xref: /dflybsd-src/sys/kern/kern_fork.c (revision 8711651202bb750eb3b64529c2e2f10dee79cd55)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $
36  */
37 
38 #include "opt_ktrace.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/sysproto.h>
43 #include <sys/filedesc.h>
44 #include <sys/kernel.h>
45 #include <sys/sysctl.h>
46 #include <sys/malloc.h>
47 #include <sys/proc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/unistd.h>
53 #include <sys/jail.h>
54 
55 #include <vm/vm.h>
56 #include <sys/lock.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_extern.h>
60 
61 #include <sys/vmmeter.h>
62 #include <sys/refcount.h>
63 #include <sys/thread2.h>
64 #include <sys/signal2.h>
65 #include <sys/spinlock2.h>
66 
67 #include <sys/dsched.h>
68 
69 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
70 
71 /*
72  * These are the stuctures used to create a callout list for things to do
73  * when forking a process
74  */
75 struct forklist {
76 	forklist_fn function;
77 	TAILQ_ENTRY(forklist) next;
78 };
79 
80 TAILQ_HEAD(forklist_head, forklist);
81 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
82 
83 static struct lwp *lwp_fork(struct lwp *, struct proc *, int flags);
84 
85 int forksleep; /* Place for fork1() to sleep on. */
86 
87 /*
88  * Red-Black tree support for LWPs
89  */
90 
91 static int
92 rb_lwp_compare(struct lwp *lp1, struct lwp *lp2)
93 {
94 	if (lp1->lwp_tid < lp2->lwp_tid)
95 		return(-1);
96 	if (lp1->lwp_tid > lp2->lwp_tid)
97 		return(1);
98 	return(0);
99 }
100 
101 RB_GENERATE2(lwp_rb_tree, lwp, u.lwp_rbnode, rb_lwp_compare, lwpid_t, lwp_tid);
102 
103 /*
104  * fork() system call
105  */
106 int
107 sys_fork(struct fork_args *uap)
108 {
109 	struct lwp *lp = curthread->td_lwp;
110 	struct proc *p2;
111 	int error;
112 
113 	error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2);
114 	if (error == 0) {
115 		PHOLD(p2);
116 		start_forked_proc(lp, p2);
117 		uap->sysmsg_fds[0] = p2->p_pid;
118 		uap->sysmsg_fds[1] = 0;
119 		PRELE(p2);
120 	}
121 	return error;
122 }
123 
124 /*
125  * vfork() system call
126  */
127 int
128 sys_vfork(struct vfork_args *uap)
129 {
130 	struct lwp *lp = curthread->td_lwp;
131 	struct proc *p2;
132 	int error;
133 
134 	error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2);
135 	if (error == 0) {
136 		PHOLD(p2);
137 		start_forked_proc(lp, p2);
138 		uap->sysmsg_fds[0] = p2->p_pid;
139 		uap->sysmsg_fds[1] = 0;
140 		PRELE(p2);
141 	}
142 	return error;
143 }
144 
145 /*
146  * Handle rforks.  An rfork may (1) operate on the current process without
147  * creating a new, (2) create a new process that shared the current process's
148  * vmspace, signals, and/or descriptors, or (3) create a new process that does
149  * not share these things (normal fork).
150  *
151  * Note that we only call start_forked_proc() if a new process is actually
152  * created.
153  *
154  * rfork { int flags }
155  */
156 int
157 sys_rfork(struct rfork_args *uap)
158 {
159 	struct lwp *lp = curthread->td_lwp;
160 	struct proc *p2;
161 	int error;
162 
163 	if ((uap->flags & RFKERNELONLY) != 0)
164 		return (EINVAL);
165 
166 	error = fork1(lp, uap->flags | RFPGLOCK, &p2);
167 	if (error == 0) {
168 		if (p2) {
169 			PHOLD(p2);
170 			start_forked_proc(lp, p2);
171 			uap->sysmsg_fds[0] = p2->p_pid;
172 			uap->sysmsg_fds[1] = 0;
173 			PRELE(p2);
174 		} else {
175 			uap->sysmsg_fds[0] = 0;
176 			uap->sysmsg_fds[1] = 0;
177 		}
178 	}
179 	return error;
180 }
181 
182 /*
183  * Low level thread create used by pthreads.
