xref: /dflybsd-src/sys/kern/kern_fork.c (revision a563ca70e68142ccf7f50a6f129665fd8cb66d98)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
40  * $DragonFly: src/sys/kern/kern_fork.c,v 1.77 2008/05/18 20:02:02 nth Exp $
41  */
42 
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/sysctl.h>
51 #include <sys/malloc.h>
52 #include <sys/proc.h>
53 #include <sys/resourcevar.h>
54 #include <sys/vnode.h>
55 #include <sys/acct.h>
56 #include <sys/ktrace.h>
57 #include <sys/unistd.h>
58 #include <sys/jail.h>
59 #include <sys/caps.h>
60 
61 #include <vm/vm.h>
62 #include <sys/lock.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/vm_extern.h>
66 
67 #include <sys/vmmeter.h>
68 #include <sys/refcount.h>
69 #include <sys/thread2.h>
70 #include <sys/signal2.h>
71 #include <sys/spinlock2.h>
72 
73 #include <sys/dsched.h>
74 
75 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
76 
77 /*
78  * These are the stuctures used to create a callout list for things to do
79  * when forking a process
80  */
81 struct forklist {
82 	forklist_fn function;
83 	TAILQ_ENTRY(forklist) next;
84 };
85 
86 TAILQ_HEAD(forklist_head, forklist);
87 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
88 
89 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
90 
91 int forksleep; /* Place for fork1() to sleep on. */
92 
93 /*
94  * Red-Black tree support for LWPs
95  */
96 
97 static int
98 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
99 {
100 	if (lp1->lwp_tid < lp2->lwp_tid)
101 		return(-1);
102 	if (lp1->lwp_tid > lp2->lwp_tid)
103 		return(1);
104 	return(0);
105 }
106 
107 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
108 
109 /*
110  * Fork system call
111  *
112  * MPALMOSTSAFE
113  */
114 int
115 sys_fork(struct fork_args *uap)
116 {
117 	struct lwp *lp = curthread->td_lwp;
118 	struct proc *p2;
119 	int error;
120 
121 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
122 	if (error == 0) {
123 		start_forked_proc(lp, p2);
124 		uap->sysmsg_fds[0] = p2->p_pid;
125 		uap->sysmsg_fds[1] = 0;
126 	}
127 	return error;
128 }
129 
130 /*
131  * MPALMOSTSAFE
132  */
133 int
134 sys_vfork(struct vfork_args *uap)
135 {
136 	struct lwp *lp = curthread->td_lwp;
137 	struct proc *p2;
138 	int error;
139 
140 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
141 	if (error == 0) {
142 		start_forked_proc(lp, p2);
143 		uap->sysmsg_fds[0] = p2->p_pid;
144 		uap->sysmsg_fds[1] = 0;
145 	}
146 	return error;
147 }
148 
149 /*
150  * Handle rforks.  An rfork may (1) operate on the current process without
151  * creating a new, (2) create a new process that shared the current process's
152  * vmspace, signals, and/or descriptors, or (3) create a new process that does
153  * not share these things (normal fork).
154  *
155  * Note that we only call start_forked_proc() if a new process is actually
156  * created.
157  *
158  * rfork { int flags }
159  *
160  * MPALMOSTSAFE
161  */
162 int
163 sys_rfork(struct rfork_args *uap)
164 {
165 	struct lwp *lp = curthread->td_lwp;
166 	struct proc *p2;
167 	int error;
168 
169 	if ((uap->flags & RFKERNELONLY) != 0)
170 		return (EINVAL);
171 
172 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
173 	if (error == 0) {
174 		if (p2)
175 			start_forked_proc(lp, p2);
176 		uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0;
177 		uap->sysmsg_fds[1] = 0;
178 	}
179 	return error;
180 }
181 
182 /*
183  * MPALMOSTSAFE
184  */
185 int
186 sys_lwp_create(struct lwp_create_args *uap)
187 {
188 	struct proc *p = curproc;
189 	struct lwp *lp;
190 	struct lwp_params params;
191 	int error;
192 
193 	error = copyin(uap->params, &params, sizeof(params));
194 	if (error)
195 		goto fail2;
196 
197 	lwkt_gettoken(&p->p_token);
198 	plimit_lwp_fork(p);	/* force exclusive access */
199 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
200 	error = cpu_prepare_lwp(lp, &params);
201 	if (error)
202 		goto fail;
203 	if (params.tid1 != NULL &&
204 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
205 		goto fail;
206 	if (params.tid2 != NULL &&
207 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
208 		goto fail;
209 
210 	/*
211 	 * Now schedule the new lwp.
