1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 39 * $FreeBSD: src/sys/kern/kern_fork.c,v 1.72.2.14 2003/06/26 04:15:10 silby Exp $ 40 * $DragonFly: src/sys/kern/kern_fork.c,v 1.62 2007/02/16 23:11:39 corecode Exp $ 41 */ 42 43 #include "opt_ktrace.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysproto.h> 48 #include <sys/filedesc.h> 49 #include <sys/kernel.h> 50 #include <sys/sysctl.h> 51 #include <sys/malloc.h> 52 #include <sys/proc.h> 53 #include <sys/resourcevar.h> 54 #include <sys/vnode.h> 55 #include <sys/acct.h> 56 #include <sys/ktrace.h> 57 #include <sys/unistd.h> 58 #include <sys/jail.h> 59 #include <sys/caps.h> 60 61 #include <vm/vm.h> 62 #include <sys/lock.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/vm_extern.h> 66 #include <vm/vm_zone.h> 67 68 #include <sys/vmmeter.h> 69 #include <sys/user.h> 70 #include <sys/thread2.h> 71 72 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback"); 73 74 /* 75 * These are the stuctures used to create a callout list for things to do 76 * when forking a process 77 */ 78 struct forklist { 79 forklist_fn function; 80 TAILQ_ENTRY(forklist) next; 81 }; 82 83 TAILQ_HEAD(forklist_head, forklist); 84 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list); 85 86 int forksleep; /* Place for fork1() to sleep on. */ 87 88 /* ARGSUSED */ 89 int 90 sys_fork(struct fork_args *uap) 91 { 92 struct lwp *lp = curthread->td_lwp; 93 struct proc *p2; 94 int error; 95 96 error = fork1(lp, RFFDG | RFPROC | RFPGLOCK, &p2); 97 if (error == 0) { 98 start_forked_proc(lp, p2); 99 uap->sysmsg_fds[0] = p2->p_pid; 100 uap->sysmsg_fds[1] = 0; 101 } 102 return error; 103 } 104 105 /* ARGSUSED */ 106 int 107 sys_vfork(struct vfork_args *uap) 108 { 109 struct lwp *lp = curthread->td_lwp; 110 struct proc *p2; 111 int error; 112 113 error = fork1(lp, RFFDG | RFPROC | RFPPWAIT | RFMEM | RFPGLOCK, &p2); 114 if (error == 0) { 115 start_forked_proc(lp, p2); 116 uap->sysmsg_fds[0] = p2->p_pid; 117 uap->sysmsg_fds[1] = 0; 118 } 119 return error; 120 } 121 122 /* 123 * Handle rforks. An rfork may (1) operate on the current process without 124 * creating a new, (2) create a new process that shared the current process's 125 * vmspace, signals, and/or descriptors, or (3) create a new process that does 126 * not share these things (normal fork). 127 * 128 * Note that we only call start_forked_proc() if a new process is actually 129 * created. 130 * 131 * rfork { int flags } 132 */ 133 int 134 sys_rfork(struct rfork_args *uap) 135 { 136 struct lwp *lp = curthread->td_lwp; 137 struct proc *p2; 138 int error; 139 140 if ((uap->flags & RFKERNELONLY) != 0) 141 return (EINVAL); 142 143 error = fork1(lp, uap->flags | RFPGLOCK, &p2); 144 if (error == 0) { 145 if (p2) 146 start_forked_proc(lp, p2); 147 uap->sysmsg_fds[0] = p2 ? p2->p_pid : 0; 148 uap->sysmsg_fds[1] = 0; 149 } 150 return error; 151 } 152 153 154 int nprocs = 1; /* process 0 */ 155 156 int 157 fork1(struct lwp *lp1, int flags, struct proc **procp) 158 { 159 struct proc *p1 = lp1->lwp_proc; 160 struct proc *p2, *pptr; 161 struct pgrp *pgrp; 162 struct lwp *lp2; 163 uid_t uid; 164 int ok, error; 165 static int curfail = 0; 166 static struct timeval lastfail; 167 struct forklist *ep; 168 struct filedesc_to_leader *fdtol; 169 170 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 171 return (EINVAL); 172 173 /* 174 * Here we don't create a new process, but we divorce 175 * certain parts of a process from itself. 