error == 0) {
97 		start_forked_proc(p, p2);
98 		uap->sysmsg_fds[0] = p2->p_pid;
99 		uap->sysmsg_fds[1] = 0;
100 	}
101 	return error;
102 }
103 
104 /* ARGSUSED */
105 int
106 vfork(struct vfork_args *uap)
107 {
108 	struct proc *p = curproc;
109 	struct proc *p2;
110 	int error;
111 
112 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
113 	if (error == 0) {
114 		start_forked_proc(p, p2);
115 		uap->sysmsg_fds[0] = p2->p_pid;
116 		uap->sysmsg_fds[1] = 0;
117 	}
118 	return error;
119 }
120 
121 int
122 rfork(struct rfork_args *uap)
123 {
124 	struct proc *p = curproc;
125 	struct proc *p2;
126 	int error;
127 
128 	/* Don't allow kernel only flags */
129 	if ((uap->flags & RFKERNELONLY) != 0)
130 		return (EINVAL);
131 
132 	error = fork1(p, uap->flags, &p2);
133 	if (error == 0) {
134 		start_forked_proc(p, p2);
135 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
136 		uap->sysmsg_fds[1] = 0;
137 	}
138 	return error;
139 }
140 
141 
142 int	nprocs = 1;		/* process 0 */
143 static int nextpid = 0;
144 
145 /*
146  * Random component to nextpid generation.  We mix in a random factor to make
147  * it a little harder to predict.  We sanity check the modulus value to avoid
148  * doing it in critical paths.  Don't let it be too small or we pointlessly
149  * waste randomness entropy, and don't let it be impossibly large.  Using a
150  * modulus that is too big causes a LOT more process table scans and slows
151  * down fork processing as the pidchecked caching is defeated.
152  */
153 static int randompid = 0;
154 
155 static int
156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
157 {
158 		int error, pid;
159 
160 		pid = randompid;
161 		error = sysctl_handle_int(oidp, &pid, 0, req);
162 		if (error || !req->newptr)
163 			return (error);
164 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
165 			pid = PID_MAX - 100;
166 		else if (pid < 2)			/* NOP */
167 			pid = 0;
168 		else if (pid < 100)			/* Make it reasonable */
169 			pid = 100;
170 		randompid = pid;
171 		return (error);
172 }
173 
174 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
175     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
176 
177 int
178 fork1(struct proc *p1, int flags, struct proc **procp)
179 {
180 	struct proc *p2, *pptr;
181 	uid_t uid;
182 	struct proc *newproc;
183 	int ok;
184 	static int curfail = 0, pidchecked = 0;
185 	static struct timeval lastfail;
186 	struct forklist *ep;
187 	struct filedesc_to_leader *fdtol;
188 
189 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
190 		return (EINVAL);
191 
192 	/*
193 	 * Here we don't create a new process, but we divorce
194 	 * certain parts of a process from itself.
195 	 */
196 	if ((flags & RFPROC) == 0) {
197 
198 		vm_fork(p1, 0, flags);
199 
200 		/*
201 		 * Close all file descriptors.
202 		 */
203 		if (flags & RFCFDG) {
204 			struct filedesc *fdtmp;
205 			fdtmp = fdinit(p1);
206 			fdfree(p1);
207 			p1->p_fd = fdtmp;
208 		}
209 
210 		/*
211 		 * Unshare file descriptors (from parent.)
212 		 */
213 		if (flags & RFFDG) {
214 			if (p1->p_fd->fd_refcnt > 1) {
215 				struct filedesc *newfd;
216 				newfd = fdcopy(p1);
217 				fdfree(p1);
218 				p1->p_fd = newfd;
219 			}
220 		}
221 		*procp = NULL;
222 		return (0);
223 	}
224 
225 	/*
226 	 * Although process entries are dynamically created, we still keep
227 	 * a global limit on the maximum number we will create.  Don't allow
228 	 * a nonprivileged user to use the last ten processes; don't let root
229 	 * exceed the limit. The variable nprocs is the current number of
230 	 * processes, maxproc is the limit.
231 	 */
232 	uid = p1->p_ucred->cr_ruid;
233 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
234 		if (ppsratecheck(&lastfail, &curfail, 1))
235 			printf("maxproc limit exceeded by uid %d, please "
236 			       "see tuning(7) and login.conf(5).\n", uid);
237 		tsleep(&forksleep, 0, "fork", hz / 2);
238 		return (EAGAIN);
239 	}
240 	/*
241 	 * Increment the nprocs resource before blocking can occur.  There
242 	 * are hard-limits as to the number of processes that can run.