212 	 */
213 	p->p_usched->resetpriority(lp);
214 	crit_enter();
215 	lp->lwp_stat = LSRUN;
216 	p->p_usched->setrunqueue(lp);
217 	crit_exit();
218 	lwkt_reltoken(&p->p_token);
219 
220 	return (0);
221 
222 fail:
223 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
224 	--p->p_nthreads;
225 	/* lwp_dispose expects an exited lwp, and a held proc */
226 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
227 	lp->lwp_thread->td_flags |= TDF_EXITING;
228 	lwkt_remove_tdallq(lp->lwp_thread);
229 	PHOLD(p);
230 	biosched_done(lp->lwp_thread);
231 	dsched_exit_thread(lp->lwp_thread);
232 	lwp_dispose(lp);
233 	lwkt_reltoken(&p->p_token);
234 fail2:
235 	return (error);
236 }
237 
238 int	nprocs = 1;		/* process 0 */
239 
240 int
241 fork1(struct lwp *lp1, int flags, struct proc **procp)
242 {
243 	struct proc *p1 = lp1->lwp_proc;
244 	struct proc *p2, *pptr;
245 	struct pgrp *p1grp;
246 	struct pgrp *plkgrp;
247 	uid_t uid;
248 	int ok, error;
249 	static int curfail = 0;
250 	static struct timeval lastfail;
251 	struct forklist *ep;
252 	struct filedesc_to_leader *fdtol;
253 
254 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
255 		return (EINVAL);
256 
257 	lwkt_gettoken(&p1->p_token);
258 	plkgrp = NULL;
259 
260 	/*
261 	 * Here we don't create a new process, but we divorce
262 	 * certain parts of a process from itself.
263 	 */
264 	if ((flags & RFPROC) == 0) {
265 		/*
266 		 * This kind of stunt does not work anymore if
267 		 * there are native threads (lwps) running
268 		 */
269 		if (p1->p_nthreads != 1) {
270 			error = EINVAL;
271 			goto done;
272 		}
273 
274 		vm_fork(p1, 0, flags);
275 
276 		/*
277 		 * Close all file descriptors.
278 		 */
279 		if (flags & RFCFDG) {
280 			struct filedesc *fdtmp;
281 			fdtmp = fdinit(p1);
282 			fdfree(p1, fdtmp);
283 		}
284 
285 		/*
286 		 * Unshare file descriptors (from parent.)
287 		 */
288 		if (flags & RFFDG) {
289 			if (p1->p_fd->fd_refcnt > 1) {
290 				struct filedesc *newfd;
291 				error = fdcopy(p1, &newfd);
292 				if (error != 0) {
293 					error = ENOMEM;
294 					goto done;
295 				}
296 				fdfree(p1, newfd);
297 			}
298 		}
299 		*procp = NULL;
300 		error = 0;
301 		goto done;
302 	}
303 
304 	/*
305 	 * Interlock against process group signal delivery.  If signals
306 	 * are pending after the interlock is obtained we have to restart
307 	 * the system call to process the signals.  If we don't the child
308 	 * can miss a pgsignal (such as ^C) sent during the fork.
309 	 *
310 	 * We can't use CURSIG() here because it will process any STOPs
311 	 * and cause the process group lock to be held indefinitely.  If
312 	 * a STOP occurs, the fork will be restarted after the CONT.
313 	 */
314 	p1grp = p1->p_pgrp;
315 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
316 		pgref(plkgrp);
317 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
318 		if (CURSIG_NOBLOCK(lp1)) {
319 			error = ERESTART;
320 			goto done;
321 		}
322 	}
323 
324 	/*
325 	 * Although process entries are dynamically created, we still keep
326 	 * a global limit on the maximum number we will create.  Don't allow
327 	 * a nonprivileged user to use the last ten processes; don't let root
328 	 * exceed the limit. The variable nprocs is the current number of
329 	 * processes, maxproc is the limit.
330 	 */
331 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
332 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
333 		if (ppsratecheck(&lastfail, &curfail, 1))
334 			kprintf("maxproc limit exceeded by uid %d, please "
335 			       "see tuning(7) and login.conf(5).\n", uid);
336 		tsleep(&forksleep, 0, "fork", hz / 2);
337 		error = EAGAIN;
338 		goto done;
339 	}
340 
341 	/*
342 	 * Increment the nprocs resource before blocking can occur.  There
343 	 * are hard-limits as to the number of processes that can run.
344 	 */
345 	atomic_add_int(&nprocs, 1);
346 
347 	/*
348 	 * Increment the count of procs running with this uid. Don't allow
349 	 * a nonprivileged user to exceed their current limit.