184  */
185 int
186 sys_lwp_create(struct lwp_create_args *uap)
187 {
188 	struct proc *p = curproc;
189 	struct lwp *lp;
190 	struct lwp_params params;
191 	int error;
192 
193 	error = copyin(uap->params, &params, sizeof(params));
194 	if (error)
195 		goto fail2;
196 
197 	lwkt_gettoken(&p->p_token);
198 	plimit_lwp_fork(p);	/* force exclusive access */
199 	lp = lwp_fork(curthread->td_lwp, p, RFPROC);
200 	error = cpu_prepare_lwp(lp, &params);
201 	if (error)
202 		goto fail;
203 	if (params.tid1 != NULL &&
204 	    (error = copyout(&lp->lwp_tid, params.tid1, sizeof(lp->lwp_tid))))
205 		goto fail;
206 	if (params.tid2 != NULL &&
207 	    (error = copyout(&lp->lwp_tid, params.tid2, sizeof(lp->lwp_tid))))
208 		goto fail;
209 
210 	/*
211 	 * Now schedule the new lwp.
212 	 */
213 	p->p_usched->resetpriority(lp);
214 	crit_enter();
215 	lp->lwp_stat = LSRUN;
216 	p->p_usched->setrunqueue(lp);
217 	crit_exit();
218 	lwkt_reltoken(&p->p_token);
219 
220 	return (0);
221 
222 fail:
223 	lwp_rb_tree_RB_REMOVE(&p->p_lwp_tree, lp);
224 	--p->p_nthreads;
225 	/* lwp_dispose expects an exited lwp, and a held proc */
226 	atomic_set_int(&lp->lwp_mpflags, LWP_MP_WEXIT);
227 	lp->lwp_thread->td_flags |= TDF_EXITING;
228 	lwkt_remove_tdallq(lp->lwp_thread);
229 	PHOLD(p);
230 	biosched_done(lp->lwp_thread);
231 	dsched_exit_thread(lp->lwp_thread);
232 	lwp_dispose(lp);
233 	lwkt_reltoken(&p->p_token);
234 fail2:
235 	return (error);
236 }
237 
238 int	nprocs = 1;		/* process 0 */
239 
240 int
241 fork1(struct lwp *lp1, int flags, struct proc **procp)
242 {
243 	struct proc *p1 = lp1->lwp_proc;
244 	struct proc *p2;
245 	struct proc *pptr;
246 	struct pgrp *p1grp;
247 	struct pgrp *plkgrp;
248 	uid_t uid;
249 	int ok, error;
250 	static int curfail = 0;
251 	static struct timeval lastfail;
252 	struct forklist *ep;
253 	struct filedesc_to_leader *fdtol;
254 
255 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
256 		return (EINVAL);
257 
258 	lwkt_gettoken(&p1->p_token);
259 	plkgrp = NULL;
260 	p2 = NULL;
261 
262 	/*
263 	 * Here we don't create a new process, but we divorce
264 	 * certain parts of a process from itself.
265 	 */
266 	if ((flags & RFPROC) == 0) {
267 		/*
268 		 * This kind of stunt does not work anymore if
269 		 * there are native threads (lwps) running
270 		 */
271 		if (p1->p_nthreads != 1) {
272 			error = EINVAL;
273 			goto done;
274 		}
275 
276 		vm_fork(p1, 0, flags);
277 
278 		/*
279 		 * Close all file descriptors.
280 		 */
281 		if (flags & RFCFDG) {
282 			struct filedesc *fdtmp;
283 			fdtmp = fdinit(p1);
284 			fdfree(p1, fdtmp);
285 		}
286 
287 		/*
288 		 * Unshare file descriptors (from parent.)