176 */ 177 if ((flags & RFPROC) == 0) { 178 179 vm_fork(lp1, 0, flags); 180 181 /* 182 * Close all file descriptors. 183 */ 184 if (flags & RFCFDG) { 185 struct filedesc *fdtmp; 186 fdtmp = fdinit(p1); 187 fdfree(p1); 188 p1->p_fd = fdtmp; 189 } 190 191 /* 192 * Unshare file descriptors (from parent.) 193 */ 194 if (flags & RFFDG) { 195 if (p1->p_fd->fd_refcnt > 1) { 196 struct filedesc *newfd; 197 newfd = fdcopy(p1); 198 fdfree(p1); 199 p1->p_fd = newfd; 200 } 201 } 202 *procp = NULL; 203 return (0); 204 } 205 206 /* 207 * Interlock against process group signal delivery. If signals 208 * are pending after the interlock is obtained we have to restart 209 * the system call to process the signals. If we don't the child 210 * can miss a pgsignal (such as ^C) sent during the fork. 211 * 212 * We can't use CURSIG() here because it will process any STOPs 213 * and cause the process group lock to be held indefinitely. If 214 * a STOP occurs, the fork will be restarted after the CONT. 215 */ 216 error = 0; 217 pgrp = NULL; 218 if ((flags & RFPGLOCK) && (pgrp = p1->p_pgrp) != NULL) { 219 lockmgr(&pgrp->pg_lock, LK_SHARED); 220 if (CURSIGNB(lp1)) { 221 error = ERESTART; 222 goto done; 223 } 224 } 225 226 /* 227 * Although process entries are dynamically created, we still keep 228 * a global limit on the maximum number we will create. Don't allow 229 * a nonprivileged user to use the last ten processes; don't let root 230 * exceed the limit. The variable nprocs is the current number of 231 * processes, maxproc is the limit. 232 */ 233 uid = p1->p_ucred->cr_ruid; 234 if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) { 235 if (ppsratecheck(&lastfail, &curfail, 1)) 236 kprintf("maxproc limit exceeded by uid %d, please " 237 "see tuning(7) and login.conf(5).\n", uid); 238 tsleep(&forksleep, 0, "fork", hz / 2); 239 error = EAGAIN; 240 goto done; 241 } 242 /* 243 * Increment the nprocs resource before blocking can occur. There 244 * are hard-limits as to the number of processes that can run. 245 */ 246 nprocs++; 247 248 /* 249 * Increment the count of procs running with this uid. Don't allow 250 * a nonprivileged user to exceed their current limit. 251 */ 252 ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1, 253 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0); 254 if (!ok) { 255 /* 256 * Back out the process count 257 */ 258 nprocs--; 259 if (ppsratecheck(&lastfail, &curfail, 1)) 260 kprintf("maxproc limit exceeded by uid %d, please " 261 "see tuning(7) and login.conf(5).\n", uid); 262 tsleep(&forksleep, 0, "fork", hz / 2); 263 error = EAGAIN; 264 goto done; 265 } 266 267 /* Allocate new proc. */ 268 p2 = zalloc(proc_zone); 269 lp2 = zalloc(lwp_zone); 270 271 /* 272 * Setup linkage for kernel based threading XXX lwp 273 */ 274 if (flags & RFTHREAD) { 275 p2->p_peers = p1->p_peers; 276 p1->p_peers = p2; 277 p2->p_leader = p1->p_leader; 278 } else { 279 p2->p_peers = NULL; 280 p2->p_leader = p2; 281 } 282 283 p2->p_wakeup = 0; 284 p2->p_vmspace = NULL; 285 p2->p_numposixlocks = 0; 286 p2->p_emuldata = NULL; 287 LIST_INIT(&p2->p_lwps); 288 289 /* XXX lwp */ 290 lp2->lwp_proc = p2; 291 lp2->lwp_tid = 0; 292 LIST_INSERT_HEAD(&p2->p_lwps, lp2, lwp_list); 293 p2->p_nthreads = 1; 294 p2->p_nstopped = 0; 295 p2->p_lasttid = 0; 296 297 /* 298 * Setting the state to SIDL protects the partially initialized 299 * process once it starts getting hooked into the rest of the system. 