350 	 */
351 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
352 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
353 	if (!ok) {
354 		/*
355 		 * Back out the process count
356 		 */
357 		atomic_add_int(&nprocs, -1);
358 		if (ppsratecheck(&lastfail, &curfail, 1))
359 			kprintf("maxproc limit exceeded by uid %d, please "
360 			       "see tuning(7) and login.conf(5).\n", uid);
361 		tsleep(&forksleep, 0, "fork", hz / 2);
362 		error = EAGAIN;
363 		goto done;
364 	}
365 
366 	/* Allocate new proc. */
367 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
368 
369 	/*
370 	 * Setup linkage for kernel based threading XXX lwp
371 	 */
372 	if (flags & RFTHREAD) {
373 		p2->p_peers = p1->p_peers;
374 		p1->p_peers = p2;
375 		p2->p_leader = p1->p_leader;
376 	} else {
377 		p2->p_leader = p2;
378 	}
379 
380 	RB_INIT(&p2->p_lwp_tree);
381 	spin_init(&p2->p_spin);
382 	lwkt_token_init(&p2->p_token, "proc");
383 	p2->p_lasttid = -1;	/* first tid will be 0 */
384 
385 	/*
386 	 * Setting the state to SIDL protects the partially initialized
387 	 * process once it starts getting hooked into the rest of the system.
388 	 */
389 	p2->p_stat = SIDL;
390 	proc_add_allproc(p2);
391 
392 	/*
393 	 * Make a proc table entry for the new process.
394 	 * The whole structure was zeroed above, so copy the section that is
395 	 * copied directly from the parent.
396 	 */
397 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
398 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
399 
400 	/*
401 	 * Duplicate sub-structures as needed.  Increase reference counts
402 	 * on shared objects.
403 	 *
404 	 * NOTE: because we are now on the allproc list it is possible for
405 	 *	 other consumers to gain temporary references to p2
406 	 *	 (p2->p_lock can change).
407 	 */
408 	if (p1->p_flags & P_PROFIL)
409 		startprofclock(p2);
410 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
411 
412 	if (jailed(p2->p_ucred))
413 		p2->p_flags |= P_JAILED;
414 
415 	if (p2->p_args)
416 		refcount_acquire(&p2->p_args->ar_ref);
417 
418 	p2->p_usched = p1->p_usched;
419 	/* XXX: verify copy of the secondary iosched stuff */
420 	dsched_new_proc(p2);
421 
422 	if (flags & RFSIGSHARE) {
423 		p2->p_sigacts = p1->p_sigacts;
424 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
425 	} else {
426 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
427 					M_SUBPROC, M_WAITOK);
428 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
429 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
430 	}
431 	if (flags & RFLINUXTHPN)
432 	        p2->p_sigparent = SIGUSR1;
433 	else
434 	        p2->p_sigparent = SIGCHLD;
435 
436 	/* bump references to the text vnode (for procfs) */
437 	p2->p_textvp = p1->p_textvp;
438 	if (p2->p_textvp)
439 		vref(p2->p_textvp);
440 
441 	/* copy namecache handle to the text file */
442 	if (p1->p_textnch.mount)
443 		cache_copy(&p1->p_textnch, &p2->p_textnch);
444 
445 	/*
446 	 * Handle file descriptors
447 	 */
448 	if (flags & RFCFDG) {
449 		p2->p_fd = fdinit(p1);
450 		fdtol = NULL;
451 	} else if (flags & RFFDG) {
452 		error = fdcopy(p1, &p2->p_fd);
453 		if (error != 0) {
454 			error = ENOMEM;
455 			goto done;
456 		}
457 		fdtol = NULL;
458 	} else {
459 		p2->p_fd = fdshare(p1);
460 		if (p1->p_fdtol == NULL) {
461 			lwkt_gettoken(&p1->p_token);
462 			p1->p_fdtol =
463 				filedesc_to_leader_alloc(NULL,
464 							 p1->p_leader);
465 			lwkt_reltoken(&p1->p_token);
466 		}
467 		if ((flags & RFTHREAD) != 0) {
468 			/*
469 			 * Shared file descriptor table and
470 			 * shared process leaders.
471 			 */
472 			fdtol = p1->p_fdtol;
473 			fdtol->fdl_refcount++;
474 		} else {
475 			/*
476 			 * Shared file descriptor table, and
477 			 * different process leaders
478 			 */
479 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
480 		}
481 	}
482 	p2->p_fdtol = fdtol;
483 	p2->p_limit = plimit_fork(p1);
484 
485 	/*
486 	 * Preserve some more flags in subprocess.  P_PROFIL has already
487 	 * been preserved.