289 		 */
290 		if (flags & RFFDG) {
291 			if (p1->p_fd->fd_refcnt > 1) {
292 				struct filedesc *newfd;
293 				error = fdcopy(p1, &newfd);
294 				if (error != 0) {
295 					error = ENOMEM;
296 					goto done;
297 				}
298 				fdfree(p1, newfd);
299 			}
300 		}
301 		*procp = NULL;
302 		error = 0;
303 		goto done;
304 	}
305 
306 	/*
307 	 * Interlock against process group signal delivery.  If signals
308 	 * are pending after the interlock is obtained we have to restart
309 	 * the system call to process the signals.  If we don't the child
310 	 * can miss a pgsignal (such as ^C) sent during the fork.
311 	 *
312 	 * We can't use CURSIG() here because it will process any STOPs
313 	 * and cause the process group lock to be held indefinitely.  If
314 	 * a STOP occurs, the fork will be restarted after the CONT.
315 	 */
316 	p1grp = p1->p_pgrp;
317 	if ((flags & RFPGLOCK) && (plkgrp = p1->p_pgrp) != NULL) {
318 		pgref(plkgrp);
319 		lockmgr(&plkgrp->pg_lock, LK_SHARED);
320 		if (CURSIG_NOBLOCK(lp1)) {
321 			error = ERESTART;
322 			goto done;
323 		}
324 	}
325 
326 	/*
327 	 * Although process entries are dynamically created, we still keep
328 	 * a global limit on the maximum number we will create.  Don't allow
329 	 * a nonprivileged user to use the last ten processes; don't let root
330 	 * exceed the limit. The variable nprocs is the current number of
331 	 * processes, maxproc is the limit.
332 	 */
333 	uid = lp1->lwp_thread->td_ucred->cr_ruid;
334 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
335 		if (ppsratecheck(&lastfail, &curfail, 1))
336 			kprintf("maxproc limit exceeded by uid %d, please "
337 			       "see tuning(7) and login.conf(5).\n", uid);
338 		tsleep(&forksleep, 0, "fork", hz / 2);
339 		error = EAGAIN;
340 		goto done;
341 	}
342 
343 	/*
344 	 * Increment the nprocs resource before blocking can occur.  There
345 	 * are hard-limits as to the number of processes that can run.
346 	 */
347 	atomic_add_int(&nprocs, 1);
348 
349 	/*
350 	 * Increment the count of procs running with this uid. Don't allow
351 	 * a nonprivileged user to exceed their current limit.
352 	 */
353 	ok = chgproccnt(lp1->lwp_thread->td_ucred->cr_ruidinfo, 1,
354 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
355 	if (!ok) {
356 		/*
357 		 * Back out the process count
358 		 */
359 		atomic_add_int(&nprocs, -1);
360 		if (ppsratecheck(&lastfail, &curfail, 1))
361 			kprintf("maxproc limit exceeded by uid %d, please "
362 			       "see tuning(7) and login.conf(5).\n", uid);
363 		tsleep(&forksleep, 0, "fork", hz / 2);
364 		error = EAGAIN;
365 		goto done;
366 	}
367 
368 	/*
369 	 * Allocate a new process, don't get fancy: zero the structure.
370 	 */
371 	p2 = kmalloc(sizeof(struct proc), M_PROC, M_WAITOK|M_ZERO);
372 
373 	/*
374 	 * Core initialization.  SIDL is a safety state that protects the
375 	 * partially initialized process once it starts getting hooked
376 	 * into system structures and becomes addressable.
377 	 *
378 	 * We must be sure to acquire p2->p_token as well, we must hold it
379 	 * once the process is on the allproc list to avoid things such
380 	 * as competing modifications to p_flags.