243 	 */
244 	nprocs++;
245 
246 	/*
247 	 * Increment the count of procs running with this uid. Don't allow
248 	 * a nonprivileged user to exceed their current limit.
249 	 */
250 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
251 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
252 	if (!ok) {
253 		/*
254 		 * Back out the process count
255 		 */
256 		nprocs--;
257 		if (ppsratecheck(&lastfail, &curfail, 1))
258 			printf("maxproc limit exceeded by uid %d, please "
259 			       "see tuning(7) and login.conf(5).\n", uid);
260 		tsleep(&forksleep, 0, "fork", hz / 2);
261 		return (EAGAIN);
262 	}
263 
264 	/* Allocate new proc. */
265 	newproc = zalloc(proc_zone);
266 
267 	/*
268 	 * Setup linkage for kernel based threading
269 	 */
270 	if ((flags & RFTHREAD) != 0) {
271 		newproc->p_peers = p1->p_peers;
272 		p1->p_peers = newproc;
273 		newproc->p_leader = p1->p_leader;
274 	} else {
275 		newproc->p_peers = 0;
276 		newproc->p_leader = newproc;
277 	}
278 
279 	newproc->p_wakeup = 0;
280 	newproc->p_vmspace = NULL;
281 
282 	/*
283 	 * Find an unused process ID.  We remember a range of unused IDs
284 	 * ready to use (from nextpid+1 through pidchecked-1).
285 	 */
286 	nextpid++;
287 	if (randompid)
288 		nextpid += arc4random() % randompid;
289 retry:
290 	/*
291 	 * If the process ID prototype has wrapped around,
292 	 * restart somewhat above 0, as the low-numbered procs
293 	 * tend to include daemons that don't exit.
294 	 */
295 	if (nextpid >= PID_MAX) {
296 		nextpid = nextpid % PID_MAX;
297 		if (nextpid < 100)
298 			nextpid += 100;
299 		pidchecked = 0;
300 	}
301 	if (nextpid >= pidchecked) {
302 		int doingzomb = 0;
303 
304 		pidchecked = PID_MAX;
305 		/*
306 		 * Scan the active and zombie procs to check whether this pid
307 		 * is in use.  Remember the lowest pid that's greater
308 		 * than nextpid, so we can avoid checking for a while.
309 		 */
310 		p2 = LIST_FIRST(&allproc);
311 again:
312 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
313 			while (p2->p_pid == nextpid ||
314 			    p2->p_pgrp->pg_id == nextpid ||
315 			    p2->p_session->s_sid == nextpid) {
316 				nextpid++;
317 				if (nextpid >= pidchecked)
318 					goto retry;
319 			}
320 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
321 				pidchecked = p2->p_pid;
322 			if (p2->p_pgrp->pg_id > nextpid &&
323 			    pidchecked > p2->p_pgrp->pg_id)
324 				pidchecked = p2->p_pgrp->pg_id;
325 			if (p2->p_session->s_sid > nextpid &&
326 			    pidchecked > p2->p_session->s_sid)
327 				pidchecked = p2->p_session->s_sid;
328 		}
329 		if (!doingzomb) {
330 			doingzomb = 1;
331 			p2 = LIST_FIRST(&zombproc);
332 			goto again;
333 		}
334 	}
335 
336 	p2 = newproc;
337 	p2->p_stat = SIDL;			/* protect against others */
338 	p2->p_pid = nextpid;
339 	LIST_INSERT_HEAD(&allproc, p2, p_list);
340 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
341 
342 	/*
343 	 * Make a proc table entry for the new process.
344 	 * Start by zeroing the section of proc that is zero-initialized,
345 	 * then copy the section that is copied directly from the parent.
346 	 */
347 	bzero(&p2->p_startzero,
348 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
349 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
350 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
351 
352 	p2->p_aioinfo = NULL;
353 
354 	/*
355 	 * Duplicate sub-structures as needed.
356 	 * Increase reference counts on shared objects.
357 	 * The p_stats and p_sigacts substructs are set in vm_fork.
358 	 *
359 	 * P_CP_RELEASED indicates that the process is starting out in
360 	 * the kernel (in the fork trampoline).  The flag will be cleared
361 	 * when the new process calls userret() and acquires its current
362 	 * process designation for the return to userland.