488 	 */
489 	p2->p_flags |= p1->p_flags & P_SUGID;
490 	if (p1->p_session->s_ttyvp != NULL && p1->p_flags & P_CONTROLT)
491 		p2->p_flags |= P_CONTROLT;
492 	if (flags & RFPPWAIT)
493 		p2->p_flags |= P_PPWAIT;
494 
495 	/*
496 	 * Inherit the virtual kernel structure (allows a virtual kernel
497 	 * to fork to simulate multiple cpus).
498 	 */
499 	if (p1->p_vkernel)
500 		vkernel_inherit(p1, p2);
501 
502 	/*
503 	 * Once we are on a pglist we may receive signals.  XXX we might
504 	 * race a ^C being sent to the process group by not receiving it
505 	 * at all prior to this line.
506 	 */
507 	pgref(p1grp);
508 	lwkt_gettoken(&p1grp->pg_token);
509 	LIST_INSERT_AFTER(p1, p2, p_pglist);
510 	lwkt_reltoken(&p1grp->pg_token);
511 
512 	/*
513 	 * Attach the new process to its parent.
514 	 *
515 	 * If RFNOWAIT is set, the newly created process becomes a child
516 	 * of init.  This effectively disassociates the child from the
517 	 * parent.
518 	 */
519 	if (flags & RFNOWAIT)
520 		pptr = initproc;
521 	else
522 		pptr = p1;
523 	p2->p_pptr = pptr;
524 	LIST_INIT(&p2->p_children);
525 
526 	lwkt_gettoken(&pptr->p_token);
527 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
528 	lwkt_reltoken(&pptr->p_token);
529 
530 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
531 	callout_init_mp(&p2->p_ithandle);
532 
533 #ifdef KTRACE
534 	/*
535 	 * Copy traceflag and tracefile if enabled.  If not inherited,
536 	 * these were zeroed above but we still could have a trace race
537 	 * so make sure p2's p_tracenode is NULL.
538 	 */
539 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
540 		p2->p_traceflag = p1->p_traceflag;
541 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
542 	}
543 #endif
544 
545 	/*
546 	 * This begins the section where we must prevent the parent
547 	 * from being swapped.
548 	 *
549 	 * Gets PRELE'd in the caller in start_forked_proc().
550 	 */
551 	PHOLD(p1);
552 
553 	vm_fork(p1, p2, flags);
554 
555 	/*
556 	 * Create the first lwp associated with the new proc.
557 	 * It will return via a different execution path later, directly
558 	 * into userland, after it was put on the runq by
559 	 * start_forked_proc().
560 	 */
561 	lwp_fork(lp1, p2, flags);
562 
563 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
564 		mycpu->gd_cnt.v_forks++;
565 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
566 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
567 		mycpu->gd_cnt.v_vforks++;
568 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
569 	} else if (p1 == &proc0) {
570 		mycpu->gd_cnt.v_kthreads++;
571 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
572 	} else {
573 		mycpu->gd_cnt.v_rforks++;
574 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
575 	}
576 
577 	/*
578 	 * Both processes are set up, now check if any loadable modules want
579 	 * to adjust anything.
580 	 *   What if they have an error? XXX
581 	 */
582 	TAILQ_FOREACH(ep, &fork_list, next) {
583 		(*ep->function)(p1, p2, flags);
584 	}
585 
586 	/*
587 	 * Set the start time.  Note that the process is not runnable.  The
588 	 * caller is responsible for making it runnable.
589 	 */
590 	microtime(&p2->p_start);
591 	p2->p_acflag = AFORK;
592 
593 	/*
594 	 * tell any interested parties about the new process
595 	 */
596 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
597 
598 	/*
599 	 * Return child proc pointer to parent.
600 	 */
601 	*procp = p2;
602 	error = 0;
603 done:
604 	lwkt_reltoken(&p1->p_token);
605 	if (plkgrp) {
606 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
607 		pgrel(plkgrp);
608 	}
609 	return (error);
610 }
611 
612 static struct lwp *
613 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
614 {
615 	globaldata_t gd = mycpu;
616 	struct lwp *lp;
617 	struct thread *td;
618 
619 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
620 
621 	lp->lwp_proc = destproc;
622 	lp->lwp_vmspace = destproc->p_vmspace;
623 	lp->lwp_stat = LSRUN;
624 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
625 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
626 			(caddr_t)&lp->lwp_startcopy));
627 	lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
628 	/*
629 	 * Set cpbase to the last timeout that occured (not the upcoming
630 	 * timeout).