381 	 */
382 	mycpu->gd_forkid += ncpus;
383 	p2->p_forkid = mycpu->gd_forkid + mycpu->gd_cpuid;
384 	p2->p_lasttid = -1;	/* first tid will be 0 */
385 	p2->p_stat = SIDL;
386 
387 	RB_INIT(&p2->p_lwp_tree);
388 	spin_init(&p2->p_spin, "procfork1");
389 	lwkt_token_init(&p2->p_token, "proc");
390 	lwkt_gettoken(&p2->p_token);
391 
392 	/*
393 	 * Setup linkage for kernel based threading XXX lwp.  Also add the
394 	 * process to the allproclist.
395 	 *
396 	 * The process structure is addressable after this point.
397 	 */
398 	if (flags & RFTHREAD) {
399 		p2->p_peers = p1->p_peers;
400 		p1->p_peers = p2;
401 		p2->p_leader = p1->p_leader;
402 	} else {
403 		p2->p_leader = p2;
404 	}
405 	proc_add_allproc(p2);
406 
407 	/*
408 	 * Initialize the section which is copied verbatim from the parent.
409 	 */
410 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
411 	      ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
412 
413 	/*
414 	 * Duplicate sub-structures as needed.  Increase reference counts
415 	 * on shared objects.
416 	 *
417 	 * NOTE: because we are now on the allproc list it is possible for
418 	 *	 other consumers to gain temporary references to p2
419 	 *	 (p2->p_lock can change).
420 	 */
421 	if (p1->p_flags & P_PROFIL)
422 		startprofclock(p2);
423 	p2->p_ucred = crhold(lp1->lwp_thread->td_ucred);
424 
425 	if (jailed(p2->p_ucred))
426 		p2->p_flags |= P_JAILED;
427 
428 	if (p2->p_args)
429 		refcount_acquire(&p2->p_args->ar_ref);
430 
431 	p2->p_usched = p1->p_usched;
432 	/* XXX: verify copy of the secondary iosched stuff */
433 	dsched_new_proc(p2);
434 
435 	if (flags & RFSIGSHARE) {
436 		p2->p_sigacts = p1->p_sigacts;
437 		refcount_acquire(&p2->p_sigacts->ps_refcnt);
438 	} else {
439 		p2->p_sigacts = kmalloc(sizeof(*p2->p_sigacts),
440 					M_SUBPROC, M_WAITOK);
441 		bcopy(p1->p_sigacts, p2->p_sigacts, sizeof(*p2->p_sigacts));
442 		refcount_init(&p2->p_sigacts->ps_refcnt, 1);
443 	}
444 	if (flags & RFLINUXTHPN)
445 	        p2->p_sigparent = SIGUSR1;
446 	else
447 	        p2->p_sigparent = SIGCHLD;
448 
449 	/* bump references to the text vnode (for procfs) */
450 	p2->p_textvp = p1->p_textvp;
451 	if (p2->p_textvp)
452 		vref(p2->p_textvp);
453 
454 	/* copy namecache handle to the text file */
455 	if (p1->p_textnch.mount)
456 		cache_copy(&p1->p_textnch, &p2->p_textnch);
457 
458 	/*
459 	 * Handle file descriptors
460 	 */
461 	if (flags & RFCFDG) {
462 		p2->p_fd = fdinit(p1);
463 		fdtol = NULL;
464 	} else if (flags & RFFDG) {
465 		error = fdcopy(p1, &p2->p_fd);
466 		if (error != 0) {
467 			error = ENOMEM;
468 			goto done;
469 		}
470 		fdtol = NULL;
471 	} else {
472 		p2->p_fd = fdshare(p1);
473 		if (p1->p_fdtol == NULL) {
474 			p1->p_fdtol = filedesc_to_leader_alloc(NULL,
475 							       p1->p_leader);
476 		}
477 		if ((flags & RFTHREAD) != 0) {
478 			/*
479 			 * Shared file descriptor table and
480 			 * shared process leaders.