300 */ 301 p2->p_stat = SIDL; 302 lp2->lwp_stat = LSRUN; /* XXX use other state? start_forked_proc() handles this*/ 303 proc_add_allproc(p2); 304 305 /* 306 * Make a proc table entry for the new process. 307 * Start by zeroing the section of proc that is zero-initialized, 308 * then copy the section that is copied directly from the parent. 309 */ 310 bzero(&p2->p_startzero, 311 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero)); 312 bzero(&lp2->lwp_startzero, 313 (unsigned) ((caddr_t)&lp2->lwp_endzero - 314 (caddr_t)&lp2->lwp_startzero)); 315 bcopy(&p1->p_startcopy, &p2->p_startcopy, 316 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy)); 317 bcopy(&lp1->lwp_startcopy, &lp2->lwp_startcopy, 318 (unsigned) ((caddr_t)&lp2->lwp_endcopy - 319 (caddr_t)&lp2->lwp_startcopy)); 320 321 p2->p_aioinfo = NULL; 322 323 /* 324 * Duplicate sub-structures as needed. 325 * Increase reference counts on shared objects. 326 * The p_stats and p_sigacts substructs are set in vm_fork. 327 * p_lock is in the copy area and must be cleared. 328 */ 329 p2->p_flag = 0; 330 p2->p_lock = 0; 331 if (p1->p_flag & P_PROFIL) 332 startprofclock(p2); 333 p2->p_ucred = crhold(p1->p_ucred); 334 335 if (jailed(p2->p_ucred)) 336 p2->p_flag |= P_JAILED; 337 338 if (p2->p_args) 339 p2->p_args->ar_ref++; 340 341 if (flags & RFSIGSHARE) { 342 p2->p_procsig = p1->p_procsig; 343 p2->p_procsig->ps_refcnt++; 344 if (p1->p_sigacts == &p1->p_addr->u_sigacts) { 345 struct sigacts *newsigacts; 346 347 /* Create the shared sigacts structure */ 348 MALLOC(newsigacts, struct sigacts *, 349 sizeof(struct sigacts), M_SUBPROC, M_WAITOK); 350 crit_enter(); 351 /* 352 * Set p_sigacts to the new shared structure. 353 * Note that this is updating p1->p_sigacts at the 354 * same time, since p_sigacts is just a pointer to 355 * the shared p_procsig->ps_sigacts. 356 */ 357 p2->p_sigacts = newsigacts; 358 bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts, 359 sizeof(*p2->p_sigacts)); 360 *p2->p_sigacts = p1->p_addr->u_sigacts; 361 crit_exit(); 362 } 363 } else { 364 MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig), 365 M_SUBPROC, M_WAITOK); 366 bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig)); 367 p2->p_procsig->ps_refcnt = 1; 368 p2->p_sigacts = NULL; /* finished in vm_fork() */ 369 } 370 if (flags & RFLINUXTHPN) 371 p2->p_sigparent = SIGUSR1; 372 else 373 p2->p_sigparent = SIGCHLD; 374 375 /* bump references to the text vnode (for procfs) */ 376 p2->p_textvp = p1->p_textvp; 377 if (p2->p_textvp) 378 vref(p2->p_textvp); 379 380 /* 381 * Handle file descriptors 382 */ 383 if (flags & RFCFDG) { 384 p2->p_fd = fdinit(p1); 385 fdtol = NULL; 386 } else if (flags & RFFDG) { 387 p2->p_fd = fdcopy(p1); 388 fdtol = NULL; 389 } else { 390 p2->p_fd = fdshare(p1); 391 if (p1->p_fdtol == NULL) 392 p1->p_fdtol = 393 filedesc_to_leader_alloc(NULL, 394 p1->p_leader); 395 if ((flags & RFTHREAD) != 0) { 396 /* 397 * Shared file descriptor table and 398 * shared process leaders. 