631 	 *
632 	 * A critical section is required since a timer IPI can update
633 	 * scheduler specific data.
634 	 */
635 	crit_enter();
636 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
637 	destproc->p_usched->heuristic_forking(origlp, lp);
638 	crit_exit();
639 	lp->lwp_cpumask &= usched_mastermask;
640 	lwkt_token_init(&lp->lwp_token, "lwp_token");
641 	spin_init(&lp->lwp_spin);
642 
643 	/*
644 	 * Assign the thread to the current cpu to begin with so we
645 	 * can manipulate it.
646 	 */
647 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
648 	lp->lwp_thread = td;
649 	td->td_proc = destproc;
650 	td->td_lwp = lp;
651 	td->td_switch = cpu_heavy_switch;
652 	lwkt_setpri(td, TDPRI_KERN_USER);
653 	lwkt_set_comm(td, "%s", destproc->p_comm);
654 
655 	/*
656 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
657 	 * and make the child ready to run.
658 	 */
659 	cpu_fork(origlp, lp, flags);
660 	caps_fork(origlp->lwp_thread, lp->lwp_thread);
661 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
662 
663 	/*
664 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
665 	 * NULL).
666 	 */
667 	lp->lwp_tid = destproc->p_lasttid;
668 	do {
669 		if (++lp->lwp_tid < 0)
670 			lp->lwp_tid = 1;
671 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
672 	destproc->p_lasttid = lp->lwp_tid;
673 	destproc->p_nthreads++;
674 
675 	return (lp);
676 }
677 
678 /*
679  * The next two functionms are general routines to handle adding/deleting
680  * items on the fork callout list.
681  *
682  * at_fork():
683  * Take the arguments given and put them onto the fork callout list,
684  * However first make sure that it's not already there.
685  * Returns 0 on success or a standard error number.
686  */
687 int
688 at_fork(forklist_fn function)
689 {
690 	struct forklist *ep;
691 
692 #ifdef INVARIANTS
693 	/* let the programmer know if he's been stupid */
694 	if (rm_at_fork(function)) {
695 		kprintf("WARNING: fork callout entry (%p) already present\n",
696 		    function);
697 	}
698 #endif
699 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
700 	ep->function = function;
701 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
702 	return (0);
703 }
704 
705 /*
706  * Scan the exit callout list for the given item and remove it..
707  * Returns the number of items removed (0 or 1)
708  */
709 int
710 rm_at_fork(forklist_fn function)
711 {
712 	struct forklist *ep;
713 
714 	TAILQ_FOREACH(ep, &fork_list, next) {
715 		if (ep->function == function) {
716 			TAILQ_REMOVE(&fork_list, ep, next);
717 			kfree(ep, M_ATFORK);
718 			return(1);
719 		}
720 	}
721 	return (0);
722 }
723 
724 /*
725  * Add a forked process to the run queue after any remaining setup, such
726  * as setting the fork handler, has been completed.
727  */
728 void
729 start_forked_proc(struct lwp *lp1, struct proc *p2)
730 {
731 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
732 
733 	/*
734 	 * Move from SIDL to RUN queue, and activate the process's thread.
735 	 * Activation of the thread effectively makes the process "a"
736 	 * current process, so we do not setrunqueue().
737 	 *
738 	 * YYY setrunqueue works here but we should clean up the trampoline
739 	 * code so we just schedule the LWKT thread and let the trampoline
740 	 * deal with the userland scheduler on return to userland.
741 	 */
742 	KASSERT(p2->p_stat == SIDL,
743 	    ("cannot start forked process, bad status: %p", p2));
744 	p2->p_usched->resetpriority(lp2);
745 	crit_enter();
746 	p2->p_stat = SACTIVE;
747 	lp2->lwp_stat = LSRUN;
748 	p2->p_usched->setrunqueue(lp2);
749 	crit_exit();
750 
751 	/*
752 	 * Now can be swapped.
753 	 */
754 	PRELE(lp1->lwp_proc);
755 
756 	/*
757 	 * Preserve synchronization semantics of vfork.  If waiting for
758 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
759 	 * proc (in case of exec or exit).
760 	 *
761 	 * We must hold our p_token to interlock the flag/tsleep
762 	 */
763 	lwkt_gettoken(&p2->p_token);
764 	while (p2->p_flags & P_PPWAIT)
765 		tsleep(lp1->lwp_proc, 0, "ppwait", 0);
766 	lwkt_reltoken(&p2->p_token);
767 }
768