481 			 */
482 			fdtol = p1->p_fdtol;
483 			fdtol->fdl_refcount++;
484 		} else {
485 			/*
486 			 * Shared file descriptor table, and
487 			 * different process leaders
488 			 */
489 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2);
490 		}
491 	}
492 	p2->p_fdtol = fdtol;
493 	p2->p_limit = plimit_fork(p1);
494 
495 	/*
496 	 * Preserve some more flags in subprocess.  P_PROFIL has already
497 	 * been preserved.
498 	 */
499 	p2->p_flags |= p1->p_flags & P_SUGID;
500 	if (p1->p_session->s_ttyvp != NULL && (p1->p_flags & P_CONTROLT))
501 		p2->p_flags |= P_CONTROLT;
502 	if (flags & RFPPWAIT) {
503 		p2->p_flags |= P_PPWAIT;
504 		if (p1->p_upmap)
505 			p1->p_upmap->invfork = 1;
506 	}
507 
508 
509 	/*
510 	 * Inherit the virtual kernel structure (allows a virtual kernel
511 	 * to fork to simulate multiple cpus).
512 	 */
513 	if (p1->p_vkernel)
514 		vkernel_inherit(p1, p2);
515 
516 	/*
517 	 * Once we are on a pglist we may receive signals.  XXX we might
518 	 * race a ^C being sent to the process group by not receiving it
519 	 * at all prior to this line.
520 	 */
521 	pgref(p1grp);
522 	lwkt_gettoken(&p1grp->pg_token);
523 	LIST_INSERT_AFTER(p1, p2, p_pglist);
524 	lwkt_reltoken(&p1grp->pg_token);
525 
526 	/*
527 	 * Attach the new process to its parent.
528 	 *
529 	 * If RFNOWAIT is set, the newly created process becomes a child
530 	 * of init.  This effectively disassociates the child from the
531 	 * parent.
532 	 */
533 	if (flags & RFNOWAIT)
534 		pptr = initproc;
535 	else
536 		pptr = p1;
537 	p2->p_pptr = pptr;
538 	LIST_INIT(&p2->p_children);
539 
540 	lwkt_gettoken(&pptr->p_token);
541 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
542 	lwkt_reltoken(&pptr->p_token);
543 
544 	varsymset_init(&p2->p_varsymset, &p1->p_varsymset);
545 	callout_init_mp(&p2->p_ithandle);
546 
547 #ifdef KTRACE
548 	/*
549 	 * Copy traceflag and tracefile if enabled.  If not inherited,
550 	 * these were zeroed above but we still could have a trace race
551 	 * so make sure p2's p_tracenode is NULL.
552 	 */
553 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) {
554 		p2->p_traceflag = p1->p_traceflag;
555 		p2->p_tracenode = ktrinherit(p1->p_tracenode);
556 	}
557 #endif
558 
559 	/*
560 	 * This begins the section where we must prevent the parent
561 	 * from being swapped.
562 	 *
563 	 * Gets PRELE'd in the caller in start_forked_proc().
564 	 */
565 	PHOLD(p1);
566 
567 	vm_fork(p1, p2, flags);
568 
569 	/*
570 	 * Create the first lwp associated with the new proc.
571 	 * It will return via a different execution path later, directly
572 	 * into userland, after it was put on the runq by
573 	 * start_forked_proc().
574 	 */
575 	lwp_fork(lp1, p2, flags);
576 
577 	if (flags == (RFFDG | RFPROC | RFPGLOCK)) {
578 		mycpu->gd_cnt.v_forks++;
579 		mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize +
580 					     p2->p_vmspace->vm_ssize;
581 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK)) {
582 		mycpu->gd_cnt.v_vforks++;
583 		mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
584 					      p2->p_vmspace->vm_ssize;
585 	} else if (p1 == &proc0) {
586 		mycpu->gd_cnt.v_kthreads++;
587 		mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
588 						p2->p_vmspace->vm_ssize;
589 	} else {
590 		mycpu->gd_cnt.v_rforks++;
591 		mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
592 					      p2->p_vmspace->vm_ssize;
593 	}
594 
595 	/*
596 	 * Both processes are set up, now check if any loadable modules want
597 	 * to adjust anything.