363 	 */
364 	p2->p_flag = P_INMEM | P_CP_RELEASED;
365 	if (p1->p_flag & P_PROFIL)
366 		startprofclock(p2);
367 	p2->p_ucred = crhold(p1->p_ucred);
368 
369 	if (p2->p_ucred->cr_prison) {
370 		p2->p_ucred->cr_prison->pr_ref++;
371 		p2->p_flag |= P_JAILED;
372 	}
373 
374 	if (p2->p_args)
375 		p2->p_args->ar_ref++;
376 
377 	if (flags & RFSIGSHARE) {
378 		p2->p_procsig = p1->p_procsig;
379 		p2->p_procsig->ps_refcnt++;
380 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
381 			struct sigacts *newsigacts;
382 			int s;
383 
384 			/* Create the shared sigacts structure */
385 			MALLOC(newsigacts, struct sigacts *,
386 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
387 			s = splhigh();
388 			/*
389 			 * Set p_sigacts to the new shared structure.
390 			 * Note that this is updating p1->p_sigacts at the
391 			 * same time, since p_sigacts is just a pointer to
392 			 * the shared p_procsig->ps_sigacts.
393 			 */
394 			p2->p_sigacts  = newsigacts;
395 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
396 			    sizeof(*p2->p_sigacts));
397 			*p2->p_sigacts = p1->p_addr->u_sigacts;
398 			splx(s);
399 		}
400 	} else {
401 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
402 		    M_SUBPROC, M_WAITOK);
403 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
404 		p2->p_procsig->ps_refcnt = 1;
405 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
406 	}
407 	if (flags & RFLINUXTHPN)
408 	        p2->p_sigparent = SIGUSR1;
409 	else
410 	        p2->p_sigparent = SIGCHLD;
411 
412 	/* bump references to the text vnode (for procfs) */
413 	p2->p_textvp = p1->p_textvp;
414 	if (p2->p_textvp)
415 		vref(p2->p_textvp);
416 
417 	if (flags & RFCFDG) {
418 		p2->p_fd = fdinit(p1);
419 		fdtol = NULL;
420 	} else if (flags & RFFDG) {
421 		p2->p_fd = fdcopy(p1);
422 		fdtol = NULL;
423 	} else {
424 		p2->p_fd = fdshare(p1);
425 		if (p1->p_fdtol == NULL)
426 			p1->p_fdtol =
427 				filedesc_to_leader_alloc(NULL,
428 							 p1->p_leader);
429 		if ((flags & RFTHREAD) != 0) {
430 			/*
431 			 * Shared file descriptor table and
432 			 * shared process leaders.
433 			 */
434 			fdtol = p1->p_fdtol;
435 			fdtol->fdl_refcount++;
436 		} else {
437 			/*
438 			 * Shared file descriptor table, and
439 			 * different process leaders
440 			 */
441 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
442 		}
443 	}
444 	p2->p_fdtol = fdtol;
445 
446 	/*
447 	 * If p_limit is still copy-on-write, bump refcnt,
448 	 * otherwise get a copy that won't be modified.
449 	 * (If PL_SHAREMOD is clear, the structure is shared
450 	 * copy-on-write.)
451 	 */
452 	if (p1->p_limit->p_lflags & PL_SHAREMOD) {
453 		p2->p_limit = limcopy(p1->p_limit);
454 	} else {
455 		p2->p_limit = p1->p_limit;
456 		p2->p_limit->p_refcnt++;
457 	}
458 
459 	/*
460 	 * Preserve some more flags in subprocess.  P_PROFIL has already
461 	 * been preserved.
462 	 */
463 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
464 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
465 		p2->p_flag |= P_CONTROLT;
466 	if (flags & RFPPWAIT)
467 		p2->p_flag |= P_PPWAIT;
468 
469 	LIST_INSERT_AFTER(p1, p2, p_pglist);
470 
471 	/*
472 	 * Attach the new process to its parent.
473 	 *
474 	 * If RFNOWAIT is set, the newly created process becomes a child
475 	 * of init.  This effectively disassociates the child from the
476 	 * parent.
477 	 */
478 	if (flags & RFNOWAIT)
479 		pptr = initproc;
480 	else
481 		pptr = p1;
482 	p2->p_pptr = pptr;
483 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
484 	LIST_INIT(&p2->p_children);
485 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
486 
487 #ifdef KTRACE
488 	/*
489 	 * Copy traceflag and tracefile if enabled.  If not inherited,
490 	 * these were zeroed above but we still could have a trace race
491 	 * so make sure p2's p_tracep is NULL.