399 */ 400 fdtol = p1->p_fdtol; 401 fdtol->fdl_refcount++; 402 } else { 403 /* 404 * Shared file descriptor table, and 405 * different process leaders 406 */ 407 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, p2); 408 } 409 } 410 p2->p_fdtol = fdtol; 411 p2->p_limit = plimit_fork(p1->p_limit); 412 413 /* 414 * Preserve some more flags in subprocess. P_PROFIL has already 415 * been preserved. 416 */ 417 p2->p_flag |= p1->p_flag & P_SUGID; 418 lp2->lwp_flag |= lp1->lwp_flag & LWP_ALTSTACK; 419 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 420 p2->p_flag |= P_CONTROLT; 421 if (flags & RFPPWAIT) 422 p2->p_flag |= P_PPWAIT; 423 424 /* 425 * Inherit the virtual kernel structure (allows a virtual kernel 426 * to fork to simulate multiple cpus). 427 */ 428 p2->p_vkernel = NULL; 429 if (p1->p_vkernel) 430 vkernel_inherit(p1, p2); 431 432 /* 433 * Once we are on a pglist we may receive signals. XXX we might 434 * race a ^C being sent to the process group by not receiving it 435 * at all prior to this line. 436 */ 437 LIST_INSERT_AFTER(p1, p2, p_pglist); 438 439 /* 440 * Attach the new process to its parent. 441 * 442 * If RFNOWAIT is set, the newly created process becomes a child 443 * of init. This effectively disassociates the child from the 444 * parent. 445 */ 446 if (flags & RFNOWAIT) 447 pptr = initproc; 448 else 449 pptr = p1; 450 p2->p_pptr = pptr; 451 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 452 LIST_INIT(&p2->p_children); 453 varsymset_init(&p2->p_varsymset, &p1->p_varsymset); 454 callout_init(&p2->p_ithandle); 455 456 #ifdef KTRACE 457 /* 458 * Copy traceflag and tracefile if enabled. If not inherited, 459 * these were zeroed above but we still could have a trace race 460 * so make sure p2's p_tracenode is NULL. 461 */ 462 if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracenode == NULL) { 463 p2->p_traceflag = p1->p_traceflag; 464 p2->p_tracenode = ktrinherit(p1->p_tracenode); 465 } 466 #endif 467 468 /* 469 * Inherit the scheduler and initialize scheduler-related fields. 470 * Set cpbase to the last timeout that occured (not the upcoming 471 * timeout). 472 * 473 * A critical section is required since a timer IPI can update 474 * scheduler specific data. 475 */ 476 crit_enter(); 477 p2->p_usched = p1->p_usched; 478 lp2->lwp_cpbase = mycpu->gd_schedclock.time - 479 mycpu->gd_schedclock.periodic; 480 p2->p_usched->heuristic_forking(lp1, lp2); 481 crit_exit(); 482 483 /* 484 * This begins the section where we must prevent the parent 485 * from being swapped. 486 */ 487 PHOLD(p1); 488 489 /* 490 * Finish creating the child process. It will return via a different 491 * execution path later. (ie: directly into user mode) 492 */ 493 vm_fork(lp1, p2, flags); 494 caps_fork(lp1->lwp_thread, lp2->lwp_thread, flags); 495 496 if (flags == (RFFDG | RFPROC)) { 497 mycpu->gd_cnt.v_forks++; 498 mycpu->gd_cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 499 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 500 mycpu->gd_cnt.v_vforks++; 501 mycpu->gd_cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 502 } else if (p1 == &proc0) { 503 mycpu->gd_cnt.v_kthreads++; 504 mycpu->gd_cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 505 } else { 506 mycpu->gd_cnt.v_rforks++; 507 mycpu->gd_cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 508 } 509 510 /* 511 * Both processes are set up, now check if any loadable modules want 512 * to adjust anything. 