598 	 *   What if they have an error? XXX
599 	 */
600 	TAILQ_FOREACH(ep, &fork_list, next) {
601 		(*ep->function)(p1, p2, flags);
602 	}
603 
604 	/*
605 	 * Set the start time.  Note that the process is not runnable.  The
606 	 * caller is responsible for making it runnable.
607 	 */
608 	microtime(&p2->p_start);
609 	p2->p_acflag = AFORK;
610 
611 	/*
612 	 * tell any interested parties about the new process
613 	 */
614 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
615 
616 	/*
617 	 * Return child proc pointer to parent.
618 	 */
619 	*procp = p2;
620 	error = 0;
621 done:
622 	if (p2)
623 		lwkt_reltoken(&p2->p_token);
624 	lwkt_reltoken(&p1->p_token);
625 	if (plkgrp) {
626 		lockmgr(&plkgrp->pg_lock, LK_RELEASE);
627 		pgrel(plkgrp);
628 	}
629 	return (error);
630 }
631 
632 static struct lwp *
633 lwp_fork(struct lwp *origlp, struct proc *destproc, int flags)
634 {
635 	globaldata_t gd = mycpu;
636 	struct lwp *lp;
637 	struct thread *td;
638 
639 	lp = kmalloc(sizeof(struct lwp), M_LWP, M_WAITOK|M_ZERO);
640 
641 	lp->lwp_proc = destproc;
642 	lp->lwp_vmspace = destproc->p_vmspace;
643 	lp->lwp_stat = LSRUN;
644 	bcopy(&origlp->lwp_startcopy, &lp->lwp_startcopy,
645 	    (unsigned) ((caddr_t)&lp->lwp_endcopy -
646 			(caddr_t)&lp->lwp_startcopy));
647 	lp->lwp_flags |= origlp->lwp_flags & LWP_ALTSTACK;
648 	/*
649 	 * Set cpbase to the last timeout that occured (not the upcoming
650 	 * timeout).
651 	 *
652 	 * A critical section is required since a timer IPI can update
653 	 * scheduler specific data.
654 	 */
655 	crit_enter();
656 	lp->lwp_cpbase = gd->gd_schedclock.time - gd->gd_schedclock.periodic;
657 	destproc->p_usched->heuristic_forking(origlp, lp);
658 	crit_exit();
659 	CPUMASK_ANDMASK(lp->lwp_cpumask, usched_mastermask);
660 	lwkt_token_init(&lp->lwp_token, "lwp_token");
661 	spin_init(&lp->lwp_spin, "lwptoken");
662 
663 	/*
664 	 * Assign the thread to the current cpu to begin with so we
665 	 * can manipulate it.
666 	 */
667 	td = lwkt_alloc_thread(NULL, LWKT_THREAD_STACK, gd->gd_cpuid, 0);
668 	lp->lwp_thread = td;
669 	td->td_ucred = crhold(destproc->p_ucred);
670 	td->td_proc = destproc;
671 	td->td_lwp = lp;
672 	td->td_switch = cpu_heavy_switch;
673 #ifdef NO_LWKT_SPLIT_USERPRI
674 	lwkt_setpri(td, TDPRI_USER_NORM);
675 #else
676 	lwkt_setpri(td, TDPRI_KERN_USER);
677 #endif
678 	lwkt_set_comm(td, "%s", destproc->p_comm);
679 
680 	/*
681 	 * cpu_fork will copy and update the pcb, set up the kernel stack,
682 	 * and make the child ready to run.
683 	 */
684 	cpu_fork(origlp, lp, flags);
685 	kqueue_init(&lp->lwp_kqueue, destproc->p_fd);
686 
687 	/*
688 	 * Assign a TID to the lp.  Loop until the insert succeeds (returns
689 	 * NULL).