492 	 */
493 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
494 		p2->p_traceflag = p1->p_traceflag;
495 		if ((p2->p_tracep = p1->p_tracep) != NULL)
496 			vref(p2->p_tracep);
497 	}
498 #endif
499 
500 	/*
501 	 * Give the child process an estcpu skewed towards the batch side
502 	 * of the parent.  This prevents batch programs from glitching
503 	 * interactive programs when they are first started.  If the child
504 	 * is not a batch program it's priority will be corrected by the
505 	 * scheduler.
506 	 */
507 	p2->p_estcpu_fork = p2->p_estcpu =
508 		ESTCPULIM(p1->p_estcpu + ESTCPURAMP);
509 
510 	/*
511 	 * This begins the section where we must prevent the parent
512 	 * from being swapped.
513 	 */
514 	PHOLD(p1);
515 
516 	/*
517 	 * Finish creating the child process.  It will return via a different
518 	 * execution path later.  (ie: directly into user mode)
519 	 */
520 	vm_fork(p1, p2, flags);
521 	caps_fork(p1, p2, flags);
522 
523 	if (flags == (RFFDG | RFPROC)) {
524 		mycpu->gd_cnt.v_forks++;
525 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
526 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
527 		mycpu->gd_cnt.v_vforks++;
528 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
529 	} else if (p1 == &proc0) {
530 		mycpu->gd_cnt.v_kthreads++;
531 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
532 	} else {
533 		mycpu->gd_cnt.v_rforks++;
534 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
535 	}
536 
537 	/*
538 	 * Both processes are set up, now check if any loadable modules want
539 	 * to adjust anything.
540 	 *   What if they have an error? XXX
541 	 */
542 	TAILQ_FOREACH(ep, &fork_list, next) {
543 		(*ep->function)(p1, p2, flags);
544 	}
545 
546 	/*
547 	 * Make child runnable and add to run queue.
548 	 */
549 	microtime(&(p2->p_stats->p_start));
550 	p2->p_acflag = AFORK;
551 
552 	/*
553 	 * tell any interested parties about the new process
554 	 */
555 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
556 
557 	/*
558 	 * Return child proc pointer to parent.
559 	 */
560 	*procp = p2;
561 	return (0);
562 }
563 
564 /*
565  * The next two functionms are general routines to handle adding/deleting
566  * items on the fork callout list.
567  *
568  * at_fork():
569  * Take the arguments given and put them onto the fork callout list,
570  * However first make sure that it's not already there.
571  * Returns 0 on success or a standard error number.
572  */
573 int
574 at_fork(forklist_fn function)
575 {
576 	struct forklist *ep;
577 
578 #ifdef INVARIANTS
579 	/* let the programmer know if he's been stupid */
580 	if (rm_at_fork(function)) {
581 		printf("WARNING: fork callout entry (%p) already present\n",
582 		    function);
583 	}
584 #endif
585 	ep = malloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
586 	ep->function = function;
587 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
588 	return (0);
589 }
590 
591 /*
592  * Scan the exit callout list for the given item and remove it..
593  * Returns the number of items removed (0 or 1)
594  */
595 int
596 rm_at_fork(forklist_fn function)
597 {
598 	struct forklist *ep;
599 
600 	TAILQ_FOREACH(ep, &fork_list, next) {
601 		if (ep->function == function) {
602 			TAILQ_REMOVE(&fork_list, ep, next);
603 			free(ep, M_ATFORK);
604 			return(1);
605 		}
606 	}
607 	return (0);
608 }
609 
610 /*
611  * Add a forked process to the run queue after any remaining setup, such
612  * as setting the fork handler, has been completed.
613  */
614 void
615 start_forked_proc(struct proc *p1, struct proc *p2)
616 {
617 	/*
618 	 * Move from SIDL to RUN queue, and activate the process's thread.
619 	 * Activation of the thread effectively makes the process "a"
620 	 * current process, so we do not setrunqueue().
621 	 */
622 	KASSERT(p2->p_stat == SIDL,
623 	    ("cannot start forked process, bad status: %p", p2));
624 	resetpriority(p2);
625 	(void) splhigh();
626 	p2->p_stat = SRUN;
627 	setrunqueue(p2);
628 	(void) spl0();
629 
630 	/*
631 	 * Now can be swapped.
632 	 */
633 	PRELE(p1);
634 
635 	/*
636 	 * Preserve synchronization semantics of vfork.  If waiting for
637 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
638 	 * proc (in case of exit).
639 	 */
640 	while (p2->p_flag & P_PPWAIT)
641 		tsleep(p1, 0, "ppwait", 0);
642 }
643 
644