513 * What if they have an error? XXX 514 */ 515 TAILQ_FOREACH(ep, &fork_list, next) { 516 (*ep->function)(p1, p2, flags); 517 } 518 519 /* 520 * Set the start time. Note that the process is not runnable. The 521 * caller is responsible for making it runnable. 522 */ 523 microtime(&p2->p_start); 524 p2->p_acflag = AFORK; 525 526 /* 527 * tell any interested parties about the new process 528 */ 529 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid); 530 531 /* 532 * Return child proc pointer to parent. 533 */ 534 *procp = p2; 535 done: 536 if (pgrp) 537 lockmgr(&pgrp->pg_lock, LK_RELEASE); 538 return (error); 539 } 540 541 /* 542 * The next two functionms are general routines to handle adding/deleting 543 * items on the fork callout list. 544 * 545 * at_fork(): 546 * Take the arguments given and put them onto the fork callout list, 547 * However first make sure that it's not already there. 548 * Returns 0 on success or a standard error number. 549 */ 550 int 551 at_fork(forklist_fn function) 552 { 553 struct forklist *ep; 554 555 #ifdef INVARIANTS 556 /* let the programmer know if he's been stupid */ 557 if (rm_at_fork(function)) { 558 kprintf("WARNING: fork callout entry (%p) already present\n", 559 function); 560 } 561 #endif 562 ep = kmalloc(sizeof(*ep), M_ATFORK, M_WAITOK|M_ZERO); 563 ep->function = function; 564 TAILQ_INSERT_TAIL(&fork_list, ep, next); 565 return (0); 566 } 567 568 /* 569 * Scan the exit callout list for the given item and remove it.. 570 * Returns the number of items removed (0 or 1) 571 */ 572 int 573 rm_at_fork(forklist_fn function) 574 { 575 struct forklist *ep; 576 577 TAILQ_FOREACH(ep, &fork_list, next) { 578 if (ep->function == function) { 579 TAILQ_REMOVE(&fork_list, ep, next); 580 kfree(ep, M_ATFORK); 581 return(1); 582 } 583 } 584 return (0); 585 } 586 587 /* 588 * Add a forked process to the run queue after any remaining setup, such 589 * as setting the fork handler, has been completed. 590 */ 591 void 592 start_forked_proc(struct lwp *lp1, struct proc *p2) 593 { 594 struct lwp *lp2 = ONLY_LWP_IN_PROC(p2); 595 596 /* 597 * Move from SIDL to RUN queue, and activate the process's thread. 598 * Activation of the thread effectively makes the process "a" 599 * current process, so we do not setrunqueue(). 600 * 601 * YYY setrunqueue works here but we should clean up the trampoline 602 * code so we just schedule the LWKT thread and let the trampoline 603 * deal with the userland scheduler on return to userland. 604 */ 605 KASSERT(p2->p_stat == SIDL, 606 ("cannot start forked process, bad status: %p", p2)); 607 p2->p_usched->resetpriority(lp2); 608 crit_enter(); 609 p2->p_stat = SACTIVE; 610 lp2->lwp_stat = LSRUN; 611 p2->p_usched->setrunqueue(lp2); 612 crit_exit(); 613 614 /* 615 * Now can be swapped. 616 */ 617 PRELE(lp1->lwp_proc); 618 619 /* 620 * Preserve synchronization semantics of vfork. If waiting for 621 * child to exec or exit, set P_PPWAIT on child, and sleep on our 622 * proc (in case of exit). 623 */ 624 while (p2->p_flag & P_PPWAIT) 625 tsleep(lp1->lwp_proc, 0, "ppwait", 0); 626 } 627