690 	 */
691 	lp->lwp_tid = destproc->p_lasttid;
692 	do {
693 		if (++lp->lwp_tid < 0)
694 			lp->lwp_tid = 1;
695 	} while (lwp_rb_tree_RB_INSERT(&destproc->p_lwp_tree, lp) != NULL);
696 	destproc->p_lasttid = lp->lwp_tid;
697 	destproc->p_nthreads++;
698 
699 	/*
700 	 * This flag is set and never cleared.  It means that the process
701 	 * was threaded at some point.  Used to improve exit performance.
702 	 */
703 	destproc->p_flags |= P_MAYBETHREADED;
704 
705 	return (lp);
706 }
707 
708 /*
709  * The next two functionms are general routines to handle adding/deleting
710  * items on the fork callout list.
711  *
712  * at_fork():
713  * Take the arguments given and put them onto the fork callout list,
714  * However first make sure that it's not already there.
715  * Returns 0 on success or a standard error number.
716  */
717 int
718 at_fork(forklist_fn function)
719 {
720 	struct forklist *ep;
721 
722 #ifdef INVARIANTS
723 	/* let the programmer know if he's been stupid */
724 	if (rm_at_fork(function)) {
725 		kprintf("WARNING: fork callout entry (%p) already present\n",
726 		    function);
727 	}
728 #endif
729 	ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO);
730 	ep->function = function;
731 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
732 	return (0);
733 }
734 
735 /*
736  * Scan the exit callout list for the given item and remove it..
737  * Returns the number of items removed (0 or 1)
738  */
739 int
740 rm_at_fork(forklist_fn function)
741 {
742 	struct forklist *ep;
743 
744 	TAILQ_FOREACH(ep, &fork_list, next) {
745 		if (ep->function == function) {
746 			TAILQ_REMOVE(&fork_list, ep, next);
747 			kfree(ep, M_ATFORK);
748 			return(1);
749 		}
750 	}
751 	return (0);
752 }
753 
754 /*
755  * Add a forked process to the run queue after any remaining setup, such
756  * as setting the fork handler, has been completed.
757  *
758  * p2 is held by the caller.
759  */
760 void
761 start_forked_proc(struct lwp *lp1, struct proc *p2)
762 {
763 	struct lwp *lp2 = ONLY_LWP_IN_PROC(p2);
764 	int pflags;
765 
766 	/*
767 	 * Move from SIDL to RUN queue, and activate the process's thread.
768 	 * Activation of the thread effectively makes the process "a"
769 	 * current process, so we do not setrunqueue().
770 	 *
771 	 * YYY setrunqueue works here but we should clean up the trampoline
772 	 * code so we just schedule the LWKT thread and let the trampoline
773 	 * deal with the userland scheduler on return to userland.
774 	 */
775 	KASSERT(p2->p_stat == SIDL,
776 	    ("cannot start forked process, bad status: %p", p2));
777 	p2->p_usched->resetpriority(lp2);
778 	crit_enter();
779 	p2->p_stat = SACTIVE;
780 	lp2->lwp_stat = LSRUN;
781 	p2->p_usched->setrunqueue(lp2);
782 	crit_exit();
783 
784 	/*
785 	 * Now can be swapped.
786 	 */
787 	PRELE(lp1->lwp_proc);
788 
789 	/*
790 	 * Preserve synchronization semantics of vfork.  P_PPWAIT is set in
791 	 * the child until it has retired the parent's resources.  The parent
792 	 * must wait for the flag to be cleared by the child.
793 	 *
794 	 * Interlock the flag/tsleep with atomic ops to avoid unnecessary
795 	 * p_token conflicts.
796 	 *
797 	 * XXX Is this use of an atomic op on a field that is not normally
798 	 *     manipulated with atomic ops ok?
799 	 */
800 	while ((pflags = p2->p_flags) & P_PPWAIT) {
801 		cpu_ccfence();
802 		tsleep_interlock(lp1->lwp_proc, 0);
803 		if (atomic_cmpset_int(&p2->p_flags, pflags, pflags))
804 			tsleep(lp1->lwp_proc, PINTERLOCKED, "ppwait", 0);
805 	}
806 }
807